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ABSTRACT: The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in patholog-
ical conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of
oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate
oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation
in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP).
PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate
cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and
growth factors, as well as a number of small molecules. The utility ofPRP has been investigatedin a range of regenerative medicine
approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines.
A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promis-
ing results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited. In this article, we summarise some of
the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential
mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly,
on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fun-
damental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is
needed to fully understand this promising development.
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Introduction
Female infertility is recognised by the World Health Organisation
(WHO) as a global public health issue (Macaluso et al., 2010), with
more than one million cycles of IVF being performed globally each
year since 2005 (Zegers-Hochschild et al., 2014; Adamson et al.,
2016). Female infertility can arise from a range of conditions, including
endocrine dysfunction, implantation failure, endometriosis and uterine
fibroids, as well as pathologies related directly to the ovary, including
polycystic ovary syndrome (PCOS), primary ovarian insufficiency
(POI), environmental factors and inflammatory disease. However,
‘ovarian exhaustion’ is a natural part of the ageing process. In the past

50 years, the mean age at which women have their first child in the
UK has increased from 23.8 to 30.7 years (Office for National
Statistics, 2020), suggesting that women are delaying childbearing. The
impact of delayed childbearing means that women are moving closer
to the period of climacteric for conception, and, in many cases,
women are choosing not to reproduce until much later. One conse-
quence of this has been a rise in fertility treatment and a rise in the
age of women attending for medical investigation. Indeed, in the UK
alone, the mean age of women attending for IVF treatment has hov-
ered around 35 for the past 20 years (Human Fertilisation and
Embryology Authority, 2020). Since the advent of clinical IVF in 1978
(Steptoe and Edwards, 1978) and associated Assisted Reproductive
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Techniques (ARTs), it has been possible to treat infertility in a number
of cases. However, such approaches are reliant on a healthy oocyte
for fertilisation and so have limited success in treating peri- or post-
menopausal women without the use of donor eggs. Moreover, ARTs
do little to tackle fundamental dysfunction within the ovary and in the
oocytes that lead to female infertility and associated physiological
adaptations.

The prospect of rejuvenating the exhausted ovary has been enticing
ever since the description of oogonial stem cells (OSCs) in the ovarian
cortex (White et al., 2012), hinting at a possibility of therapeutic stimu-
lation of post-natal folliculogenesis in subfertile women. In a study by
Niikura et al. (2009), transplantation of ovarian stem cells from atro-
phic ovaries from aged mice into young, healthy counterparts resulted
in their resumption of spontaneous oogenesis, suggesting that ovarian
aging or insufficiency could be reversed if OSCs are provided a healthy
environment. Further work has implicated a role for mitochondria in
loss of oocyte quality associated with the aged ovary (Cozzolino et al.,
2019); indeed, methods to replenish mitochondria within aged oocytes
are currently being explored as a means to rejuvenate them (Labarta
et al., 2019). However, as with IVF, efforts to improve egg quality do
not address the wider aspects of age-related ovarian dysfunction.

One recently proposed option for ovarian rejuvenation is the intrao-
varian injection of platelet-rich plasma (PRP) which is being used in-
creasingly in clinical settings for a number of soft tissues, including to
support wound healing and ligament and muscle repair (Suthar et al.,
2017; Hurley et al., 2019; Verma et al., 2019; Zhang et al., 2020). PRP
was first described for ovarian rejuvenation by Pantos et al. (2016).
Their work described how PRP, which is a component of blood,
could, when in injected directly into the ovary, trigger the resumption
of menstrual cycles in women exhibiting signs of the climacteric. In this
review, we will briefly consider the concept of ovarian rejuvenation be-
fore describing what PRP is and how it is generated and finally reflect-
ing on the current state of knowledge of ovarian rejuvenation with
PRP.

Ovarian rejuvenation
The paradigm that the mammalian ovarian reserve is fixed at birth
dates back to a nineteenth century hypothesis by Waldeyer in 1870,
which was reaffirmed by Zuckerman in 1951 (reviewed in Tilly et al.,
2009). However, there is mounting evidence that this is only part of
the story, and that it may be possible to replenish the ovarian follicle
pool due to the presence of a population of oogonial stem cells
(OSC) in adult ovaries (Niikura et al., 2009). It is likely that both of
these explanations are true in part; there is a fixed number of follicles
at birth, which declines until exhaustion (typically 40þ years of age in
the human), but that a population of OSC co-exist in the ovary and
may be activated under specific circumstances (Tilly and Telfer, 2009).
However, spontaneous reactivation of OSCs is not yet believed to oc-
cur naturally in vivo in the adult human ovary. This is one principle that
underpins the notion of ovarian rejuvenation.

As an illustration of this concept, mice rendered sterile from chemo-
therapeutic drugs can have fertility restored and can produce viable
offspring through natural mating after undergoing an OSC transplant
from neonatal or adult mouse ovaries (Zou et al., 2009). It was further
demonstrated that when ovarian tissue containing premeiotic germ

cells from aged mice was transplanted into young host mice, the germ
cells produced NOBOX-expressing oocytes and formed follicles
(Niikura et al., 2009). Combined, these studies show OSC transplanta-
tion may restore fertility and that it may be possible to produce
oocytes from OSC from aged mammalian ovaries in the correct
milieux.

