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ILNCSIM: improved lncRNA functional similarity calculation model
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ABSTRACT
Increasing observations have indicated that lncRNAs play a significant role 

in various critical biological processes and the development and progression of 
various human diseases. Constructing lncRNA functional similarity networks could 
benefit the development of computational models for inferring lncRNA functions and 
identifying lncRNA-disease associations. However, little effort has been devoted to 
quantifying lncRNA functional similarity. In this study, we developed an Improved 
LNCRNA functional SIMilarity calculation model (ILNCSIM) based on the assumption 
that lncRNAs with similar biological functions tend to be involved in similar diseases. 
The main improvement comes from the combination of the concept of information 
content and the hierarchical structure of disease directed acyclic graphs for disease 
similarity calculation. ILNCSIM was combined with the previously proposed model 
of Laplacian Regularized Least Squares for lncRNA-Disease Association to further 
evaluate its performance. As a result, new model obtained reliable performance in 
the leave-one-out cross validation (AUCs of 0.9316 and 0.9074 based on MNDR and 
Lnc2cancer databases, respectively), and 5-fold cross validation (AUCs of 0.9221 
and 0.9033 for MNDR and Lnc2cancer databases), which significantly improved the 
prediction performance of previous models. It is anticipated that ILNCSIM could serve 
as an effective lncRNA function prediction model for future biomedical researches.

INTRODUCTION

Advances in genome sequencing projects suggest 
that less than 2% of the human genome encodes protein 
sequences and the proportion of protein-coding sequence 
is inversely proportional to the organism complexity. More 
than 98% of human genome yields a great number of non-
coding RNAs (ncRNAs). Specially, long non-coding RNAs 
(lncRNAs) are heterogeneous ncRNAs with the length of 
more than 200 nucleotides, which could be divided into 
five subgroups (i.e. sense, antisense, bidirectional, intronic, 
and intergenic) according to their relative positions to 
the coding genes [1–3]. The central dogma of molecular 
biology assumes that the genetic information is stored 

in the protein-coding genes. Therefore, lncRNAs were 
previously considered to be “transcriptional noise” due 
to their characters of low expression level, high tissue 
specificity pattern, and low conservation across species 
[4–6]. However, mounting evidences have indicated 
that lncRNAs could function as modulators of gene 
expression network, which challenges the traditional 
viewpoint on their roles. Specifically, lncRNAs play 
significant roles in modulating gene expression at the 
epigenetic, transcriptional, and post-transcriptional 
levels, getting involved in different biological processes 
including chromatin modification, cell differentiation and 
proliferation, RNA progressing, and cellular apoptosis 
[2, 7–14]. For example, HOTAIR was shown to control 
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the pattern of histone modifications and regulate gene 
expression by binding to histone modifiers, PRC2 and the 
LSD1 complex [15]. XIST, a spliced and polyadenylated 
lncRNA, was shown to bind and recruit PRC2 to initiate X 
chromosome inactivation [16].

Although the mechanisms of complex diseases are 
still unclear, experimental observations provide some 
clues that lncRNAs could carry out functions by gene 
transcription, chromatin remodeling, interacting with 
proteins to affect protein activity and localization, or 
serving as a structural component, which would further 
accelerate or suppress the development of diseases [17]. 
Accumulating evidence shows that the dysfunction of 
plenty of lncRNAs are associated with the development 
and progression of a wide range of diseases, including 
cardiovascular disease [18], diabetes [19, 20] and different 
types of cancers [18, 21–25]. For example, the decreased 
expression of lncRNA WT1-AS is shown to promote cell 
proliferation and invasion in gastric cancer [26]. Except 
for WT1-AS, XIST has been proven to be associated with 
human glioblastoma stem cells. Knockdown of XIST 
exerted tumor-suppressive functions by up-regulating 
miR-512 [27]. HOTAIR is another popularly investigated 
lncRNA and it has been considered as a potential 
diagnostic biomarker in various types of human cancers 
[21, 28, 29].

Due to the rapid development in experimental 
technology and computational study for lncRNA 
discovery, there have been thousands of lncRNAs 
discovered in various eukaryotic organisms ranging from 
nematodes to humans since H19 and XIST were first 
identified in the early 1990s [4, 8, 30–32]. Although many 
lncRNA-related biological datasets have been generated 
and stored in some publicly available databases, such as 
NRED [33], NONCODE [34] and lncRNAdb [11], only 
relatively few lncRNA-disease associations have been 
collected. Recently, new lncRNA-disease associations 
have been continually reported from experimental 
studies. However, considering biological experiments are 
expensive and time-consuming, it is unrealistic to detect 
novel lncRNA-disease associations on a large scale based 
on experimental studies. Based on the assumption that 
lncRNAs with similar biological functions tend to be 
involved in similar diseases, some computational models 
have been proposed to predict novel disease-related 
lncRNAs, which have drawn increasing attentions [12, 
35–39]. By appropriately integrating various types of 
biological datasets, computational models could provide 
association probabilities of each lncRNA-disease pairs 
in a short time and select the most probable association 
as the candidate for further experiment validation, thus 
decreasing the time and cost of experimental approaches. 
Developing computational models not only boosts the 
understanding of disease mechanism at lncRNA level, but 
also helps to identify new biomarkers for drug discovery, 
disease diagnosis, treatment, prognosis, and prevention.

