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A B S T R A C T

Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific
technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and
is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means
to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the
limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard
statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel
approach to estimate the precision of LoD.

1. Introduction

Arguably among the most critical performance parameters for a
diagnostic procedure are those related to the minimum amount of
target that can be detected and quantified [11]. The parameters
describing those properties are known as the limit of detection “LoD”
and the limit of quantification “LoQ”. Their definitions vary slightly
among regulatory bodies and standards organizations [1]. The Clinical
Laboratory Standards Institute (www.clsi.org), for example, defines
LoD as “the lowest amount of analyte (measurand) in a sample that can
be detected with (stated) probability, although perhaps not quantified
as an exact value” [2]. In many clinical laboratories and diagnostic
applications, LoD is used interchangeably to “sensitivity”, “analytical
sensitivity” and “detection limit.” This may, however, be confusing as
“sensitivity” is also used in other ways. For example, in some applica-
tions “sensitivity” refers to the slope of the calibration curve, which is
the definition used by the International Union of Pure and Applied
Chemistry (IUPAC). CLSI defines LoQ as “the lowest amount of

measurand in a sample that can be quantitatively determined with
{stated} acceptable precision and stated, acceptable accuracy, under
stated experimental conditions” [2]. An alternative LoQ based on
clinical sensitivity and specificity has been proposed for diagnostic
purposes [17].

Definitions by CLSI
LoD = the lowest amount of analyte (measurand) in a

sample that can be detected with (stated) probability,
although perhaps not quantified as an exact value.
LoQ = the lowest amount of measurand in a sample that can
be quantitatively determined with {stated} acceptable preci-
sion and stated, acceptable accuracy, under stated experi-
mental conditions

By far most measuring techniques generate a signal response that is
proportional to the amount of measurand present. For example,
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measured absorption is proportional to the concentration of the
measurand as predicted by the Beer-Lambert law. Linear measurements
typically generate a background signal that is observed in the absence
of measurand and must be subtracted from the measured values. This
background signal limits the sensitivity of the measurement and is used
to estimate LoD [3]. Working at 95% confidence, the limit of blank
“LoB” is:

LoB mean σ= + 1.645 ×blank blank (1)

where σ is the standard deviation, and

LoD LoB σ= + 1.645 × low concentration sample (2)

This is also the recommended estimates in the CLSI guideline EP17
[2]. The σ in Eqs. (1) and (2) refers to the true standard deviation, while
SD refers to estimated standard deviation from experiments. Replacing
σ for SD requires also replacing 1.645 for the corresponding t-value,
which depends on the degree of freedom and, hence, the number of
replicates performed).

The above equations assume response is linear and data are normal
distributed in linear scale. Small deviations from normal distribution
when estimating SD have been discussed [12] but in qPCR, not even the
response is linear. The measured Cq values are proportional to the log
base 2 (log2) of the concentration of the measurand (or the number of
target molecules present), which is a logarithmic response. This has
dramatic implications on the analysis and interpretation of the data [4].
For example, no Cq value is obtained when a negative sample is
measured, as the response never reaches the threshold line, and the
standard deviation (SD) cannot be calculated for any set that includes
negative samples. Hence, it is not possible to estimate LoD and LoQ by
the standard procedures above. A further complication is that estimat-
ing confidence intervals assumes normal distribution. While linear data
often are normally distributed in linear scale, qPCR data show normal
distribution in logarithmic scale, further disqualifying the conventional
approaches. To estimate LoD in qPCR one needs to revert to the
definition of LoD In this paper we present the procedure to experimen-
tally determine LoD based on sample replicates and also a novel method
to estimate the confidence of the LoD. We also present the procedure to
estimate LoQ of a qPCR system.

2. Materials and methods

The qPCR method used as an example to assess performance was
ValidPrime [5], which is a optimized probe-based assay targeting a
highly conserved, non-transcribed locus present in exactly one copy per
haploid human genome. The test material was human genomic DNA
(CAT# CHG50, TATAA Biocenter) calibrated against the National
Institute of standards and technology (NIST) Human DNA Quantitation
Standard (SRM 2372). A 2-fold dilution series was prepared covering
the range 1 to 2048 molecules per reaction volume. Each standard
sample was analyzed in 64 replicates, except for the most diluted
sample, which was analyzed in 128 replicates. Grubb's test [13] was
used to identify nine outliers that were removed, leaving 759 data
points for the analysis.

In the qPCR reaction, TATAA Probe GrandMaster Mix L-Rox was
used and the final concentration of the ValidPrime assay in the reaction
was 200 nM of a FAM-labeled probe and 400 nM of each primer. The
IntelliQube*1 (LGC Douglas Scientific) was used for all sample and
master mix dispensing, thermal cycling, and real-time fluorescence
detection, utilizing 1.6 μl reaction volumes. The 2-step qPCR protocol
included a 1 min enzyme activation step at 95 °C, followed by 50 cycles
of 10 s at 95 °C and 30 s at 60 °C. An auto-baselining method was used
when plotting the amplification curves. Cq values were calculated with

the IntelliQube software by manually setting a threshold line in the
region of exponential amplification across all the amplification plots.

Cq data from the IntelliQube were preprocessed and analyzed using
GenEx (MultiD analyses AB).