Although data from animal models support the notion of OSCs, the
presence of equivalent stem cell populations in humans remains dis-
puted. For example, Virant-Klun et al. (2008) confirmed that ovarian
stem-like cells were present on the surface epithelium of post-meno-
pausal women and women with premature ovarian failure (POF),
which aligns with the reported location of OSC in the ovaries of juve-
nile and young-adult mice (Tilly and Telfer, 2009). By contrast, when
analysing the cell populations in the human ovarian cortex, Wagner
et al. (2020) were unable to identify a population of germline stem
cells. Of course, it must be acknowledged that studies on normal ovar-
ian function in humans is rather constrained since substantial ovarian
tissue from healthy, reproductive-aged women is rarely available.
Furthermore, tissue from dysfunctional ovaries may not exhibit the full
range of physiological function, and biopsies may not be reflective of
the whole ovary as stem cells may not be uniformly spread (Horan
and Williams, 2017). These factors make it challenging to determine
definitively if a population of stem cells is present within the adult
ovary.

If present, ovarian OSC may offer the potential for women
experiencing ovarian failure as a result of menopause or POF to be
treated for their infertility beyond the only current option of IVF using
a donor egg. This has provided an underpinning of attempts to initiate
ovarian rejuvenation in clinical settings, including investigating the utility
of PRP in four pilot studies of different reproductive pathologies: POI,
poor ovarian responders (POR), perimenopause and menopause
(Sfakianoudis et al., 2020b).

Platelets and platelet-rich
plasma
The blood platelet is a tiny, anucleate cell responsible for the initiation
of formation of a thrombus (Fig. 1). Platelets are formed from a frag-
ment of megakaryocyte membrane that is pre-packaged with a myriad
of molecules and complexes necessary for its primary function, which
is to sense signs of trauma within the vasculature and aggregate to-
gether to stem the loss of blood. One of the primary steps in throm-
bus formation is platelet activation, which is driven by ‘outside-in’
signalling, initiated through a vast repertoire of G-protein coupled
receptors, integrins and glycoprotein channels on the surface of the
platelet (Li et al., 2010). The activation of platelets can occur through
numerous mechanisms by a seemingly endless number of agonists, in-
cluding but not limited to, thrombin, collagen, adenosine diphosphate
(ADP), thromboxanes, serotonin, oxidised LDL and extracellular diva-
lent cations (Lopez-Vilchez et al., 2009; Li et al., 2010; Wraith et al.,
2013; Shen et al., 2017).

A core platelet response to activation is the release of the contents
of intracytoplasmic granules. Platelets contain two main granule stores,
the alpha and dense granules, both of which replete with factors criti-
cal for an effective platelet response to vascular damage (Fig. 1).

1738 Atkinson et al.
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..Where alpha and dense granules are lacking, the conditions grey plate-
let syndrome and delta storage pool deficiency can arise. Both of these
conditions are associated with an increased bleeding tendency (Bolton-
Maggs et al., 2006). It is also of note that more recently, platelet secre-
tory behaviour has been shown to extend beyond the realm of granu-
lar stores and also involves activation-dependent synthesis and release
of cytokines and other bioactive molecules (Heijnen and van der Sluijs,
2015). It is, therefore, clear that the contents of platelet intracytoplas-
mic granules and de novo synthesis of agents are essential for the hae-
mostatic response, and the descriptions on the functions of platelet
releasate have historically focussed on its role in haemostasis (Rendu
and Brohard-Bohn, 2001). However, the catalogue of bioactive pro-
teins and molecules released by activated platelets can have multiple
physiological effects which include increased angiogenesis, cell prolifera-
tion, cell differentiation and regulation or attenuation of apoptosis (Bir
et al., 2011; Au et al., 2014; Golebiewska and Poole, 2015). The thera-
peutic role of the platelet releasate in driving tissue regeneration is of
growing interest throughout modern medicine.

PRP is a term used to describe a fraction of the blood after process-
ing. It is typically isolated from autologous whole blood retrieved by
phlebotomy into a citrate-based anticoagulant. This is then subjected
to differential centrifugation, resulting in the removal of red blood and
immune cells, leaving behind a high concentration of platelets within
plasma. Commercial sources of PRP are available, which can provide a
predetermined concentration of platelets. However, in many cases,
PRP is derived ‘in-house’, produced according to many subtle protocol
variations. It is not uncommon for resulting PRP to retain varying con-
centrations of RBCs and WBCs; such contamination and absence of

standardisation may result in conflicting findings regarding the effects of
PRP in different applications.

In recent years, there has been significant interest in exploiting PRP
in regenerative medicine. Particular attention has been paid to muscu-
loskeletal (Scully et al., 2019, 2020), oral-maxillofacial (Xu et al., 2020)
and osteoarthritis (Evans et al., 2020) applications to name but a few.
For a more comprehensive account, the reader is referred to a review
(Scully et al., 2018).

PRP and ovarian rejuvenation:
the evidence so far
Over the past decade, there have been a growing number of studies
that have reported that injection of PRP directly into the ovary can in-
crease folliculogenesis and egg harvest. One of the earliest studies
reporting this approach was from Callejo et al. (2013), who implanted
cryopreserved ovarian tissue within the peritoneum. PRP was used as
a pro-angiogenic and proliferative agent, and the approach supported
a successful live birth. The proangiogenic effect of PRP was further
highlighted in a study by Bakacak et al. (2015), who used a rat model
of ovarian ischaemia induced by torsion. In that study, PRP treatment
in all conditions significantly increased peritoneal vascular endothelial
growth factor (VEGF) and provided protection from ROS-induced oxi-
dative damage during reperfusion.

