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Live cell imaging uniquely enables the measurement of dynamic events in single cells, but it has not been
used often in the study of gene regulatory networks. Network components can be examined in relation to
one another by quantitative live cell imaging of fluorescent protein reporter cell lines that simultaneously
report on more than one network component. A series of dual-reporter cell lines would allow different
combinations of network components to be examined in individual cells. Dynamical information about
interacting network components in individual cells is critical to predictive modeling of gene regulatory
networks, and such information is not accessible through omics and other end point techniques.
Achieving this requires that gene-edited cell lines are appropriately designed and adequately character-
ized to assure the validity of the biological conclusions derived from the expression of the reporters. In
this brief review we discuss what is known about the importance of dynamics to network modeling
and review some recent advances in optical microscopy methods and image analysis approaches that
are making the use of quantitative live cell imaging for network analysis possible. We also discuss
how strategies for genetic engineering of reporter cell lines can influence the biological relevance of
the data.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Quantitative live cell imaging contributes unique data and
insights to the study of pluripotency, but gene regulatory networks
(GRN) are most often examined by measurement of gene tran-
scripts and protein–protein interactions (PPI) as reviewed in [1].
Whether these measurements are made on a population of cells
or are determined on the level of individual cells, they are endpoint
measurements in that the cells are sacrificed in the process. Tem-
poral response data has to be inferred from measurements of dif-
ferent populations of cells. Transcriptomics and PPI data have
identified large numbers of putative network components and
have provided classifications of gene expression products. Single
cell transcription studies have illuminated, for example, the gene
expression profile changes that accompany hematopoiesis [2].
Other studies have provided information about the heterogeneity
of gene expression in individual cells within an isogenic population
and insight into the relative degree of variability between individ-
ual cells at early stages versus late stages of reprogramming to iPSC
(for example, see [3]).

Data from static methods such as transcriptomics and flow
cytometry can indicate correlations in the appearance of different
network components in populations of cells over time or in
response to perturbations and can suggest causation between gene
products. However, it is clear that causality is impossible to con-
firm from single point-in-time studies [4,5]. While the value of
omics measurements is great, dynamic data of expression of net-
work components in individual cells in real time is critical for
determining unambiguously how networks control cell fate [4–
7]. Details regarding the controlling features of many networks
are still under investigation. Many network variables have been
identified as contributing to the control of pluripotency [8]. How-
ever, there is still significant ambiguity even in the relationship
between the canonical factors OCT4, SOX2 and NANOG [9]. This
makes it challenging to unambiguously characterize the state of
the population. Furthermore, knowing the dynamic relationships
between network components makes it possible to predict how
rapidly the state of the population will change under changing con-
ditions, such as was demonstrated in [10]. Fig. 1 summarizes the
observations that have been reported for the relationship between
the canonical transcription factors and pluripotency substates.
ig. 1. A. Published studies reviewed in [9] indicate an ambiguity in TF levels and the
cludes substates that are highly stable and substates that are more easily differentiate
oss-regulation of related TFs by positive and negative feedback.
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In contrast to measurements of transcripts and other single
time endpoint measurements like flow cytometry, live cell imaging
uniquely allows individual cells to be probed sequentially over
time. Quantitative imaging has been used to directly measure time
series gene expression dynamics in individual cells [7,11–15]. In
these studies, a fluorescent protein (FP) is expressed at the same
time as a gene of interest (GOI) and reports on the activation of
that gene. The term ‘image-based systems biology’ has been used
to refer to the use of imaging to take advantage of spatial and tem-
poral information and link theoretical and experimental analysis of
biological processes [16]. Phenomenological observations of popu-
lations of individual cells in time have provided insight into mech-
anistic details that cannot be directly detected frommeasurements
of single cells at a single point in time. For example, Maherali [17]
used green fluorescent protein (GFP) as a NANOG reporter to show
that pluripotency could be conferred to individual somatic cells by
fusing them with iPS cells, and then using another GFP reporter,
they demonstrated the inactivation and reactivation of the X-
chromosome in individual cells upon induction of a pluripotent
state. Live cell imaging has allowed direct observation of cell lin-
eage progression and cell fate [18]. Live cell imaging has helped
to elucidate other information about stem cells that would not
be accessible from methods that require cell destruction. This
includes the direct measurement of individual cells in the context
of surrounding cells, such as the preferential location of self-
renewing embryonic stem cells in the interior of a colony [19],
the analysis of correlations of gene expression with other directly
measured characteristics such as division time and symmetry of
division [18]; and the determination of lineage decision points in
neural stem cells [20]. By following individual cells over time,
Strasser et al. [21] used correlations in marker expression in
related progeny to determine the time delay in expression follow-
ing lineage commitment in hematopoiesis. Live cell imaging pro-
vides unique data that can verify direct correlations of gene
expression within individual cells with other features of that cell’s
behavior.