Although the functional impact of several lncRNAs 
has been confirmed by previous studies, these are just 
the tip of the iceberg due to the extreme complexity of 
lncRNA function mechanism. The difficulty of predicting 
lncRNA functional similarity lies in the function diversity, 
expression specificity, and current limited understanding 
of lncRNAs [40]. Some computational models have been 
proposed to calculate lncRNA functional similarity on 
a large scale and they can be divided into the following 
three categories. The first category is based on the 
lncRNA expression profiles. For example, Chen et al. 
[36] presented the first lncRNA-disease association 
prediction model of Laplacian Regularized Least Squares 
for lncRNA-Disease Association (LRLSLDA). In this 
study, they defined lncRNA expression similarity as the 
Spearman correlation coefficient between the expression 
profiles of each lncRNA pair and then combined it with 
lncRNA Gaussian interaction profile kernel similarity 
to obtain integrated lncRNA functional similarity score. 
Ganegoda et al. [41] reported another method to calculate 
lncRNA tissue specific similarity by combining Pearson 
correlation coefficient (PCC) values and expression details 
of 22 different types of tissues. Methods of the second 
category integrate other types of biological information, 
such as epigenetic and transcriptional profiles of lncRNA 
and lncRNA crosstalk networks. For example, Li et al [42] 
presented a method to measure the functional similarity 
between lncRNAs by combining chromatin states data 
and gene expression patterns. Liu et al. [43] proposed a 
corpus-based calculation model for the lncRNA functional 
similarity by considering common target genes. This 
model is based on the assumption that the functional 
similarity of lncRNAs is related to the number of their 
common target genes. To measure lncRNA similarity, 
Zhou et al. [44] constructed lncRNA-lncRNA crosstalk 
profiles based on microRNA (miRNA)-associated lncRNA 
crosstalk networks. The third category is mainly based on 
the assumption that lncRNAs with similar function tend to 
interact with similar diseases/miRNAs. Since the lncRNA-
disease associations are continually identified with new 
clinical discoveries, this kind of computational method can 
make full use of known lncRNA-disease associations. For 
example, Sun et al. [45] proposed a computational model 
for calculating lncRNA functional similarity based on 
an R package named DOsim, which measured semantic 
similarity between diseases in an ontology sense. For the 
same purpose of calculating lncRNA functional similarity, 
Chen et al. [37] developed the model of LFSCM which 
implemented lncRNA functional similarity calculation 
based on the integration of known miRNA-disease 
associations and lncRNA-miRNA interactions. Chen 
et al. [46] further proposed a novel calculation model 
called LNCSIM for lncRNA function similarity, which 
measures the similarity between two lncRNA-associated 
disease groups to quantify the functional similarity of 
each lncRNA pair by considering the number of common 
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ancestors of two query disease terms. However, it fails 
to retain the hierarchical information of Directed Acyclic 
Graphs (DAGs) of diseases. Besides, even though 
LNCSIM introduced the concept of information content 
to retain the specificity of disease terms, simply using 
the information content values of common ancestors to 
compute disease similarity could easily suffer from the 
information bias in DAGs. As another important biological 
molecule for disease mechanism, calculating functional 
similarity among miRNAs has become a hot research 
field. For example, Chen et al. have proposed a calculation 
model for miRNA functional similarity by adopting a 
global network similarity measure [47]. Wang et al. have 
also proposed another computational model which infers 
miRNA functional similarity by measuring the similarity 
of their associated disease DAGs [48].

In this study, we developed Improved LNCRNA 
functional SIMilarity calculation model (ILNCSIM) based 
on the assumption that diseases with high similarity tend 
to be associated with functionally similar lncRNAs and 
vice versa [36, 49]. ILNCSIM integrates known lncRNA-
disease associations and disease DAGs and calculates 
diseases similarity by an edge-based calculation model. 
ILNCSIM consists of the following two steps. In the first 
step, ILNCSIM computes the most informative common 
ancestors (MICAs) of disease pairs and then calculate 
their semantic similarities based on the DAG which 
depicts disease relationship (see Figure 1). Secondly, 
ILNCSIM further computes the functional similarity of 
two lncRNAs based on the semantic similarity of disease 
groups associated with these two lncRNAs (see Figure 2). 
To further evaluate the performance of ILNCSIM, the 
calculated lncRNA functional similarity was used to 
predict the lncRNA-disease associations by combing 
ILNCSIM with the model of LRLSLDA which was 
presented in the previous work [36]. The performance of 
the new model could reflect the effectiveness of ILNCSIM. 
By adopting the global leave-one-out cross validation 
(LOOCV) based on manually curated diverse ncRNA-
disease repository (MNDR) [50] and Lnc2cancer [51] 
database, ILNCSIM yielded reliable performance with 
AUCs of 0.9316 and 0.9074, respectively, outperforming 
three previously proposed models. For further performance 
evaluation, we also used 5-fold cross validation, where 
ILNCSIM yielded average AUCs of 0.9221 and 0.9033 
based on MNDR and Lnc2Cancer databases, respectively, 
higher than the performances of previous models. Besides, 
19 lncRNAs in top 20 prediction lists of lung cancer, 
colon cancer and prostate cancer-related lncRNAs were 
verified by relevant databases and recent experimental 
literatures. Based on these reliable results, it is anticipated 
that ILNCSIM is feasible and effective to quantify the 
lncRNA functional similarity and has potential value for 
lncRNA-disease association prediction when ILNCSIM 
is combined with known similarity-based computational 
models.

RESULTS

Model design

ILNCSIM was developed to quantify lncRNA 
functional similarity by combining known disease 
DAGs and known lncRNA-disease associations. In 
the framework of ILNCSIM, semantic similarity of 
disease terms and lncRNA functional similarity were 
calculated in turn. Based on calculated lncRNA functional 
similarity, similarity-based computational models, such 
as LRLSLDA and random walk, could be applied to 
lncRNA-disease association prediction. The reliable 
performance of ILNCSIM could be largely attributed 
to the following factors. First, although an alternative 
approach to estimate the specificity of disease terms has 
been proposed in LNCSIM by computing information 
content, this semantic similarity method which uses 
corpus-based metric has some inherent limitations. 
Since the known knowledge of a disease term depends 
on previous studies and the amounts of information of 
different disease terms are unbalanced, LNCSIM [46] 
could easily suffer from the bias towards some deeply 
studied disease terms by only considering information 
content of disease terms. Besides, hierarchical structure 
information of DAGs fails to be retained by simply using 
corpus-based metric. To solve this problem, we developed 
an edge-based computational model by computing MICAs 
for retaining the ancestral information of two disease terms 
by combining the most recent common ancestor (MRCA) 
and the concept of information content. By computing the 
distance from MICA to the root node in DAGs, ILNCSIM 
could depict the hierarchical information of ancestor nodes 
to a large extent. In addition, the information of distances 
between disease pairs and the recent common ancestor 
has been ignored in the model of LNCSIM. The proposed 
ILNCSIM model retains this middle hierarchical structure 
by calculating IC-based distances between two disease 
terms and their MICA. Finally, unlike LNCSIM which 
only considers the common ancestors, ILNCSIM measures 
how general two disease terms are in disease DAGs. 
Specifically, the generality of a disease term is defined as 
the distance between the term and the most informative 
leaf terms descending from it.