More recently, direct injection of PRP into ovaries has been
reported. In 2016, a short communication at the ESHRE Annual
Meeting indicated that infusion of PRP into the ovary of

Figure 1. Granule release in activated platelets. Platelets express numerous glycoprotein, integrin and G- protein-coupled receptors that
bind to a myriad of soluble and matrix proteins and molecules, resulting in tightly orchestrated intracellular signalling. This intracellular signalling signifi-
cantly increases cytoplasmic calcium levels and causes drastic changes in the platelet cytoskeleton, resulting in ashape change in the platelet to an
‘echinocytic’ formation. During this process, granular storage compartments migrate inwards to the centre of the platelet and fuse with the plasma
membrane and release their contents into the extracellular milleiu. PAR1/4, protease-activated receptors 1/4; GPVI, glycoprotein VI; TXA2, throm-
boxane A2; TP, thromboxane protstanoid receptor; 5-HT, 5-hydroxytryptomine; P2Y, purinergic receptor 2Y; vWF, von Willebrand Factor; IL-8, in-
terleukin-8; CCL5, chemokine ligand 5; SDF-1a, stromal cell-derived factor 1 alpha; FGF, fibroblast growth factor; EGF, endothelial growth factor;
GM-CSF, granulocyte-macrophage colony-stimulating factor; TGFb1, transforming growth factor beta 1.

Platelet-rich plasma and ovarian rejuvenation 1739
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Table I Summary of reports on the effect of PRP infusion in ovarian rejuvenation.

Case reports

Author Findings summary Procedure and controls

Sfakianoudis et al. (2018) Spontaneous resumption of menstruation 6 weeks following
PRP injection, with a concomitant reduction in FSH and in-
crease in AMH being observed. A natural IVF cycle led to the
retrieval of one high-grade oocyte that, after ICSI, resulted in
a grade III 6-cell cleavage stage embryo. Following implanta-
tion, confirmation of a clinical pregnancy was determined,
however the pregnancy spontaneously terminated at 5 weeks
of gestation.

40-year-old woman with a history of premature meno-
pause for 5 years and who was unable to naturally con-
ceive for over a year. Approximately 4 ml of PRP (9 �
108/ml) was injected into each ovary. Measurement of
FSH, AMH and LH pre- and 6 weeks post-injection

Sfakianoudis et al. (2020b) Menstruation was restored in the pilot study for POI patients
(18 out of 30), AMH, FSH and AFC also significantly im-
proved, noting 3 spontaneous pregnancies and live births. For
the Poor Ovarian Responders (POR), there was an improve-
ment to ICSI cycle performance. The perimenopausal pilot
data showed 24 out of 30 women had improved hormone
levels and AFC, as well as improved menstruation regularity,
noting 4 spontaneous pregnancies and 3 live births. 13 out of
30 menopausal patients were described as positively
responding to PRP treatment, noting 1 spontaneous preg-
nancy and live birth

Recruitment of a total 120 women suffering from POI,
POR or who were perimenopausal or menopausal
were assigned to 4 respective pilot studies. 4 ml of cal-
cium gluconate-activated PRP (1� 109/ml) was
injected into each ovary

Pantos et al. (2019) Increased E2 and AMH and decreased FSH and LH were ob-
served with PRP treatment. All participants resumed men-
struation within 2 months post-injection and naturally
conceived and carried until third trimester at time of
publication

Injection of approximately 4 ml of activated PRP (con-
centration and agonist not reported) into the ovaries of
three subfertile women who experienced >1 year of
amenorrhea (2 POF, 1 menopausal). Measurement of
FSH, AMH, E2, LH and AFC pre- and post-therapy

Sills et al. (2018) Multiple high-grade MII oocytes obtained from all participants,
resulting in at least one Day 5 embryo per round of IVF, with
one participant opting for immediate embryo transfer who
then developed a clinical pregnancy. PRP injection was associ-
ated with a significant reduction in FSH

5 ml of PRP (concentration not reported) activated by
calcium gluconate was injected throughout the ovaries
of four women with at least one round of IVF failure or
amenorrhoea for over 3 months. FSH, AMH and E2

measurements obtained pre- and post-PRP therapy.
Hyperstimulation ovarian stimulation and oocyte re-
trieval performed from 59 days after therapy

Cakiroglu et al. (2020) Spontaneous pregnancy was achieved in 23 out of 311
women diagnosed with POI, with 16 resulting in sustained im-
plantation or livebirth. A significant increase in antral follicle
count observed after PRP treatment, serum AMH increased
after treatment, although serum FSH was not statistically sig-
nificantly different. 201 patients developed antral follicles and
attempted IVF (87 did not develop antral follicles), 57 of the
82 women who developed embryos underwent embryo
transfer, 9 resulting in sustained implantation or livebirth

311 women aged 24–40 diagnosed with POI under-
went intraovarian injection (in at least one ovary) of 2–
4 ml of PRP (concentration not reported). PRP injec-
tion was timed randomly in amenorrheic women, and
10 days post-menstrual bleeding in oligomenorrheic
women