Gene regulatory networks associated with pluripotency have
been studied directly with live cell imaging through analysis of
the dynamics of expression of transcription factors associated with
FPs [7,15,21,22]. Time-resolved measurements in individual cells
have allowed assessment of the dynamics of NANOG fluctuations
ir relationship to possible substates of pluripotency, suggesting that pluripotency
d. B. The proposed interactions between OCT4, SOX2 and NANOG include auto- and



Fig. 2. A. A conceptual visualization showing a possible two-dimensional landscape demonstrating the relationship between OCT4 and SOX2 over a population of pluripotent
cells. The expression of two GOI can be monitored simultaneously in individual cells by engineering dual reporter cell lines. Combining data from a series of dual reporter cell
lines would allow a multidimensional landscape of network component interactions to be constructed. B. Network variables can be examined in a pairwise fashion using a
series of dual-reporter engineered cell lines. A 3� 3 matrix of TFs is shown here, but there is, in principle, no limit on the number of transcription factors that can be examined
with appropriately engineered cell lines.
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and the development of models that predicted the steady state dis-
tribution of NANOG expression levels [22]. Quantifying fluctua-
tions in the expression of a single gene in individual cells over
time directly by live cell microscopy has been reported [7,10,22].
However, although dual-reporter cell lines have been engineered
[7,23–27], measuring trajectories of expression of more than one
gene in individual cells has not been reported to our knowledge.
Correlations in expression of multiple gene products can indicate
mutual control of those genes by upstream factors [28], and corre-
lated responses between network components provides a higher
degree of confidence in the nature and strength of the relationship
between gene products such as transcription factors [29] than can
be achieved by static measurements such as flow cytometry or
transcriptomics. By engineering a series of multi-reporter cell lines,
and with appropriate imaging technologies, the measurement of
correlations in the expression of multiple gene products is possible.
By quantifying coordinated fluctuations in pairs of transcription
factors in individual cells within a series of engineered cell lines,
one can, in principle, establish an N dimensional diffusion matrix,
where N is the number of gene products being examined (Fig. 2).
The rate constants for these dynamic correlations would allow pre-
dictions of the time required for the population to respond to a per-
turbation, as was shown for a one-dimensional system [10].

A critical advantage of imaging is that the dynamic relation-
ships between network components may demonstrate relation-
ships to other phenotypic characteristics of the cells, such as
relative location in a colony, morphological characteristics, prox-
imity to other cells, division time, metabolic state, etc. These fea-
tures in combination add knowledge that cannot be achieved
from data from a single point in time.
2. Advances in imaging technologies for probing
multidimensional GRN dynamics

2.1. Quantitative live cell imaging provides access to patterns of gene
expression and gene regulatory dynamics

Despite the temporal and spatial information that live cell
imaging uniquely offers to network analysis, it is not employed
as frequently as end point measurement methods. There are chal-
lenges associated with quantitative live cell imaging, and advances
in overcoming them are enabling the wider-spread use of imaging
in systems biology studies. One challenge is collecting accurate fluo-
rescence intensity measurements from time lapse images of FP
reporter cells. There are many factors that can influence the bias
and uncertainty of microscopy-based fluorescence measurements,
including non-uniform illumination, background fluorescence, and
2735
image signal to noise ratio, as recently reviewed in detail [30].
Long-duration time lapse imaging and quantitative analysis present
several additional challenges including maintaining constant envi-
ronmental conditions, avoiding photobleaching and phototoxicity,
and accurate segmentation and tracking [31]. Innovations in illumi-
nation sources, detectors, filters, and other hardware are improving
the feasibility of quantitative long-term kinetic studies on live cells
[32,33]. More recent techniques such as light sheet microscopy have
benefited from many of these advances, as have methods such opti-
cal ptychography and continuous motion imaging which are in the
early stages of application to live cell microscopy.

Another challenge is that network analysis requires the acqui-
sition of large volumes of image data. As an example, as shown in
Fig. 3, quantitative live cell imaging was used to measure the
fluctuations in expression of a single gene [10]. Individual cells
were segmented and tracked over time and the change in GFP
intensity in each cell was recorded every 15 min. Trajectories
were then analyzed by mean square displacement to determine
a fluctuation rate constant. This study involved the collection of
36 field of views at 15 min time intervals. The area of each field
of view was approximately 1 mm2, so a 6 mm2 area was probed
at each timepoint. Overall, the study contained approximately
23,000 single cell intensity measurements in time series. To per-
form a similar analysis for a higher dimensional landscape that
considers multiple network components, much more data will
be required; the analysis of the interactions between d number
of genes will require the number of time series samples in indi-
vidual cells raised to the power of d. Using the example in [10]
as a guide, an analysis interrogating two genes (d = 2) would
require a 36 mm2 area (or equivalently 1296 fields of view) to
be imaged at each time point to reach a similar level of sampling.
This rate of imaging is not possible with current ‘‘stop and stare”
microscopy [34], but it can be achieved with methods such as
those discussed below.