Performance evaluation

LncRNA functional similarity scores calculated by 
ILNCSIM based on MNDR and Lnc2Cancer dataset were 
listed in Supplementary Table S1 and S2, respectively. 
The performance of ILNCSIM was evaluated by 
combining ILNCSIM with LRLSLDA and validating the 
effectiveness of new model to predict potential lncRNA-
disease associations. In the original version of LRLSLDA, 
lncRNA similarity is generated by combining Guassian 
interaction profile kernel similarity and lncRNA expression 
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Figure 1: Flowchart of disease semantic similarity function in ILNCSIM based on disease DAGs.

Figure 2: Flowchart of lncRNA functional similarity calculation model based on disease semantic similarity.
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similarity. Here, we integrated new disease similarity 
generated by ILNCSIM and disease Gaussian interaction 
profile kernel similarity into the integrated similarity by 
a simple average operation. A new integrated lncRNA 
similarity was further calculated based on the lncRNA 
functional similarity generated from ILNCSIM, lncRNA 
Gaussian interaction profile, and lncRNA expression 
similarity. Therefore, we obtained the integrated model 
named as LRLSLDA-ILNCSIM, which was constructed 
by two parts, that is, ILNCSIM model yielding disease 
semantic similarity and lncRNA functional similarity 
and LRLSLDA model predicting novel lncRNA-disease 
associations.

Global LOOCV and 5-fold cross validation were 
implemented based on known detected lncRNA-disease 
associations in the MNDR and Lnc2Cancer database 
to evaluate the prediction performance of LRLSLDA-
ILNCSIM. By using the global LOOCV method, each 
known disease-lncRNA association was left out in 
turn as test sample and all diseases were investigated 
simultaneously. The test samples whose ranks exceed 
the given threshold were considered as successful 
predictions while test samples with ranks lower than 
threshold were considered to be unsuccessfully predicted. 
Corresponding true positive rates (TPR, sensitivity) and 
false positive rates (FPR, 1-specificity) can be obtained 
by setting different thresholds. Here, sensitivity denotes 
the percentage of samples whose ranks higher than 
the threshold and specificity denotes the percentage of 
samples with lower ranks than the threshold. To plot TPR 
versus FPR at different thresholds, Receiver-operating 
characteristics (ROC) curve was drawn for further 
evaluation. The value of area under ROC curve (AUC) 
was calculated to quantify the prediction performance of 
LRLSLDA-ILNCSIM. AUC=0.5 means purely random 
performance and a higher AUC value means better 
prediction performance.

LRLSLDA-ILNCSIM was compared with the 
following three the-state-of-art computational methods 
in the framework of global LOOCV: LRLSLDA [36], 
LRLSLDA-LNCSIM1 [46] and LRLSLDA-LNCSIM2 
[46] (see Figure 3). As a result, ILNCSIM achieved a 
significantly improved result with higher AUC than three 
other existing models. LRLSLDA-ILNCSIM, LRLSLDA, 
LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2 
achieved AUCs of 0.9316, 0.8850, 0.9135 and 0.9169 
based on the MNDR dataset, and yielded AUCs of 0.9074, 
0.8263, 0.9046 and 0.9009 based on the Lnc2Cancer 
dataset, respectively (see Figure 3).

Furthermore, 5-fold cross validation was used as 
another validation method for performance evaluation. 
By using 5-fold cross validation, all known associations 
were first randomly divided into 5 groups, four of which 
were used for training and the rest one was used as test 
samples. To further minimize the influence caused by 
random division, 5-fold cross validation was repeated 

100 times and the mean and standard deviation of 
AUCs were calculated for fair evaluation. As a result, 
the best performance based on the MNDR dataset was 
yielded by LRLSLDA-ILNCSIM with AUC value of 
0.9221+/-0.0051. LRLSLDA, LRLSLDA-LNCSIM1 
and LRLSLDA-LNCSIM2 yielded relatively poor results 
with mean AUCs of 0.8687, 0.9012 and 0.9050. For the 
Lnc2Cancer dataset, LRLSLDA-ILNCSIM, LRLSLDA, 
LRLSLDA-LNCSIM1 and LRLSLDA-LNCSIM2 yielded 
average AUCs of 0.9033, 0.8185, 0.9005 and 0.8968, 
respectively. In conclusion, LRLSLDA-ILNCSIM has 
proved to achieve performance improvement over existing 
computational models in the validation framework of 
global LOOCV and 5-fold cross validation.

Case studies

Here LRLSLDA-ILNCSIM was applied to three 
kinds of important cancers based on known lncRNA-
disease associations in the MNDR database in order 
to further validate the effectiveness of ILNCSIM. 
Prediction results with top 20 ranks were further verified 
based on two other existing databases, LncRNADisease 
and Lnc2cancer, and recently published experimental 
literatures (See Table 1). This evaluation method has been 
adopted by almost all of the prediction models reviewed 
in the Introduction section.

As the third most common cancer worldwide and the 
most common human malignancies in western countries, 
the prevalence rate of colon cancer has increased 
rapidly in recent years [52]. With the development of 
multidisciplinary research in epidemiology and molecular 
biology, the understanding of colon cancer etiology has 
gained a great progress [53]. LRLSLDA-ILNCSIM was 
applied to predict potential lncRNAs related with colon 
cancers. As a result, six lncRNAs which have been 
verified by Lnc2cancer and LncRNADisease databases 
were predicted as the most potential candidates with top 
20 ranks.

Lung cancer is one of the markedly leading causes 
of death worldwide with about 1.8 million new cases 
every year. Despite of the development of adjuvant 
chemotherapy regimens, targeted biologic agents, and 
understanding on pathophysiological mechanisms, the 
5-year survival rate of lung cancer is still dismal [54–56]. 
With the development of lncRNA-related researches, 
lncRNAs have been considered as diagnostic and 
therapeutic targets of lung cancer for therapy studies. 
LRLSLDA-ILNCSIM was implemented to predict 
potential lung cancer-related lncRNAs. As a result, 
seven of top 20 predictions were verified. Specifically, 
six predicted lncRNAs were proved to be related with 
lung cancer according to Lnc2cancer database and 
LncRNADisease database. The association between 
UCA1 and lung cancer has been confirmed by recent 
experimental observation that UCA1 provided the highly 
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diagnostic performance for detection of non-small cell 
lung cancer [57].