Callejo et al. (2013) PRP-loaded ovarian tissue that was implanted into the perito-
neum on the broad ligament of a woman with no ovaries and
was able to spontaneously resume menstruation. A round of
IVF/ICSI on two obtained oocytes was able to provide gener-
ated two embryos for transfer, resulting in a clinical preg-
nancy. A healthy boy child was delivered by caesarean section
at 38 weeks and 6 days, weighing 3.5 kg

Implantation of thawed cryopreserved ovarian tissue in
a 30-year-old woman who had a bilateral oophorec-
tomy at 20 years of age. Tissue was impregnated in a
PRP gel and surgically implanted onto the broad liga-
ment and growth factors administered. IVF/ICSI per-
formed on resulting oocytes and implantation was
performed with two Day 2 embryos

Farimani et al. (2019) PRP-treatment increased the oocyte yield and the average
number of retrieved oocytes and resulting embryos was
higher after PRP treatment. 3 of the 12 women that under-
went therapy had live births, two of which were via spontane-
ous conception and one with IVF

12 women suffering with poor ovarian reserve for
more than 3 years underwent double ovarian stimula-
tion and oocyte retrieval before and after injection of
2 ml of PRP (concentration not reported)

Hsu et al. (2020) Resumption of folliculogenesis within 4 days post-PRP injec-
tion. Two rounds of hyperovulation supervovulation led to
the capture of 6 oocytes, which after ICSI, led to two 8-cell
and one 5-cell embryos, which were all transferred back into
the uterus and resulted in a pregnancy of twins, which were
delivered at 30 weeks with no documented abnormalities

33-year-old woman, with a history of irregular periods,
who had several rounds of IUI cancelled due to lack of
any follicles. Injection of approximately 4 ml PRP (con-
centration not reported) in conjunction with 1 ml
150 IU FSH and 75 IU LH throughout the ovarian tissue

1740 Atkinson et al.
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perimenopausal women led to resumption of menstrual cycles (Pantos
et al., 2016). The study included only eight women but was the first
reported use of PRP for rejuvenation of the perimenopausal ovary.
Since then, there have been several limited investigations into the util-
ity of PRP injection into the ovaries of perimenopausal women which
are summarised in Table I. Sills et al. (2018) reported that for healthy
women with a history of infertility, ovarian PRP infusion produced sev-
eral MII oocytes for cryopreservation, with one individual proceeding

to successful embryo transfer at time of publication. Other studies
have reported similar cases; commonly ovarian PRP therapy has
caused AMH to increase and FSH levels to fall in previous non-res-
ponders, leading to folliculogenesis, significant levels of oocyte retrieval,
and in a handful of cases, spontaneous pregnancy (Sfakianoudis et al.,
2018; Farimani et al., 2019; Pantos et al., 2019; Hsu et al., 2020).
(continued) In the only preclinical study on the effect of PRP injection

into human ovaries, Hosseini et al. (2017) obtained healthy donated

............................................................................................................................................................................................................................

Table I Continued.

Basic research

Author Findings summary Procedure and controls

Ahmadian et al. (2020) VCD administration successfully reduced the presence of
morphologically normal follicles to none and increased the
atretic follicle count, also mildly increasing FSH levels although
not significantly
PRP intraovarian injection reduced follicular atresia in POI-in-
duced rat ovaries and saw an increase in litter counts, as well
as higher expression of ANGPT2 and KDR when compared to
the other groups. After PRP intervention, FSH levels declined,
although not statistically significant, with the greatest decline
observed in the higher platelet concentration of PRP

86 rats used, 63 were IP injected with 160 mg/kg VCD
to induce POI, 18 received a similar volume of normal
saline. 15 POI rats injected with 10ml low concentrated
PRP (8.5 � 105/ml), 15 with 10ml high concentrated
PRP (21.6 � 105/ml), 15 injected with 10ml normal sa-
line (sham), 15 without interference, 15 in control
group (no POI and no PRP)

Bakacak et al. (2015) PRP administration significantly reduced markers of reactive
oxidant damage in and decreased histopathological damage
scoring in the ovary when compared to sham injections. This
response, however, was incomplete and remained signifi-
cantly higher with PRP treatment compared to sham controls

Induction of ovarian torsion in rats. 60 female rats
used. 12 used to prepare PRP, and 8 rats per group
and 12 for PRP preparation: sham operation, ischemia,
ischemia/reperfusion, sham operation þ PRP,
ischaemiaþPRP, ischemia/reperfusionþPRP. Platelet
concentration of PRP was 6.9 � 105 § 0.6 � 105/ml
was used

Cremonesi et al. (2020) 5 ml of PRP (1 � 109ml) injected into the left right ovary of
eight cows of proven fertility. PRP injection resulted in an in-
crease in follicle count and increased subsequent number of
grade 1–2 blastocysts

5 ml of PRP (1 � 109/ml) was injected into the left
ovary of Holstein–Friesian cows, leaving the right ovary
as a pseudocontrol (no injection). Superovulation in-
duced after the 9th day of cycle following PRP injection
with Gn administration in decreasing doses for 5 days.
Cows were then inseminated and oestrus was induced
using PGF-2a. Embryo retrieval was then performed by
flushing both left and right uterine horns

Hosseini et al. (2017) An increase in follicle growth was observed in response to
PRP (10%) supplementation. Interestingly, a mix of both PRP
(5%) and FBS (5%) did not benefit follicle growth, suggesting a
dose-dependent effect of PRP on follicle maturation