While the rapid rate of imaging that can be achieved presents a
significant data challenge, the availability of software tools for
managing and analyzing these larger datasets is becoming increas-
ingly available [37–39]. Eliceiri et al. [40] provide a comprehensive
overview of all the different software tools that are necessary for
the implementation of any quantitative imaging workflow. A more
recent review evaluates 25 different open source software plat-
forms for the analysis of cell image data [41]. These general-
purpose tools facilitate the building of quantitative workflows for
the analysis of live cell imaging data. Software tools designed
specifically for the analysis time lapse image data include LEVER
[42], Lineage Mapper [36], Sequitr [43] and The Tracking Tool, tTt
[38]. Together, these tools are facilitating the quantitation of cellu-
lar dynamics by time lapse microscopy.



Fig. 3. Example workflow for acquiring and analyzing time series data. A. Image analysis is performed to identify and segment individual cells from transmitted light images
[35]. B. Individual cells are tracked between successive images in a time lapse series [36]. Intracellular fluorescence intensity is computed using the segmentation mask from
the transmitted light image applied to the corresponding fluorescence image. C. Time series fluorescence intensity data are plotted for numerous single cells from a single
experiment [10,12]. D. The single cell time series intensity data in C are analyzed by a mean square displacement analysis to quantify the rate of fluctuations in log (FP)
expression [10].
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2.2. Light sheet microscopy for low perturbing, rapid fluorescence data
acquisition

Light sheet microscopy has been applied most often to orga-
noids and other 3-dimensional spatial arrangements of cells. The
technique provides advantages to cells in monolayer culture as
well. The advantages of light sheet microscopy are primarily based
on the rapid scanning mode of the technique. Rapid scanning has a
number of advantages to network analysis: it allows for data to be
accumulated in a time frame that is consistent with gene expres-
sion fluctuations, and individual cells are exposed to excitation
light for short periods of time which reduces the occurrence of
phototoxicity. In addition, the background signal from media sur-
rounding cells is minimized, thus improving the signal to noise
ratio. Several implementations of light sheet microscopy have been
already been described that are suitable for live cell imaging of
pluripotent stem cells in multi-well culture plates [44,45]. In addi-
tion, super resolution lattice light sheet imaging has been applied
to the analysis of SOX2 binding to heterochromatin regions in
mouse embryonic stem cells [46].

2.3. Large spatial bandwidth imaging can be used to monitor dynamics
in large numbers of single cells

Compared to illumination for fluorescence excitation, transmit-
ted light imaging enables larger amounts of image data to be col-
lected under less perturbing conditions. Fundamental changes to
traditional imaging strategies for time lapse imaging are taking place
in the form of improved spatial bandwidth, i.e., the relationship
between the temporal resolution of a microscope and the area that
can be imaged within the timeframe. Imaging with a small time
interval between frames can improve cell tracking accuracy, but with
traditional imaging methods this would come at the expense of the
number of fields of view that could be sampled in that time frame,
2736
and therefore the numbers of cells that could be imaged. High spatial
bandwidth product imaging techniques can allow for time lapse data
to be acquired from a large area with high temporal frequency,
increasing the efficiency of experimental data acquisition.

Two examples of high spatial bandwidth product methods are
continuous motion imaging and optical ptychography. The
approach for continuous motion imaging was first implemented
for optical microscopy using specially designed time delay integra-
tion cameras [47]. Continuous motion imaging has become stan-
dard practice for whole-slide imaging devices for pathology
yielding high throughput acquisition (~15 mm2/min) of imaged
samples. The approach of continuous motion imaging has recently
been applied successfully to live cell imaging studies [48]. Trans-
mitted light microscopy imaging of cell in culture vessels allowed
scanning of the sample at much higher speed (up to 30 times fas-
ter) than conventional methods. The cellular sample under investi-
gation moves continuously and is captured using a flash
illumination which creates an exposure time short enough to pre-
vent motion blur.

Optical ptychography is another approach that can increase the
acquisition rate of dynamic cellular data by microscopy. Optical
ptychography achieves both a large field of view and high spatial
resolution through the application of computational phase recon-
struction using multiple images as inputs, each image resulting
from a different illumination configuration [49]. In one embodi-
ment, an LED array is the transmitted light source that illuminates
the specimen during multiple camera exposures, each using a dif-
ferent subset of LEDs in the array [50]. Numerous recent advances
in hardware and software have been reported for optical ptychog-
raphy implementations. The cell biology applications of optical
ptychography remain limited, most of which focus on the label-
free, high contrast and quantitative phase aspects of optical pty-
chography [51]. These applications demonstrate the feasibility of
incorporating optical ptychography into a quantitative cytometry



Fig. 4. Application of a CNN [42] to predict nuclear segmentation from phase contrast images. A. This example uses a cell line containing a fluorescent nuclear marker (WTC-
mEGFP-LMNB1-cl210 from the Allen Institute for Cell Science). B. The presence of fluorescence enables accurate nuclear segmentation because of the high signal to noise
ratio. C. The segmented images are used to train a CNN model that uses transmitted light (phase contrast) images as input. D. Multiple models were trained using different
subsets of training data. The observed agreement between the two models indicates a degree of robustness for training CNNs to segment iPSC nuclei from phase contrast
images.
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workflow. Looking to the future, the high spatial bandwidth pro-
duct capacity of optical ptychography also means it is an appealing
technique for acquiring dynamic data fundamental to GRNs.