It is reported that prostate cancer has become the 
second most common cancer in men. There were more than 
one million prostate cancer patients diagnosed and more 
than 300,000 deaths worldwide in 2012 [58]. Although the 
pathogenesisof prostate cancer is still unclear, biological 
experiments prove that the development of prostate 
cancer is associated with the deregulations of some 
lncRNAs [53, 59, 60]. We used LRLSLDA-ILNCSIM 
to predict potential lncRNAs associated with prostate 
cancer. Among the prediction results, six associations 
were verified by checking existing databases. Specifically, 
half of them (H19, CBR3-AS1 and MEG3) were recorded 
in LncRNADisease database, and three other LncRNAs 
(UCA1, KCNQ1OT1 and LINCRNA-P21) were recorded 
in Lnc2cancer database.

To further evaluate the prediction performance 
of LRLSLDA-ILNCSIM, some statistical data were 
computed. Specifically, we collected all the lncRNA 

records which are associated with the three cancers in 
Lnc2Cancer and LncRNADisease databases, and then 
removed those records that also exist in MNDR dataset 
and lncRNAs which are not investigated in this study. 
As a result, the numbers of remaining lncRNAs which 
are experimentally confirmed to be associated with 
colon cancer, lung cancer and prostate cancer are 15, 8 
and 9, respectively. The prediction ranks which these 
lncRNAs obtained based on all the four computational 
models (i.e. LRLSLDA-ILNCSIM, LRLSLDA-LNCSIM1, 
LRLSLDA-LNCSIM2 and LRLSLDA) are listed in 
Table 2, 3 and 4, respectively. We statistically computed the 
percentage of lncRNAs with top-20 ranks and the average 
rank of lncRNAs for these three case studies. As a result, 
the model of LRLSLDA-ILNCSIM yielded the highest 
percentages of lncRNAs with top-20 ranks, compared with 
three other models (colon cancer: 40%; lung cancer: 87.5%; 
prostate cancer: 66.67%). In addition, highest average ranks 
of lncRNAs were achieved by adopting the LRLSLDA-
ILNCSIM model (colon cancer: 40.73; lung cancer: 12.50; 

Figure 3: Performance comparisons between ILNCSIM and three the-state-of-art disease-lncRNA association 
prediction models (LRLSLDA, LRLSLDA-LNCSIM1, and LRLSLDA-LNCSIM2) in terms of ROC curve and AUC 
based on global LOOCV. As a result, ILNCSIM achieved AUCs of 0.9316 and 0.9074 based on the MNDR and Lnc2Cancer databases, 
which significantly improved all the previous classical models and effectively demonstrated its reliable predictive ability.
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prostate cancer: 34.67). This performance comparison 
indicates that ILNCSIM significantly outperforms all the 
three previously proposed models.

The performance achieved in the validation 
frameworks of global LOOCV, 5-fold cross validation, and 
case studies has demonstrated the reliable performance 
of ILNCSIM. Therefore, we further applied LRLSLDA-
ILNCSIM to prioritize all the candidate lncRNA-disease 
pairs based on all the lncRNA-disease associations 
recorded in MNDR database as training samples. 
Prediction results were publicly released for further 
research and experimental validation. (See Supplementary 
Table S3).

DISCUSSION

Measuring lncRNA functional similarity is of great 
benefit to the lncRNA function prediction as well as the 
potential lncRNA-disease association inference. In this 
article, we proposed a novel computational model for 
calculating lncRNA-lncRNA functional similarity based 
on known lncRNA-disease associations. The functional 
similarity of each LncRNA pair is measured by the 
similarity of their associated disease groups based on the 

assumption that similar lncRNAs tend to be involved 
in similar diseases. Different from previously proposed 
models, our model retains the general hierarchical 
structure information based on an edge-based method. 
To further evaluate the effectiveness of ILNCSIM, we 
utilized computed lncRNA functional similarity to quantify 
lncRNA-disease association probabilities by combining 
ILNCSIM with LRLSLDA which was proposed in our 
previous work. By adopting the evaluation methods of 
global LOOCV and 5-fold cross validation, ILNCSIM-
LRLSLDA demonstrated its reliable performance for 
predicting lncRNA-disease associations. The lncRNA-
disease pairs with high ranks could be regarded as validation 
candidates for further biological experiment confirmation. 
Therefore, we publicly released potential lncRNA-disease 
pair for all the diseases investigated in this study. It is 
anticipated that more predictions with high ranks would 
be verified by future experiments and that LRLSLDA-
ILNCSIM can serve as a pre-experiment method for 
selecting potential lncRNA-disease association candidates.

There are some limitations in the computational 
model of ILNCSIM. Firstly, since the degrees of 
researches for different diseases are imbalanced, the 
information amount of different diseases recorded in 

Table 1: Prediction results of lncRNA associated with colon cancer, lung cancer and prostate cancer in top 20 
ranking lists

Disease lncRNA Evidence(PMID/Database) Rank

Colon cancer H19 Lnc2cancer 1

Colon cancer UCA1 Lnc2cancer 3

Colon cancer HOTAIR LncRNADisease 13

Colon cancer XIST Lnc2cancer 14

Colon cancer MEG3 Lnc2cancer 16

Colon cancer HULC Lnc2cancer 19

Lung cancer BC200 Lnc2cancer 1

Lung cancer UCA1 26380024 3

Lung cancer HOTAIR Lnc2cancer 4

Lung cancer XIST Lnc2cancer 8

Lung cancer GAS5 Lnc2cancer 10

Lung cancer MEG3 Lnc2cancer 17

Lung cancer LSINCT5 Lnc2cancer 20

Prostate cancer H19 LncRNADisease 1

Prostate cancer CBR3-AS1 LncRNADisease 2

Prostate cancer UCA1 Lnc2cancer 3

Prostate cancer KCNQ1OT1 Lnc2cancer 13

Prostate cancer LINCRNA-P21 Lnc2cancer 14

Prostate cancer MEG3 LncRNADisease 15
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Table 2: Performance comparison between LRLSLDA-ILNCSIM and three other previously proposed models based 
on the rankings of newly discovered lncRNAs associated with colon cancer, which were recorded in Lnc2Cancer and 
LncRNADisease databases