Primordial follicles were isolated from ovaries donated
by three healthy women after death post-mortem. PRP
(concentration not reported) was activated with 20 IU/
ml thrombin. Follicles were embedded in a 3D gel ma-
trix, supplemented with either 10% PRP, 5% PRP þ 5%
FCS, 10% FCS or 10% HSA with a-MEM media

Non-randomised clinical trial

Author Findings summary Procedure and controls

Melo et al. (2020) There were 11 clinical pregnancies, leading to 5 total live
births in those receiving PRP injection, compared to 2 clinical
pregnancies and 1 live birth in the untreated group. PRP ther-
apy was associated with an increase in AMH and a decrease
in FSH levels. Total AFC were higher post-therapy versus no
intervention, with those seeking IVF/ICSI resulting in higher
numbers of oocytes collected. Resulting embryos were
graded higher in response to PRP when compared to no
injection

Non-randomised interventional study (PRP vs. no injec-
tion) involving 83 women (46 PRP vs. 37 no injection).
Each arm was then subdivided into those receiving IVF
versus no IVF (timed conception and IUI). PRP (citrate
anticoagulant, count not reported) was activated with
10% calcium chloride and injected as a 200ml volume
into each ovary

Platelet-rich plasma and ovarian rejuvenation 1741
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ovaries from deceased donors. PRP injection led to an increase in folli-
cle size and their viability at 10 days compared to treatment with foetal
calf serum (FCS) alone. Surprisingly, a combination of FCS and PRP did
induce follicular growth, which is an interesting observation worthy of
further investigation.

While these case studies appear encouraging, it is important to re-
flect on the experimental designs. A common feature of the first stud-
ies of the effect of PRP infusion is the absence of a sham injection
group. It is conceivable that the mechanical stretching and/or mild in-
jury to the ovary resulting from the procedure is sufficient to elicit an
inflammatory response leading to temporary resumption of ovarian
function. For example, laparoscopic ovarian ‘drilling’ is a therapeutic
option for the treatment of clomiphene-resistant PCOS (Lebbi et al.,
2015) and, thus, a comparable ovarian needle stick injury may be a
causative factor in the success of PRP therapy. Importantly, the recent
study of Ahmadian et al. (2020) used a sham injection group, which
showed no morphologically normal follicles, and the same result was
observed in the ‘no injection’ group. This demonstrated that injection
with saline is not sufficient to reverse the effects of premature ovarian
insufficiency in this animal model, nor can it elicit a comparable re-
sponse to the two groups with different concentrations of PRP, which
show reduced follicular atresia and increased follicular quality. It is vital
that future studies control for this component of the intervention.

An important study was published by Melo et al. (2020) who
reported findings from a non-randomised interventional study involving
83 subfertile women, 46 of whom opted for several infusions of 200ml
of autologous PRP into each ovary, and 37 who opted for no treat-
ment. These two arms were further subdivided into groups who
opted for IVF, and those who continued with unassisted conception.
Overall, significantly higher antral follicle counts were observed in
women who received PRP infusion compared to those women who
received no treatment. In addition, embryo quality was scored higher
from those obtained through PRP therapy, although there was no dif-
ference in the fertilisation rate of oocytes from either group. The
authors concluded that ovarian injection of PRP did lead to increased
egg yield in subfertile women and prompted changes within the oocyte
which may lead to increased ‘quality’ of subsequent embryos. In both
the IVF and spontaneous conception groups, those receiving PRP ther-
apy developed 13 clinical pregnancies, compared to 2 in the control
group although there were insufficient data on live births to draw any
definitive conclusions. Although these data are encouraging, the ab-
sence of randomisation may have led to a socioeconomic selection
bias, since PRP intervention was adopted only by couples able to pay
for the treatment. Examples such as this illustrate the necessity that
case studies are scrutinised in detail. Ideally, a properly controlled
randomised clinical trial will be necessary to confirm the efficacy of
ovarian PRP therapy.

How might PRP induce ovarian
rejuvenation?
Given the complexity of platelet signalling and activation, the precise
details of how platelets initiate their full range of physiological effects
remain unclear. However, it is well established that platelets release a
range of cytokines in response to activation (Roh et al., 2016).

Cytokine signalling is increasingly being shown to be involved in the in-
terrelationship among the oocyte, granulosa and thecal cells, with dys-
function in this ecosystem resulting in deficiencies in follicle maturation,
ovulation and luteinisation (Orisaka et al., 2006; Field et al., 2014). A
number of the cytokines that regulate follicle development are re-
leased by platelets through secretion of their alpha and dense granule
contents during platelet activation (Table II). Therefore, a working hy-
pothesis is that PRP may provide a readily accessible, individualised,
cost-effective blend of proangiogenic, proliferative and proinflammatory
factors which may stimulate de-novo oogenesis and/or follicle
maturation.