Both continuous scanning microscopy and optical ptychogra-
phy speed the acquisition of transmitted light imaging and will
enable the tracking of larger numbers of cells even as they move,
change shape and divide. Strategies for integrating fluorescence
imaging within the acquisition protocol will make both tracking
of large numbers of cells and quantitation of fluorescence signal
in each cell at appropriate timeframes possible [52].
2.4. Convolutional neural networks aid post-image acquisition
processing and data workflows

A recent advance that is enabling imaging as a quantitative
cytometry tool is the application of image analysis pipelines based
on artificial intelligence (AI) computational methods [53], and par-
ticularly convolutional neural networks (CNNs). The number of
implementations of CNNs on optical microscopy data has exploded.
The U-Net architecture, for examplewas published in 2015 [54] and
has over 14,000 citations to date. Compared to feature-based algo-
rithms, CNNs are powerful tools for probing gene regulatory net-
works with optical microscopy. CNNs allow the use of high signal
to noise fluorescence data of single-time point images to be used
for training and testing pipelines that can then be deployed on label
free live cell images [55,56]. An example of this application is
shown in Fig. 4. The ability to image and track individual cells using
transmitted light without fluorescence excitation reduces photo-
toxicity, enables rapid data acquisition, and increases the availabil-
ity of fluorescence channels to be used for monitoring gene
expression dynamics. Furthermore, the development of image anal-
ysis algorithms using AI are proving to be less labor-intensive than
feature-based algorithms [57] and so are allowing quantitative live
cell imaging studies to be conducted that were not previously pos-
sible. Of particular relevance to studying GRNs, CNNs can be
retrained to accommodate changes in cell features.
2.5. Outlook

Hardware and software advances such as those discussed above
will allow image data to be acquired with sufficiently high tempo-
ral resolution to achieve high accuracy tracking of individual cells
over long times while minimizing cellular damage. With sufficient
temporal and spatial resolution, dynamical data of gene expression
can be correlated with other dynamical data such as migration
rate, rate of cell division, rate of divergence of expression between
cells after division, etc. Data on statistically relevant numbers of
cells can be collected making it possible to use quantitative live cell
imaging as a systems biology tool to more completely inform our
understanding of GRNs.
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3. Examples of mathematical modeling of dynamics in
networks

3.1. The role of dynamic fluctuations in networks

Time-series measurements of individual cells provide dynamic
data that inform models and predict observations of cell popula-
tion responses. Dynamic fluctuations in gene expression are essen-
tial for maintaining the steady state heterogeneity in phenotype
that is observed in an isogenic population of cells. A source of fluc-
tuations, transcriptional bursting, has been documented with sin-
gle molecule studies and subsequent time-lapse single cell
imaging measurements which have provided direct evidence of
the effect of this type of ‘‘noise” on population heterogeneity
[58]. It is now recognized that the observed heterogeneity in cell
populations is due to fluctuations in biochemical reactions in gen-
eral, and encodes mechanistic information about intersecting sig-
naling pathways, complex regulatory mechanisms, and signaling
pathway promiscuity [59–62]. Dynamic fluctuations are therefore
a critical component of regulatory networks. Dynamic data of phe-
notype from individual cells provides access to the net effect of all
molecular contributions to that phenotype. Experimental imaging
studies [10,13,15,22,63,64] and theoretical studies [65–69] indi-
cate that the dynamic fluctuations that result in the observed
heterogeneity of phenotypes play a critical role in directing cell
response, and in maintaining homeostasis [29].

An example of the prominent role that short-time fluctuations
in NANOG expression levels can play in influencing the outcome
of a regulatory network of transcription factors was demonstrated
in a theoretical study [65]. Using a master equation approach and
the Gillespie algorithm [70], the authors inferred the role that fluc-
tuations in NANOG levels in cells might have on cells transitioning
between pluripotent microstates and between pluripotency and
differentiation. With differential equations they modeled a simpli-
fied network of NANOG, OCT4-SOX2 complex, fibroblast growth
factor (FGF), and a differentiation gene. They assumed that at
steady state each network component fluctuates around its mean
value with a Gaussian distribution. By making assumptions about
the effect of NANOG levels on differentiation, they showed that
when low levels of NANOG correlated with increased levels of
FGF2 or differentiation factor, this would lead to downregulation
of OCT4-SOX2 complex and transition to differentiation. External
factors (2i/3i media) played a key role in network outcome by
reducing fluctuations in NANOG expression.
3.2. Potential energy landscapes