LncRNA LRLSLDA-ILNCSIM LRLSLDA-
LNCSIM1

LRLSLDA-
LNCSIM2

LRLSLDA

BACE1AS 192 181 192 38

GAS5 23 54 57 35

H19 1 1 1 2

HOTAIR 13 12 9 6

HULC 19 37 34 31

KCNQ1OT1 24 21 13 93

lincRNA-p21 36 183 73 94

LSINCT5 39 71 78 195

MEG3 16 16 23 10

PRNCR1 67 50 49 83

PVT1 68 190 94 84

uc.338 37 59 52 57

UCA1 3 3 3 4

XIST 14 33 35 33

ZFAS1 59 73 93 88

Percentage in the top 20 40% 26.67% 26.67% 26.67%

Average rank 40.73 65.60 53.73 56.87

Table 3: Performance comparison between LRLSLDA-ILNCSIM and three other previously proposed models based 
on the rankings of newly discovered lncRNAs associated with lung cancer, which were recorded in Lnc2Cancer and 
LncRNADisease databases

LncRNA LRLSLDA-
ILNCSIM

LRLSLDA-
LNCSIM1

LRLSLDA-
LNCSIM2

LRLSLDA

BC200 1 1 1 192

GAS5 10 13 21 21

HOTAIR 4 3 4 190

LSINCT5 20 26 39 18

MEG3 17 4 5 74

PVT1 34 63 65 15

UCA1 3 18 11 1

XIST 11 17 18 17

Percentage in the top 20 87.5% 75% 62.5% 50%

Average rank 12.50 18.13 20.50 66.00
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DAGs is different. Diseases of thoroughly-studied topics 
would have larger information amount which leads to 
more ancestors and descendants in DAGs than those 
of uncharacteristic topics. This information imbalance 
would inevitably result in inaccuracy of disease-based 
calculation model for lncRNA functional similarity. Even 
though ILNCSIM uses an edge-based method to alleviate 
the influence of information imbalance in diseases’ DAGs, 
the calculation result still suffers from the inaccuracy 
caused by the lack of unrecorded but real lncRNA-
disease associations. For example, information bias can 
mislead the measurement of how specific a disease is. In 
the proposed model, the average distance between two 
given diseases and their most informative leaves was 
computed as component β to evaluate the specificity 
of diseases (see Figure 1). However, disease terms of 
thoroughly-studied topics may have more descendants in 
DAGs, which would lead to overrated specificity with a 
larger value of component β. Secondly, the final step in 
disease-disease similarity calculation (i.e. equation 6) can 
be further optimized by introducing additional constant 
terms. Finally, the prediction performance of ILNCSIM 
could be further improved by integrating other types of 
lncRNA-related and disease-related data from biological 
databases, such as lncRNA-related various interactions, 
lncRNA sequence, and disease phenotype information 
[61]. However, the proposed framework of ILNCSIM 
fails to integrate additional data for more accurate results. 
For example, the relationship between lncRNA-disease 
associations and cancer hallmarks would be a very 
important problem to address in future studies [62–64]. In 
particular, a cancer hallmark network could be constructed 
at the lncRNA levels to effectively evaluate cancer risks.

MATERIALS AND METHODS

LncRNA-disease associations

To validate the effectiveness of ILNCSIM, we 
downloaded human lncRNA-disease associations from the 
Mammalian ncRNA-disease repository [50] (MNDR, http://
www.rna-society.org/mndr/) in March, 2015. The duplicate 
associations which are verified by different evidence and 
depict the same lncRNA-disease pair were discarded. As a 
result, we obtained 471 high-quality experimentally verified 
human lncRNA-disease associations, including 127 diseases 
and 241 lncRNAs. To further validate the effectiveness of 
ILNCSIM, we download a recently collected lncRNA-
disease association database called Lnc2Cancer (http://
www.bio-bigdata.net/Lnc2Cancer) [51]. This database 
contains 1057 manually curated lncRNA-disease 
associations between 531 lncRNAs and 86 human cancers. 
Similarly, we got rid of those duplicate records and obtained 
842 high-quality human lncRNA-disease associations.

Disease MeSH descriptors

In this work, we utilized disease MeSH descriptors 
to construct the relations among lncRNA-related 
diseases. MeSH descriptors were downloaded from 
the National Library of Medicine (http://www.nlm.nih.
gov/) [65]. There are 16 categories of MeSH descriptors 
including Category A for anatomic terms, Category 
B for organisms, Category C for diseases, Category 
D for drugs and chemicals and so on. Here, we used 
the information of descriptors of Category C. Based 
on these descriptors, the disease associations can be 

Table 4: Performance comparison between LRLSLDA-ILNCSIM and three other previously proposed models based 
on the rankings of newly discovered lncRNAs associated with prostate cancer, which were recorded in Lnc2Cancer 
and LncRNADisease databases.

LncRNA LRLSLDA-
ILNCSIM

LRLSLDA-
LNCSIM1

LRLSLDA-
LNCSIM2

LRLSLDA

CBR3-AS1 2 11 13 47

H19 1 8 8 225

HULC 26 221 222 211

IGF2-AS 217 216 214 35

KCNQ1OT1 13 38 28 213

lincRNA-p21 14 9 10 54

MEG3 15 7 3 215

NEAT1 21 40 40 7

UCA1 3 1 1 224

Percentage in the top 20 66.67% 55.56% 55.56% 11.11%

Average rank 34.67 61.22 59.89 136.78



Oncotarget25911www.impactjournals.com/oncotarget

easily depicted by DAGs where the nodes represent 
disease MeSH descriptors and edges denote recorded 
associations among disease terms.

Disease semantic similarity

Disease semantic similarity was calculated by a novel 
edge-based method based on diseases’ DAGs constructed 
by their MeSH descriptors. LncRNA functional similarity 
was then calculated based on disease semantic similarity.

In general, disease terms of higher specificity 
have a larger contribution to the semantic measurement. 
Therefore, retaining the specificity of disease terms 
contributes to the accuracy of calculation model for 
lncRNA functional similarity. Since information content 
can effectively measure how specific disease term is, we 
combined its concept into the common ancestor nodes 
and the nearest leaf nodes. In the first step for calculating 
disease semantic similarity, the information content of all 
diseases was computed. Information content value was 
computed by computing the negative log likelihood of 
each term. Given a disease term a, its information content 
is defined as follow:

= −IC a p a( ) log ( )     (1)

In the second step, the MICA node and most 
informative leaf (MIL) were computed based on the IC-
based distances which could be defined as follow:

= −DIST a b IC a IC b( , ) ( ) ( )IC   (2)

where a and b denotes two different disease terms. 
MICA node denotes the common ancestor node with the 
smallest IC-based distance, and MIL node denotes the 
leaf node with the smallest IC-based distance. By this 
way, the MICA node and the MIL nodes were computed 
and considered as the key nodes for retaining the general 
information of DAGs.