One possible explanation of the observed effects of PRP on the
ovary might be that it acts in a proangiogenic manner (Kakudo et al.,
2014) via action of platelet-released cytokines (Table II), including, for
example VEGF. Primordial follicles typically rely on stromal blood ves-
sels, but become progressively encapsulated in a thecal capillary net-
work during maturation, a process which is mirrored by increased
VEGF expression that persists through to corpus luteum formation
(Gordon et al., 1996; Barboni et al., 2000; Danforth et al., 2003; Pauli
et al., 2005). Heterozygous knockdown of the hypoxia-response ele-
ment within the VEGFA promoter or VEGFR antagonism in mouse
ovaries leads to vascular malformation, resulting in a poor ovarian re-
sponse to stimulation (Feng et al., 2017), indicative of a role for VEGF
in follicle development and the overall importance of correctly regu-
lated vascularisation in follicle development. Another major constituent
of platelet releasate, platelet-derived growth factor (PDGF), has also
been implicated in regulating vessel formation and maturity. This was
demonstrated via intraovarian injection with an anti-PDGF antibody in
rats by Pascuali et al. (2015), who consequently observed a reduction
in follicle maturation paired with an increase in follicle atresia. This di-
rect evidence for the importance of proangiogenic factors in follicle de-
velopment supports the idea that PRP and/or platelet releasate can
increase blood supply to the immature follicle pool and/or OSCs and
encourage their maturation.

An additional potential explanation for the positive effects of PRP
on the ovary is via sphingosine-1-phosphate (S1P) (Ono et al., 2013;
Urtz et al., 2015). S1P has been isolated from follicular fluid at high
nanomolar concentrations (Von Otte et al., 2006) and there is evi-
dence to suggest that it can promote follicle maturation, likely through
increased expression of CCN2, a connective tissue growth factor
shown to drive follicle maturation (Cheng et al., 2015). Platelet alpha
granules contain abundant stores of S1P, which is released upon activa-
tion and have been measured at over 300 nM per 1 � 107 platelets. If
a linear relationship between S1P concentrations and platelet count
exists, this would estimate that in studies that have infused activated
PRP into the ovary, the amount of S1P delivered is approximately
9mM, close to the range reported to be beneficial by Cheng et al.
(2015). However, a recent study involving both murine and human fol-
licles and human-to-murine xenotransplantation reported that although
CCN2 expression was elevated in response to supraphysiological S1P
doses, there was no increase in the number of follicles. By contrast,
ovaries receiving S1P treatment suffered a significant reduction in folli-
cle number compared to control counterparts (Pors et al., 2020).
These findings again highlight the uncertainty of the effect of factors re-
leased by activated platelets on oocyte and follicle development and
clinicians must be careful when considering such approaches.
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Table II Factors released by platelets with known effects in the ovary.

Factor Effect Plasma Platelet References

BMPs Essential for oocyte maturation and folliculogenesis. Involved in maintaining
cumulus cell expansion. BMP2 expression associated with an increase in oo-
cyte quality scoring

� � Hussein et al. (2005)
Kalén et al. (2008)
Demiray et al. (2017)

CCL5 Higher CCL5 levels in follicular fluid associated with increased subsequent
embryo quality upon IVF

� � Ledee et al. (2008)
Machlus et al. (2016)

EGF Required for LH-mediated cumulus cell expansion � � Ben-Ezra et al. (1990)
Reizel et al. (2010)

IL-8 Associated with higher pregnancy rates and embryo quality. Found in
healthy follicular fluid

� � Arici (1996)
Huang et al. (2017)

PDGF Expression of PDGF receptors in oocytes and granulosa cells. Inhibition of
PDGFR in rat ovaries results in increased follicle atresia, reduction in primary/
early and antral follicle formation and intraovarian blood vessel size. Shown to in-
crease the stromal cell migration from the fallopian tube fimbriae towards the
ovulating follicle. Involved in primordial to primary follicle transition

� ��� Hart et al. (1990)
Nilsson et al. (2006)
Valeri et al. (2006)
Pinkas et al. (2008)
Pascuali et al. (2015)
Yeh et al. (2016)

PF4/CXCL4 Strong chemoattractant for neutrophils and monocytes, inducing robust
phenotypic alterations. Increased intrafollicular levels of PF4 found in those
with PCOS

� ��� Deuel et al. (1981)
Pervushina et al. (2004)
Huang et al. (2016)

P-selectin (CD62) PSGL-1 expression in the porcine zona pellucida. Key in the recruitment of
neutrophils to sites of injury

? ��� Geng et al. (1997)
Merten and Thiagarajan

(2000)
SDF-1a/CXCL12 Causes inhibition of primordial to primary follicle transition in murine neo-

nates, resulting in smaller, more dense yet numerous oocytes. Associated
with a higher preovulatory follicle size in humans. Encourages the migration
of T-cells, increases granulosa cell survival and overall oocyte quality

� � Kryczek et al. (2005)
Holt et al. (2006)
Massberg et al. (2006)
Nishigaki et al. (2011)

Serotonin 5-HT receptors robustly expressed in human ovarian epithelium. Both
Serotonin and 5-HT transporters expressed in murine cumulus-oocyte
complexes. Tryptophan hydroxylase robustly expressed in cumulus cells.
Shown to modulate oestradiol production in cultured rat follicles

� ��� Amireault and Dubé (2005)
Brenner et al. (2007)
Henriksen et al. (2012)
Cloutier et al. (2018)

TGF-b1 Strongly regulates follicle survival and apoptosis. Synergises with VEGF to
regulate angiogenesis. Essential in the crosstalk between thecal cells, granu-
losa cells and the oocyte during folliculogenesis and maturation. Critical for
transcriptional activity through Smads

� �� Assoian et al. (1983)
Dragovic et al. (2007)
Meyer et al. (2012)