The range of phenotypes expressed by a cell population is a
probability density function, reflecting the probability, P(x), with
which each microstate, x, occurs within the population. Every cell



Fig. 5. The relationship between a population distribution and potential landscape. A. An example of a steady state distribution, Pss, of gene promoter activity across the
population plotted as the log of reporter FP intensity. This plot represents the heterogeneity observed across the population due to differences in expression levels by
individual cells. If perturbed, the population will return to this steady state distribution. B. A corresponding potential landscape is determined as U ¼ � ln ðPssÞ and indicates
areas of relative low potential energy and an energy barrier between them. These plots take into account the confounding effect of increased proliferation of high expressing
cells that was observed in this study [10].
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in the population occupies a microstate within the set of possible
microstates that exist for that population under those conditions.
All cells have the potential of occupying any of the possible micro-
states, but some microstates have a higher probability of being
occupied than others. At the steady state the distribution of pheno-
typic states, Pss, can be represented as a potential landscape by
applying the function �ln(Pss), as shown in Fig. 5, in which the
probability of microstate occupation is indicative of the thermody-
namic stability of that microstate. Landscapes are a useful way to
present data from live cell imaging, flow cytometry, and single cell
transcriptomics analysis, and are used in different kinds of model-
ing approaches. Landscape models guide thinking about the
dynamics of transitions that can occur in pluripotency and other
kinds of networks, beginning with the often-cited work of
Waddington and including many others [10,59,71–77].

Probabilistic fluctuations in gene expression explain how cells
that are isolated from a population based on their instantaneous
phenotype will produce progeny that will eventually recapitulate
the original distribution of phenotypes [10,22,78,79]. For example,
Chang et al. [78] used flow cytometry to study the heterogeneity of
the stem cell marker Sca-1 across a population of stem cells. They
sorted the population into subpopulations with different Sca-1
expression levels. The subpopulations demonstrated different pro-
clivities for differentiation into either the erythroid or myeloid lin-
eage. Each had distinct transcriptomes but relaxed back to the
original population distribution over a period of time that allowed
12 population doublings. The kinetics of population relaxation
could not be explained by a simple process of adding noise to a
deterministic equilibrium state but required invoking a complex
landscape with multiple quasi-stable states. In a study from Kal-
mar et al. [22], a population of pluripotent cells expressing fluores-
cent reporters for NANOG demonstrated a bimodal distribution of
NANOG levels by flow cytometry; selecting and culturing a sub-
population of cells resulted in recapitulation of the original distri-
bution. The data were modeled using differential equations and
results showed that fluctuations in NANOG levels were essential
for the role that NANOG seems to play as a determinant of
differentiation.
3.3. Direct determination of the kinetics of fluctuations in single cells

Live cell imaging provides the opportunity to directly measure
the rates of fluctuation in a gene of interest [10,15]. Employing
both quantitative live cell imaging and flow cytometry, Sisan
et al. [10] observed cells isolated from a population that produced
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green fluorescent protein (GFP) driven by the promoter for the
extracellular matrix protein tenascin-C. Four subpopulations with
distinct GFP intensities were allowed to relax back to the steady
state distribution over long times. In this study, the rate constant
for fluctuations in expression of the tenascin-C gene, determined
as shown in Fig. 3, allowed excellent prediction of the complex
kinetics of relaxation. The analysis demonstrated that the kinetics
with which an individual cell can recapitulate the stationary pop-
ulation distribution is determined by the rate of fluctuation in gene
expression and its position in the landscape.

The analysis used by Sisan et al. [10] was a Langevin/Fokker-
Planck approach. This is a coarse-grained approach in which the
Langevin equation identifies two predominant features of the sys-
tem. One feature is a deterministic component, a force, which cor-
responds to the landscape shape which is derived from the
measurement of the distribution of expression levels across the
population of cells. The second feature, the diffusion coefficient,
is the rate of fluctuation in gene expression and is measured
directly in the cells as a mean square displacement in intensity
of the FP probe over time.