In the third step of disease similarity measurement, 
three different components (i.e. α β and γ) were computed 
based on computed nodes of MICA and MILs. Component 
α measures the specificity of MICA based on the IC-based 
distance from the root node. Component β measures the 
generality of two query disease terms based on the IC-based 
distance from the MIL nodes. Component γ measures the sum 
of IC-based distances between two terms and their MICA.

The component α, β and γ can be further computed 
as follows:

α = = −DIST ROOT MICA p MICA( , ) log ( )IC  (3)

β =
+DIST node MIL DIST node MIL( , ) ( , )
2

IC a a IC b b  (4)

γ = +DIST MICA node DIST MICA node( , ) ( , )a b  (5)

where ROOT denotes the root node in DAGs; MILa 
and MILb represent the most informative leaf node of node 
a and node b respectively.

In the final step, the semantic similarity of two 
disease terms were calculated by combing α, β and γ:

α
α β γ

=
+

⋅
+

SS term term( , ) 1
1a b   (6)

In this way, IC-based distances help to search the 
key nodes for more accurate measurement and the overall 
structure information in DAGs which contributes the 
semantic similarity measurement can be retained to a large 
extent. Clearly, SS=0 (α=0) indicates that the MICA of 
terma and termb is the root of DAG, which accords with 
the assumption that two terms share no commonality in 
biological functions without common ancestor nodes. On the 
other hand, SS=1 (β=0 and γ=0) indicates that terma and termb 
are the same leaf term. By calculating the semantic similarity 
of each disease pairs, disease similarity matrix SS can be 
constructed, where the entity in row m column n depicts the 
semantic similarity between disease m and disease n.

ILNCSIM

Based on the semantic similarity of diseases, we 
developed the model of ILNCSIM to calculate the functional 
similarity among lncRNAs by considering their associated 
disease groups. Given two disease groups, G(i) and G(j), 
associated with lncRNA i and lncRNA j, respectively, we 
computed similarity between G(i) and G(j) as the functional 
similarity of two given lncRNAs. Here, a group-based 
measure method was proposed to calculate similarity between 
two disease groups. The similarity between one of disease 
terms in G(i) , such as d1, and G(j) were defined as follow:

=
∈

S d G j SS d d( 1, ( )) max ( ( 1, ))dG d G j( )   (7)

The general similarities of two groups to each other 
were then computed by a sum operation as follows:

∑=→ ∈
S S d G j( , ( ))i j dGd G i( )    (8)

∑=→ ∈
S S d G i( , ( ))j i dGd G j( )    (9)

Finally, the functional similarity between lncRNA i 
and lncRNA j was further defined as follow:

=
+

+
→ →FS i j
S S
G i G j

( , )
( ) ( )cRNA
i j j i

ln    (10)

where |G(i)| and |G(j)| denote the numbers of disease 
in G(i) and G(j), respectively.

Webserver of ILNCSIM

For convenient application, we built a web server which 
implements the function of the proposed ILNCSIM model. 
This web server is freely available at http://219.219.60.246/
ILNCSIM/ . This web server presents similarity calculation 
based on ILNCSIM and two lncRNA-disease association 
databases (i.e. MNDR and Lnc2Cancer). More importantly, 
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this webserver could provide similarity calculation function 
for new lncRNAs with associated diseases provided by users. 
When visitors provide a specific lncRNA with its associated 
diseases, the functional similarity between this query lncRNA 
and all lncRNAs in two databases would be computed and 
listed on the webpage.

ACKNOWLEDGMENTS

XC was supported by the National Natural Science 
of Foundation of China under Grant No. 11301517and 
National Center for Mathematics and Interdisciplinary 
Sciences, CAS. ZHY and YAH were supported by the 
National Natural Science of Foundation of China under 
Grant No. 61572506.

CONFLICTS OF INTEREST

The authors declare no conflict(s) of interest.

REFERENCES

1. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, 
Willingham AT, Stadler PF, Hertel J, Hackermüller J and 
Hofacker IL. RNA maps reveal new RNA classes and a 
possible function for pervasive transcription. Science. 2007; 
316:1484-1488.

2. Mercer TR, Dinger ME and Mattick JS. Long non-coding 
RNAs: insights into functions. Nat Rev Genet. 2009; 
10:155-159.

3. Guttman M, Russell P, Ingolia NT, Weissman JS and 
Lander ES. Ribosome profiling provides evidence that 
large noncoding RNAs do not encode proteins. Cell. 2013; 
154:240-251.

4. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, 
Adiconis X, Fan L, Koziol MJ, Gnirke A and Nusbaum C. 
Ab initio reconstruction of cell type-specific transcriptomes 
in mouse reveals the conserved multi-exonic structure of 
lincRNAs. Nat Biotechnol. 2010; 28:503-510.

5. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans 
M, Kokocinski F, Aken BL, Barrell D, Zadissa A and Searle 
S. GENCODE: the reference human genome annotation for 
The ENCODE Project. Genome Res. 2012; 22:1760-1774.

6. Ponting CP, Oliver PL and Reik W. Evolution and functions 
of long noncoding RNAs. Cell. 2009; 136:629-641.

7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, 
Baldwin J, Devon K, Dewar K, Doyle M and FitzHugh 
W. Initial sequencing and analysis of the human genome. 
Nature. 2001; 409:860-921.

8. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser 
D, Huarte M, Zuk O, Carey BW, Cassady JP and Cabili 
MN. Chromatin signature reveals over a thousand highly 
conserved large non-coding RNAs in mammals. Nature. 
2009; 458:223-227.

9. Wapinski O and Chang HY. Long noncoding RNAs and 
human disease. Trends Cell Biol. 2011; 21:354-361.

10. Wilusz JE, Sunwoo H and Spector DL. Long noncoding 
RNAs: functional surprises from the RNA world. Genes 
Dev. 2009; 23:1494-1504.

11. Amaral PP, Clark MB, Gascoigne DK, Dinger ME and 
Mattick JS. lncRNAdb: a reference database for long 
noncoding RNAs. Nucleic Acids Res. 2011; 39:D146-D151.

12. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang 
Q, Yan G and Cui Q. LncRNADisease: a database for long-
non-coding RNA-associated diseases. Nucleic Acids Res. 
2013; 41:D983-D986.

13. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, 
Morales DR, Thomas K, Presser A, Bernstein BE and Van 
Oudenaarden A. Many human large intergenic noncoding 
RNAs associate with chromatin-modifying complexes 
and affect gene expression. P Natl Acad Sci USA. 2009; 
106:11667-11672.

14. Yu F, Zheng J, Mao Y, Dong P, Li G, Lu Z, Guo C, Liu 
Z and Fan X. Long non-coding RNA APTR promotes 
the activation of hepatic stellate cells and the progression 
of liver fibrosis. Biochem Biophys Res Commun. 2015; 
463:679-685.

15. Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang 
JK, Lan F, Shi Y, Segal E and Chang HY. Long noncoding 
RNA as modular scaffold of histone modification 
complexes. Science. 2010; 329:689-693.

16. Penny GD, Kay GF, Sheardown SA, Rastan S and 
Brockdorff N. Requirement for Xist in X chromosome 
inactivation. Nature. 1996; 379:131-137.

17. Ma Y, Ma W, Huang L, Feng D and Cai B. Long non-
coding RNAs, a new important regulator of cardiovascular 
physiology and pathology. Int J Cardiol. 2015; 188:105-110.

18. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, 
Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L 
and Haas S. Braveheart, a long noncoding RNA required 
for cardiovascular lineage commitment. Cell. 2013; 
152:570-583.

19. Alvarez ML and DiStefano JK. Functional characterization 
of the plasmacytoma variant translocation 1 gene (PVT1) in 
diabetic nephropathy. PLoS One. 2011; 6:e18671.

20. Pasmant E, Sabbagh A, Vidaud M and Biéche I. ANRIL, 
a long, noncoding RNA, is an unexpected major hotspot in 
GWAS. FASEB J. 2011; 25:444-448.

21. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong 
DJ, Tsai M-C, Hung T, Argani P and Rinn JL. Long non-
coding RNA HOTAIR reprograms chromatin state to 
promote cancer metastasis. Nature. 2010; 464:1071-1076.

22. Calin GA, Liu C-g, Ferracin M, Hyslop T, Spizzo R, 
Sevignani C, Fabbri M, Cimmino A, Lee EJ and Wojcik 
SE. Ultraconserved regions encoding ncRNAs are altered 
in human leukemias and carcinomas. Cancer Cell. 2007; 
12:215-229.



Oncotarget25913www.impactjournals.com/oncotarget

23. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, 
Kiemeney LA, Aalders TW, Swinkels DW and Schalken 
JA. DD3(PCA3), a very sensitive and specific marker to 
detect prostate tumors. Cancer Res. 2002; 62:2695-2698.

24. Pibouin L, Villaudy J, Ferbus D, Muleris M, Prospéri 
M-T, Remvikos Y and Goubin G. Cloning of the mRNA 
of overexpression in colon carcinoma-1: a sequence 
overexpressed in a subset of colon carcinomas. Cancer 
Genet Cytogenet. 2002; 133:55-60.

25. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider 
PM, Tidow N, Brandt B, Buerger H and Bulk E. MALAT-
1, a novel noncoding RNA, and thymosin β4 predict 
metastasis and survival in early-stage non-small cell lung 
cancer. Oncogene. 2003; 22:8031-8041.

26. Du T, Zhang B, Zhang S, Jiang X, Zheng P, Li J, Yan M, 
Zhu Z and Liu B. Decreased expression of long non-coding 
RNA WT1-AS promotes cell proliferation and invasion in 
gastric cancer. Biochim Biophys Acta. 2016; 1862:12-19.

27. Yao Y, Ma J, Xue Y, Wang P, Li Z, Liu J, Chen L, Xi 
Z, Teng H and Wang Z. Knockdown of long non-coding 
RNA XIST exerts tumor-suppressive functions in human 
glioblastoma stem cells by up-regulating miR-152. Cancer 
Lett. 2015; 359:75-86.

28. Yang Z, Zhou L, Wu L-M, Lai M-C, Xie H-Y, Zhang F 
and Zheng S-S. Overexpression of long non-coding RNA 
HOTAIR predicts tumor recurrence in hepatocellular 
carcinoma patients following liver transplantation. Ann 
Surg Oncol. 2011; 18:1243-1250.

29. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, 
Burghardt R, Kim S and Safe S. HOTAIR is a negative 
prognostic factor and exhibits pro-oncogenic activity in 
pancreatic cancer. Oncogene. 2013; 32:1616-1625.

30. Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud 
D, Capra V, Grompe M, Pizzuti A, Muzny D and Lawrence 
C. Characterization of a murine gene expressed from the 
inactive X chromosome. Nature. 1991; 351:325-329.

31. Brannan CI, Dees EC, Ingram RS and Tilghman SM. The 
product of the H19 gene may function as an RNA. Mol Cell 
Biol. 1990; 10:28-36.

32. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris 
DP, Cooper PJ, Swift S and Rastan S. The product of the 
mouse Xist gene is a 15 kb inactive X-specific transcript 
containing no conserved ORF and located in the nucleus. 
Cell. 1992; 71:515-526.

33. Dinger ME, Pang KC, Mercer TR, Crowe ML, 
Grimmond SM and Mattick JS. NRED: a database of long 
noncoding RNA expression. Nucleic Acids Res. 2009; 
37:D122-D126.

34. Bu D, Yu K, Sun S, Xie C, Skogerbø G, Miao R, Xiao H, 
Liao Q, Luo H and Zhao G. NONCODE v3.0: integrative 
annotation of long noncoding RNAs. Nucleic Acids Res. 
2011; 40:D210-D215.

35. Yang G, Lu X and Yuan L. LncRNA: a link between RNA 
and cancer. Biochim Biophys Acta. 2014; 1839:1097-1109.

36. Chen X and Yan G-Y. Novel human lncRNA–disease 
association inference based on lncRNA expression profiles. 
Bioinformatics. 2013; 29:2617-2624.

37. Chen X. Predicting lncRNA-disease associations and 
constructing lncRNA functional similarity network based 
on the information of miRNA. Sci Rep. 2015; 5:13186.

38. Chen X. KATZLDA: KATZ measure for the lncRNA-
disease association prediction. Sci Rep. 2015; 5:16840.

39. Liu M-X, Chen X, Chen G, Cui Q-H and Yan G-Y. A 
computational framework to infer human disease-associated 
long noncoding RNAs. PLoS One. 2014; 9:e84408.