TSP-1 Present in granulosa cells, follicle antra and stromal compartment. Increases
migration of ovarian vascular endothelial cells in primates. Inhibition of
thrombospondin diminishes follicle rupture and oocyte release. CD36 ob-
served in both murine and human oocytes and shown to co-determine fer-
tilisation rate with BAI1/3

� ��� Jaffe et al. (1982)
Disdier et al. (1989)
K~oks et al. (2009)
Bender et al. (2019)
Rival et al. (2019)
Zaslavsky et al. (2010)

VEGF Regulates intraovarian vascular events, leading to increased oxygen and nu-
trient supply. Causes increased follicle growth and corpus luteum formation
and function

� �� Shweiki et al. (1993)
Wynendaele et al. (1999)
Duncan et al. (2008)
Italiano et al. (2008)

TIMP-4 Complexed with MMP-2 within the cytoplasm of platelets. Platelet activa-
tion causes dissociation of the complex and efflux out of the platelet. TIMP-
4 is widely expressed in the murine ovary and has been shown to regulate
morphogenesis and corpus luteum longevity during pregnancy

� �� Radomski et al. (2002)
Bu et al. (2006)

GM-CSF Present in low levels in platelets and shown to prevent eosinophil apoptosis.
High expression of a and b GM-CSF receptors in cumulus cells

� � Raidem et al. (2003)
Lee et al. (2008)
Peralta et al. (2013)

FGF Drives folliculogenesis and follicle maturation, Increases proliferation of the-
cal, granulosa and stromal cells. Expression of multiple FGF receptor iso-
forms in oocytes and granulosa cells

� �� Nilsson et al. (2001)
Pintucci et al. (2002)
Ben-Haroush et al. (2005)

S1P Abundant in follicular fluid aspirates. May increase folliculogenesis through
activation of HIPPO signalling, leading to increased CCN2 expression

� ��� Ono et al. (2013)
Cheng et al. (2015)
Urtz et al. (2015)
Pors et al. (2020)

BMP, bone morphogenic protein; CCL5/RANTES, chemokine (C-C motif) ligand 5; EGF, endothelial growth factor; IL-8, interleukin-8; PDGF, platelet-derived growth factor; PF4,
platelet factor 4; CXCL4, chemokine (C-X-C motif) ligand 4; SDF-1a, stromal-cell derived factor 1 alpha; CXCL12, chemokine (C-X-C motif) ligand 12; TGF-b1, transforming growth
factor beta 1; VEGF, vascular endothelial growth factor; TIMP-4, tissue inhibitor of matrix metalloprotease; TSP-1, thrombospondin-1; GM-CSF, granulocyte-monocyte colony stimulat-
ing factor; FGF, fibroblast growth factor; S1P, sphingosine-1-phosphate; CCN2, connective tissue growth factor.
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Although it is theorised that PRP supports the development of fol-

licles from OSCs, alternative explanations must be considered. In a
study by Hosseini et al. (2017), PRP was found to improve the growth
and viability in vitro of preantral follicles isolated from human ovaries
post-mortem, supporting the notion that PRP may aid ovarian rejuve-
nation through supporting development of existing primordial follicles.
However, this application relies on the patient having a supply of oo-
cyte-containing follicles, thus, rendering the approach unsuitable for
women who have experienced ovarian exhaustion. Panda et al. (2020)
expressed the need for better-controlled studies to confirm the con-
clusions drawn by Cakiroglu et al. (2020), which found that the num-
ber of remaining follicles within the ovaries of women with POI
determines their response to PRP infusion, and that women without
any antral follicles are unlikely to respond to PRP.

The prospective pilot study by Sfakianoudis et al. (2020b) deter-
mined that perimenopausal women and women deemed to be POR
benefitted the most from the treatment, more so than POI and meno-
pausal patients. In an article by Sfakianoudis et al. (2020a), they de-
scribe how novel techniques (such as PRP, ovarian stem cells
transplant and ovarian tissue transplant) may effectively treat ovarian
insufficiency by reactivating follicular growth through restoring the mi-
croenvironment of the ovary. Therefore, it should be acknowledged
that PRP infusion may only be an appropriate treatment for select
ovarian disorders.

PRP: a note of caution
A primary consideration of the effect of PRP in any aspect of regenera-
tive medicine is the ‘activation status’ of the platelet (Fig. 1). As previ-
ously discussed, platelets have the capacity to respond to agonists and
release a range of molecules, creating a ‘releasate’ (Piersma et al.,
2009; Parsons et al., 2018). Indeed, PRP from resting platelets differs
markedly to that containing activated platelets, and the mode of activa-
tion will influence the composition of the releasate. Despite this, there
is considerable variation in the activation status of platelets used in
studies of ovarian rejuvenation; some studies describe using calcium
(Sills et al., 2018; Hsu et al., 2020; Melo et al., 2020) or thrombin
(Hosseini et al., 2017), while others inject quiescent platelets or simply
do not state their activation status (Callejo et al., 2013; Farimani et al.,
2019; Pantos et al., 2019). The importance of reporting the activation
status and the methods therein, paired with the use of appropriate
controls, is critical, given reported effects of thrombin or calcium alone
in the regulation of ovarian function. For example, thrombin has been
shown to regulate progesterone synthesis in the preovulatory ovary
homogenates, with multiple cell types within the ovary readily express-
ing PAR1 and PAR4 receptors (Cheng et al., 2012) through which
thrombin elicits biological function directly. In addition, there is good
evidence of an interaction between calcium signalling and ovarian ste-
roidogenesis (reviewed in Kouba et al., 2019).