This coarse-grained approach requires only data that is experi-
mentally measurable, i.e., the distribution of individual cell
responses across the population, and the measured mean square
displacement of single cell intensities over time. In contrast, mod-
eling with differential equations requires assumptions about rates
and binding constants, which are often poorly known, and is com-
putationally more expensive with increasing network size. The
Langevin equation approach, which provided a numerical solution
through simulation, allowed an excellent prediction of the 4 differ-
ent nonlinear relaxation rates for 4 subpopulations of cells that
were isolated by flow sorting.
3.4. Correlations in fluctuations can indicate network organization and
strength of interactions between network components

Fluctuation rates in expression of fluorescent reporters have
been measured directly with live cell imaging of FP-expressing
fibroblasts [10] and embryonic stem cells [15]. Live cell imaging
in principle allows simultaneous examination of multiple network
components in individual cells and quantification of the dynamic
relationships between those components. Theoretical studies have
addressed the importance of quantifying the extent to which fluc-
tuations in multiple network components are correlated as a true
determinant of causality. Frequently causality is inferred from cor-
related occurrence (for example in clustering analysis from tran-



A.L. Plant, M. Halter and J. Stinson Computational and Structural Biotechnology Journal 18 (2020) 2733–2743
scriptomics measurements), but correlation does not guarantee
causation [4,5]. Theoretical studies have demonstrated that corre-
lated dynamic fluctuations indicate causal influence between mul-
tiple components of regulatory networks [4,29,68].

Hubbard et al. [29] showed that the magnitude of correlation in
fluctuations between two or more putative network components,
together with the landscape gradient of their expression levels, has
a thermodynamic meaning that is related to the entropic price of
the organized network structure, and to the amount of dissipative
heat associated with supporting the operation of the homeostatic
network. An example of measuring correlations in fluctuations
between 2 network components was demonstrated in a synthetic
gene regulatory circuit in bacteria [63]. So far, a direct measure of
correlations in the fluctuations in multiple transcription factors in
mammalian cells has not been reported to our knowledge. However,
dual reporter cell lines that might be used for such an analysis where
FPs are associated with two different genes associated with pluripo-
tency and differentiation networks have been reported
[7,23,24,26,27,80]. Fig. 2 depicts a two-dimensional landscape of
OCT4 and SOX2 expression that might be constructed frommeasure-
ments of a population of a single dual reporter pluripotent cell line. A
higher-dimensional landscape would result from a series of cell lines
reporting on different pairs of transcription factors.

The power of an analysis of correlated fluctuations within a net-
work will be great, as it has the potential to identify the strength of
causal relationships between network components. The promise of
such an analysis includes a thermodynamical understanding of
network structure, and identification of the most important con-
tributors to a regulated network [29].
3.5. Comparing and combining omics and imaging data

Live cell imaging allows individual cells to be followed over
time continuously, enabling direct observation of the progression
of multiple intracellular biochemical events. Such direct observa-
tions can strengthen our quantitative understanding of the rela-
tionship between one molecular event in time and another event
in time, and the variability in those processes and relationships
over the population. This additional information enables predictive
models. Omics methods can provide data on thousands of molecu-
lar species in a population of cells, and single cell RNAseq typically
provide data on dozens of gene transcripts in each cell. However,
endpoint measurements fail to capture dynamics in network oper-
ation and cannot provide evidence of causality between network
components [5]. Imaging is best suited for in- depth kinetic studies
of a relatively small subset of components of a putative GRN.
Clearly a combination of both methods will be ideal to fully under-
stand and predict the activity of GRNs.
Table 1
Editing strategies used in creating FP reporter cell lines.

Editing Strategies for FP Reporter of GOIs References

A The FP coding sequence is inserted downstream of a
putative promoter sequence at a ‘‘safe harbor site”

[94]

B The FP coding sequence is inserted downstream of
endogenous regulatory elements, replacing the GOI

[95]

C The FP coding sequence immediately follows or
precedes the GOI to create a single transcript and
results in a fusion protein with the GOI at N- or C-
terminal, usually with peptide linker

[14,28,87,90,96]

D The FP coding sequence is inserted downstream of
endogenous regulatory elements, and separated from
it with a translational read-through element such as
2A or IRES so that a single transcript is ultimately
translated as separate protein units analogous to a
bacterial operon

[25,89,91]
4. Appropriate engineering and characterization of reporter cell
lines for network analysis

4.1. The importance of fluorescent protein reporter cell lines for
studying networks

FP-producing cell lines that report on genes involved in pluripo-
tency and differentiation have enabled the understanding of these
complex regulatory systems. Numerous pluripotent cell lines
designed with fluorescent reporters of gene expression have been
created [24]. One of the earliest human reporter cell lines was from
the work of Zwaka and Thompson [81]. They adapted a mouse
electroporation protocol for use with human ES cells, taking into
account the larger size of human stem cells. Cells were edited by
spontaneous homologous recombination to insert a copy of the
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gene for GFP downstream of OCT4 with an internal ribosome entry
site (IRES) translational read-through signal.