40. Sun L, Luo H, Liao Q, Bu D, Zhao G, Liu C, Liu Y and 
Zhao Y. Systematic study of human long intergenic non-
coding RNAs and their impact on cancer. Sci China Life 
Sci. 2013; 56:324-334.

41. Ganegoda GU, Li M, Wang W and Feng Q. Heterogeneous 
Network Model to Infer Human Disease-Long 
Intergenic Non-Coding RNA Associations. IEEE Trans 
Nanobioscience. 2015; 14:175-183.

42. Li Y, Chen H, Pan T, Jiang C, Zhao Z, Wang Z, Zhang 
J, Xu J and Li X. LncRNA ontology: inferring lncRNA 
functions based on chromatin states and expression 
patterns. Oncotarget. 2015; 6:39793-39805. doi: 10.18632/
oncotarget.5794

43. Liu Y, Zhang R, Qiu F, Li K, Zhou Y, Shang D and Xu 
Y. Construction of a lncRNA–PCG bipartite network and 
identification of cancer-related lncRNAs: a case study in 
prostate cancer. Mol Biosyst. 2015; 11:384-393.

44. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, 
Zhou H and Sun J. Prioritizing candidate disease-related 
long non-coding RNAs by walking on the heterogeneous 
lncRNA and disease network. Mol Biosyst. 2015; 
11:760-769.

45. Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, 
Hao D, Liu S and Zhou M. Inferring novel lncRNA–
disease associations based on a random walk model of a 
lncRNA functional similarity network. Mol Biosyst. 2014; 
10:2074-2081.

46. Chen X, Yan CC, Luo C, Ji W, Zhang Y and Dai Q. 
Constructing lncRNA functional similarity network based 
on lncRNA-disease associations and disease semantic 
similarity. Sci Rep. 2015; 5:11338.

47. Chen H and Zhang Z. Similarity-based methods for 
potential human microRNA-disease association prediction. 
BMC Med Genomics. 2013; 6:12.

48. Wang D, Wang J, Lu M, Song F and Cui Q. Inferring the 
human microRNA functional similarity and functional 
network based on microRNA-associated diseases. 
Bioinformatics. 2010; 26:1644-1650.

49. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W and 
Cui Q. An analysis of human microRNA and disease 
associations. PloS one. 2008; 3:e3420.

50. Wang Y, Chen L, Chen B, Li X, Kang J, Fan K, Hu Y, Xu 
J, Yi L and Yang J. Mammalian ncRNA-disease repository: 



Oncotarget25914www.impactjournals.com/oncotarget

a global view of ncRNA-mediated disease network. Cell 
Death Dis. 2013; 4:e765.

51. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, 
Guo M, Yue M and Wang L. Lnc2Cancer: a manually 
curated database of experimentally supported lncRNAs 
associated with various human cancers. Nucleic Acids Res. 
2016; 44:D980-5.

52. Xiang J-F, Yin Q-F, Chen T, Zhang Y, Zhang X-O, Wu 
Z, Zhang S, Wang H-B, Ge J and Lu X. Human colorectal 
cancer-specific CCAT1-L lncRNA regulates long-range 
chromatin interactions at the MYC locus. Cell Res. 2014; 
24:513-531.

53. Prensner JR and Chinnaiyan AM. The emergence of 
lncRNAs in cancer biology. Cancer Discov. 2011; 1:391-407.

54. Gutschner T, Hämmerle M, Eiβmann M, Hsu J, Kim Y, 
Hung G, Revenko A, Arun G, Stentrup M and Groβ M. 
The noncoding RNA MALAT1 is a critical regulator of 
the metastasis phenotype of lung cancer cells. Cancer Res. 
2013; 73:1180-1189.

55. Liu X-h, Liu Z-l, Sun M, Liu J, Wang Z-x and De W. The 
long non-coding RNA HOTAIR indicates a poor prognosis 
and promotes metastasis in non-small cell lung cancer. 
BMC Cancer. 2013; 13:464.

56. Xue Z, Wen J, Chu X and Xue X. A microRNA gene signature 
for identification of lung cancer. Surg Oncol. 2014; 23:126-131.

57. Wang H-M, Lu J-H, Chen W-Y and Gu A-Q. Upregulated 
lncRNA-UCA1 contributes to progression of lung cancer 
and is closely related to clinical diagnosis as a predictive 
biomarker in plasma. Int J Clin Exp Med. 2015; 8:11824.

58. Lu F and Zhang HT. DNA methylation and nonsmall cell 
lung cancer. Ant Rec (Hoboken). 2011; 294:1787-1795.

59. Ren S, Peng Z, Mao J-H, Yu Y, Yin C, Gao X, Cui Z, 
Zhang J, Yi K and Xu W. RNA-seq analysis of prostate 
cancer in the Chinese population identifies recurrent gene 
fusions, cancer-associated long noncoding RNAs and 
aberrant alternative splicings. Cell Res. 2012; 22:806-821.

60. Martens-Uzunova E, Jalava S, Dits N, van Leenders G, 
Mϕller S, Trapman J, Bangma C, Litman T, Visakorpi T 
and Jenster G. Diagnostic and prognostic signatures from 
the small non-coding RNA transcriptome in prostate cancer. 
Oncogene. 2012; 31:978-991.

61. Zhao X-M, Liu K-Q, Zhu G, He F, Duval B, Richer J-M, 
Huang D-S, Jiang C-J, Hao J-K and Chen L. Identifying 
cancer-related microRNAs based on gene expression data. 
Bioinformatics. 2015; 31:1226-1234.

62. Wang E. Understanding genomic alterations in cancer 
genomes using an integrative network approach. Cancer 
Lett. 2013; 340:261-269.

63. Chen X. miREFRWR: a novel disease-related microRNA-
environmental factor interactions prediction method. Mol 
Biosyst. 2016; 12:624-33.

64. Wang E, Zaman N, Mcgee S, Milanese J-S, Masoudi-
Nejad A and O’Connor-McCourt M. Predictive genomics: 
A cancer hallmark network framework for predicting tumor 
clinical phenotypes using genome sequencing data. Semin 
Cancer Biol. 2015; 30:4-12.

65. Lipscomb CE. Medical subject headings (MeSH). Bull Med 
Libr Assoc. 2000; 88:265-266.