To date, it appears that efforts to investigate the role of platelet ac-
tivation in the context of ovarian rejuvenation remain limited. For ex-
ample, platelets possess CD40 and aIIbb3 on their surface in a resting
state (Inwald et al., 2003; Li et al., 2010). Thus, it is conceivable that
these adhesive receptors and ligands are sufficient to elicit folliculogen-
esis or to recruit immune cells to the ovary without the need for pla-
telets within the PRP to have become activated prior to injection. By

contrast, activation and subsequent degranulation may be the critical
function required for PRP to elicit an effect and quiescent PRP may be-
come activated through exposure to platelet-activating matrices within
the ovarian stroma. Differentiating the effects of stimulated versus
unstimulated PRP should be a focus of future investigations and may
help isolate the most effective agents that cause the reported regener-
ative effect in the ovary, paving the way for more defined
interventions.

The contents of platelet granules may not all be beneficial for re-
establishing female fertility among all disease settings. As a theoretical
example, thrombospondin-1 has been implicated in follicle develop-
ment (K~oks et al., 2010; Bender et al., 2019), yet it inhibits the proan-
giogenic action of VEGF (Greenaway et al., 2007) which may be
undesirable where perfusion of the ovaries is limited. In addition, in-
creased intraovarian VEGF and blood flow is thought to play a role in
the pathogenesis of PCOS (Chan et al., 2003; Carmina et al., 2005;
Peitsidis and Agrawal, 2010). Conversely, Anvari et al. (2019) recently
reported that PRP therapy partially re-established hormonal balance in
a rat model of PCOS. Here, PRP treatment increased the expression
of oestrogen receptors a and b and of superoxide dismutase and glu-
tathione peroxidase in ovarian homogenates. PRP-treated ovaries had
significantly more pre-antral and antral follicles up to 30 days after
treatment, suggesting that PRP may be a viable option for driving folli-
culogenesis in females with PCOS. In addition, platelets also release
significant quantities of IL-15 when activated (de Miguel-Gómez et al.,
2020). Increased IL-15 concentrations in follicular fluid have been nega-
tively correlated with pregnancy outcomes via IVF, indicating that this
cytokine may be detrimental to follicle maturation (Spanou et al.,
2018). Interestingly, it is highly expressed in immature follicles, and falls
during their maturation, which raises the potential importance of IL-15
in the activation of germline stem cells, as IL-15 is a potent regulator
of other stem cell types (Huntington et al., 2009; Gómez-Nicola et al.,
2011). This interplay and opposing effects of PRP constituents in differ-
ent contexts serve to illustrate the importance of detailed studies of
the mechanisms of how PRP might act on the ovary, and much addi-
tional work is required before any conclusions can safely be drawn.

Conclusions and future
prospects
Even though there are other biological derivatives, such as human um-
bilical cord plasma, which may provide additional benefits in the sphere
of ART (de Miguel-Gómez et al., 2020), the appeal of PRP lies in its
balance among therapeutic effect, cost effectiveness, ease of isolation
and autologous nature. However, with the increased interest of ovar-
ian PRP injection inconclusive efficacy and lack of understanding of
mechanism of action, fundamental research into the effect of this ther-
apy on the cellular level is required. Dysregulation of early processes
in oocyte maturation and subsequent embryo development can lead
to drastic changes in the growing foetus, possibly leading to increased
risk of disease in early years and onwards. Indeed, the long-term safety
of new treatments in ART must be robustly assessed (Harper et al.,
2012), especially given the context that there is still concern that ART
itself may increase the risk of birth defects (Luke et al., 2020). Perhaps
most of most relevance in the context of PRP, the precise
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.
physiological causes of premature ovarian failure or primary ovarian in-
sufficiency outside the natural ageing process remain poorly under-
stood, and further work to understand the role of putative OSCs is
required.

With ovarian PRP therapy in its infancy, understandably, there is
poor standardisation among research groups and clinics, however, this
must soon be addressed to form a consensus as to the efficacy of this
treatment. To assist this, we would propose that authors carrying out
research in this area commit to reporting of key basic information re-
garding PRP. At a minimum, we suggest that such studies should in-
clude platelet count, activation status, activation agent (if any), platelet
function testing, origin of PRP, volume infused, anticoagulant used, clin-
ical account of menstrual status based on AMH level, and a detailed
reporting of the participant’s fertility history.

Additionally, while there are encouraging data supporting the notion
that PRP treatment might have some future use in the ART setting, it
is paramount that we undertake robust and detailed basic studies to
understand mechanism of action and to try to identify unintended out-
comes, before moving into whole animal studies. These precursors
would be an important bedrock on which to carry out well-designed
clinical studies, allowing us to investigate this new technology with all
rigour currently available. There are, at the time of writing, 13 regis-
tered clinical trials investigating the effect of PRP on ovarian rejuvena-
tion either recruiting or underway. Strikingly, few of these trials
describe the inclusion of appropriate PRP controls. It is only from
well-controlled trials, built on detailed mechanistic understanding that
we can clarify the platelet-mediated effects of PRP therapy in ovarian
rejuvenation and folliculogenesis.
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