The advent of genomic editing aided by TALENs [82], Zn fingers
[83], and CRISPR technologies [84] have enhanced the design of
reporter cell lines by allowing greater efficiency in numbers of cells
edited, and greater targeted sequence specificity of edits in the
genome. In the earlier work of Zwaka and Thomson [81] that used
spontaneous homologous recombination, an approximate recom-
bination rate of 1 in 105 cells was reported. Current methods incor-
porating genomic editing aided by TALENs, Zn fingers or CRISPR
has greatly improved specific gene targeting efficiencies by several
orders of magnitude [85]. These approaches have made it practical
to engineer stem cell lines with single [14,86–92], and dual
[7,24,26,27,93] gene reporter systems. Dual gene reporters have
also been generated in mouse cells through crossing of mice con-
taining a single gene engineered reporter [23,25,80].
4.2. Design considerations associated with genetic modification

Assuring the biological relevance of cell lines and FP probes is
critical if they are to be useful tools for elucidating GRNs. There
are important caveats associated with the options for designing
reporter cell lines for the purpose of studying pluripotency and
GRNs. Currently, design of knock-in genome edited fluorescent
reporter cell lines have been generated using the strategies listed
in Table 1.

Each of the designs listed in Table 1 uniquely impacts the ability
of the FP expression to act as a biologically relevant surrogate sig-
nal for the expression of the GOI. The first example (A), assumes
that a defined upstream region (usually 1 k–2 k bases) is an ade-
quate replacement for the complex regulatory domain of the GOI’s
endogenous chromosomal location. Eukaryotic genes are often reg-
ulated by complex transcriptional control elements which can
include both positive and negative elements far upstream, down-
stream, and/or within introns. Replacing a copy of the GOI with a
FP coding sequence within the endogenous chromosomal milieu,
as described in (B) eliminates this problem, but introduces a
change in the allelic dosage of the GOI. Smith et al. [28] developed
a mathematical model to predict the effects of particular FP repor-
ter expression designs on the ability of an engineered cell line to
accurately predict wild-type transcriptional activity which they
termed ‘‘reporter accuracy”. Using this model, they compared wild
type (WT), and the methods of B, C and D above.

Their model predicted that scenario B would introduce the
greatest perturbation of transcriptional response from WT, with
scenarios c and d having less of an impact. To test against the pre-
dictions of the model, they used a cell line containing a FP ‘‘knock-
in” replacing NANOG gene, as in scenario B and compared it with
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the WT cell line without the FP ‘‘knock-in”. The results supported
the model indicating that altering the allelic dosage of NANOG
through the ‘‘knock-in” introduced a significant change from the
wild type expression levels that would confound data interpreta-
tion of biological effects. Other work [25] using a dual NANOG flu-
orescent reporter cell line created by sequential gene targeting
(one allele with the FP EGFP- and the second with the FP mCherry
and a read-through design) supports the critical role gene dosage
plays in the regulation of NANOG and pluripotency. It is reasonable
to hypothesize that allelic dosage generally is critical to transcrip-
tional control in pluripotency because of the unique chromosomal
architecture of stem cells [97,98]. The use of fusion proteins (C,
above) is common and has the advantage of providing co-
localization information with the GOI. However, careful evaluation
of the potential impact of the fused FP-GOI complex must be con-
sidered. Confirmation that characteristics such as turnover rates,
localization and functionality are necessary. Especially if the GOI
is a transcription factor (TF), the FP fusion may cause unpredictable
effects on TF functionality that are difficult to detect because of the
complex interactions of TFs with other GRN components.

Reporter designs utilizing translational read-through elements
for the FP expression under the endogenous transcriptional control
of the GOI (D, above) limit the risks associated with those previ-
ously described. The transcription of the two components are
linked genetically, but the translational products are produced
independently. There is no alteration of the gene dosage and min-
imal disruption of the normal chromosomal gene regulatory envi-
ronment. Although it is possible that the introduction of additional
DNA upstream or downstream of the GOI could alter the transcrip-
tional regulation, that risk appears relatively slight in comparison,
especially for downstream insertions. It should be noted that abun-
dance of the FP cannot be used as an accurate reporter of the TF
concentration or the lifetime of the GOI since the protein degrada-
tion rates are unlikely to be identical, and the FP will exhibit a lag
between translation and fluorescence because of the maturation
time required for fully functional folding. However, because the
transcripts are co-expressed, the fluctuations in the rate at which
the transcriptional activation of the GOI will be well approximated.

Another design element to consider is the addition of a nuclear
localization sequence by fusion to the FP [99]. This can be advanta-
geous for two reasons. The soluble protein will be concentrated in
the nucleus, resulting in an isolated region of interest from which
to quantify the fluorescence and providing a higher number of
counts over a smaller number of pixels which will increase the sig-
nal to noise ratio. In addition, in many cases the nucleus is easier to
segment and distinguish as a unique object than is the cell body,
resulting in a more accurate tracking of live cells.

4.3. The importance of characterization and reporting of details for
edited cell lines

A number of reporter cell lines are commercially available or
published on, yet very few seem to be shared and redeployed
among the researcher community, even though considerable time
and resources are required to generate new fluorescent reporter
cell lines. Incomplete characterization of cell lines and insufficient
reporting of details for creating and validating cell lines is common
and may be an impediment to their adoption by others. While cell
line characterization is quite extensive in some reports
[14,17,26,96] too few are sufficiently documented. This failure
leads to a lack of confidence in the biological significance of the
data generated using these cell lines. Exemplars of thorough cell
line validation and characterization include the Allen Institute for
Cell Science (AICS) [96] and the European Molecular Biology Labo-
ratory (EMBL) [87]. Both groups focus on the complete description
of the reporter construction, the use of multiple methodologies to
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interrogate the details of the genomic editing accuracy and thor-
ough evaluation of the functional properties of the reporter that
relate to its ability to act as a biologically relevant expression sur-
rogate for the GOI. This level of qualifying cell lines and reporting
those data provides confidence in the biological significance of
research data generated using the cells lines. Clearly, what is nec-
essary to increase confidence in reporter cell lines is the inclusion
of detailed protocols for all aspects of the reporter cell line devel-
opment process. Critical information provided by AICS and EMBL
include genome edit design and methodology, copy number anal-
yses (digital droplet PCR and/or Southern blot), definitive details
on the insertion event (for example with junctional PCR and Sanger
sequencing of insertional context), evaluation of the presence of
unintended changes to the genome, and confirming normal biolog-
ical function of the edited line (including, for example, protein
expression quantification, cell cycle timing, pluripotency marker
verification, and differentiation potential).

4.4. The complications of pseudogenes for genome editing and the need
for effective screening strategies

Another factor that is rarely, if ever, considered in designing and
validating reporter FP cell lines is the potential complication repre-
sented by pseudogenes. A survey of genes tightly associated with
pluripotency and oncogenesis reveals that a majority of these
genes have associated pseudogenes [100,101]. In fact, NANOG
has eleven pseudogenes [102].

The biological significance of these pseudogenes remains unde-
termined for the most part, but some are translated and expressed
in somatic tissues, and absent translation, their transcripts can reg-
ulate the expression of the associated gene homologues. Ambady
et al. [103] while attempting to generate a NANOG FP reporter cell
line found that they had created two, one for ‘‘embryonic” NANOG
(eNANOG) and one for a NANOG pseudogene (NANOGP8). They
evaluated NANOG expression patterns in human stem cells and
non-pluripotent cells and found evidence of NANOGP8 protein
expression and translocation to nucleus where NANOGP8 protein
likely functions as a transcription factor in non-pluripotent cells.
They report that eNANOG, in contrast, is only expressed in pluripo-
tent cells. Hawkins and Morris [104] studied the expression pat-
tern of OCT4 and its pseudogenes and found evidence that OCT4
expression is regulated by non-coding pseudogene transcripts
through its action as a ‘‘sink” for antisense-regulating siRNA.

The presence of pseudogenes is an important consideration
when designing genome edits simply because current genome
editing technologies depend on sequence homology for their tar-
geting specificity. The presence of pseudogenes with high sequence
homology therefore becomes a critical design consideration. The
genome targeting design should specifically target the intended
gene rather than any of the pseudohomologues; care must be
taken in design of both the guide RNAs and the homology arms
of the donor plasmid. In the case of NANOG, using the standard
Cas9 enzyme, it is practically impossible to choose a guide RNA
that does not potentially target many other members of the gene
family. Thus, the ability to screen for the desired target location
in the resulting cell lines becomes essential. Screening is compli-
cated by the fact that genetic evaluation of copy number and con-
firmation of proper gene contextual insertion both depend on PCR
which is itself driven by DNA sequence homology of the primers.
Design of screening sequences is critical and should be part of
the design of the editing strategy, and they should be reported so
that specificity for the intended edit can be evaluated.

In addition, the confusion that result from the presence of pseu-
dogenes, whether expressed as transcripts alone or as translated
peptides, has been noted by several studies. Xu et al. [105] investi-
gated expression patterns of OCT4 and its pseudogenes with an
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emphasis on how the sequence similarity of these genes has
caused confusion and misinterpretation of OCT4 expression. Their
evaluation emphasized the importance of specificity of primer
design and led to the identification of specific gene products
(OCT4 or its pseudogenes) with detection by specific antibodies.
Jez et al. [106] were able to differentiate OCT4 P1,2,4 but were
forced to use elaborate methodologies such as RT-PCR followed
by pseudogene-specific restriction digestion, cloning, and sequenc-
ing to distinguish between them and the ‘‘real” OCT4 gene product.
These pseudogenes can be biologically important as there is evi-
dence that expression of OCT4 pseudogenes, in addition to OCT4,
follow a developmentally regulated pattern in differentiating
human embryonic stem cells (hESCs). It will be critical for
researchers to keep these caveats in mind when designing reporter
cell lines and when drawing conclusions from their studies.
5. Conclusions

Advances in gene editing techniques, imaging methodologies,
and modeling approaches are enabling the broader use of live cell
imaging in studies of GRNs. The importance of the unique informa-
tion that live cell imaging can add to omics data provide an incen-
tive to overcome the associated challenges.
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Such identification does not imply recommendation or endorse-
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