Coefficient of variation was calculated as:

exp − 1SD ln conc( ( ( )))2 (3)

assuming log-normal distribution of replicate concentrations [6]. This
follows from the fact that if the stochastic variable X has lognormal
distribution, then by definition ln(X) is normally distributed with, say,
mean μ and standard deviation σ. The distribution function of X is then
given by
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where Φ is the distribution function of the standardized normal
distribution. The probability density function of X is readily obtained
as F x′( ) from which the mean eμ σ+ /22 and variance e e( − 1)σ μ σ2 +2 2 of X
are straightforwardly obtained by integration. The coefficient of varia-
tion is defined as the ratio between the standard deviation and the

mean, i.e., the coefficient of variation of X becomes e − 1σ2 .
Cq values were measured at p different concentrations, ci, i= 1, …,

p, with n replicas at each concentration. For simplicity of presentation n
is kept constant. The data analysis below is straightforward to general-
ize to the case where there are different of number of replicas for
different concentrations. The resulting Cq values are arranged in a data
matrix Cq( )i j, i = 1, …, p j = 1, …, n and an indicator function
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where Co is a user specified cut-off value. Let zi I=∑ j
n

i j=1 , be the number of
detected values at concentration ci. The logistic regression model
assumes that the observed zi is binomially distributed, Bin n f( , )i , with

f
e

= 1
1 +i β β x− − i0 1 (6)

where xi denotes log2ci. The two unknown parameters β0 and β1 are
approximated by maximum likelihood (ML) estimation. The likelihood
function is
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where y z= ∑i
p

i1 =1 and y z x= ∑i
p

i i2 =1 and φ n e= ∑ ln (1 + )i
p β β x
=1

+ i0 1 .
Setting the derivatives of L with respect to β0 and β1 to zero gives the
system of equations for the ML estimate,

y

y

− ∑ = 0

− ∑ = 0
i
p n

e

i
p nx

e

1 =1 1 +

2 =1 1 +

β β xi
i

β β xi

− 0− 1

− 0− 1 (9)

This non-linear system of equations is solved by GenEx 6 [11], using
a quasi-Newton method. The ML solution will be denoted by β̂0 and β̂1.
The logistic regression curve is obtained by plotting

t̂ = 1
1 + e β β− ˆ − ˆ x0 1 (10)

versus x= log2c. The hat-notation indicates that t̂ is the ML estimate of
the exact t = 1

1 + e β β− 0− 1x . The observed values y1 and y2 can be
considered as samples from a stochastic variable (Y1,Y2) with distribu-
tion function ∼eβ0y1+β1y2−φ. The moments of (Y1,Y2) are obtained in
terms of partial derivatives of φ with respect to β0 and β1, by
differentiating the normalization condition

1 For research use only. The products of LGC Douglas Scientific are not for use in
diagnostic procedures.
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with respect to β0 and β1. C is here a normalization constant. The ML
estimate β̂0 and β̂1 and hence, the quantity of interest t̂ , can be
interpreted as samples from stochastic variables that depend on (Y1,
Y2) through the ML equations. The standard error for t̂ Is given by
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In this formula, and in the formulas below we use the convention
the limits of the summations are 0 and 1 for all indexes, and that the
expression is evaluated at the ML estimated parameters β̂0 and β̂1.

The standard 1–2α confidence interval t z σˆ ∓ ˆα , where zαis a
percentile of the normal distribution, approximates the exact confi-
dence interval with accuracy O n( )−1/2 as the sample size n grows. The
parametric bootstrap confidence intervals (Efron [7], Diciccio and
Efron [8]) improve on the standard intervals by taking into account
higher moments in the normal approximation. There are several
variants of bootstrap confidence intervals, but they all approximate
the exact confidence interval with accuracy O n( )−1 . GenEx implements
the ABCq confidence intervals described in Diciccio and Efron 1982.
ABC stands for Approximate Bootstrap Confidence interval, and the q
subscript indicates quadratic form. The formula for the ABCq con-
fidence interval is

t q σ t q σ[ˆ − ˆ, ˆ + ˆ]α α− + (13)
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The expression for qα− is similar but with zα is replaced by −zα. The
three parameters a, cq, and z0 are defined as follows. The acceleration,
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where the limits of summation are 0 to 1 for all indexes. The derivatives
are evaluated at the ML estimated values β̂0 and β̂1. The quadratic
coefficient
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And the bias correction

z Φ Φ Φ γ= (2 (a) (− ˆ))0
−1 (17)

where Φ is the distribution function of the standardized normal
distribution. The parameter γ̂ is defined by
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σ
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where the bias estimate is
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Efron [7,8] makes repeated use of the formula

Fig. 1. Standards dilution series. Top: 2-fold serial dilution of a calibrated human genomic DNA sample covering the range from 1 to 2048 target molecules on average per sample. Each
sample was analyzed in 64 replicates, except for the most diluted sample, which was analyzed in 128 replicates, using the ValidPrime qPCR assay. Bottom: Residual plot of the positive
reads.
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to rewrite parts of the expressions for a, cq, and b̂ as directional
derivatives. Approximating the directional derivative by numerical
differentiation is computationally efficient and avoids the possibly
lengthy expressions obtained by performing the differentiation exactly.

3. Results

Starting from a calibrated human genome sample (NIST SRM 2372),
a 2-fold dilution series of standard samples was prepared covering the
range 1–2048 molecules per reaction volume. Each standard sample
was analyzed in 64 replicates, except for the most diluted sample,
which was analyzed in 128 replicates. Grubb's test identified nine
outliers leaving 759 data points for analysis. Fig. 1 plots the measured
Cq values versus the expected amounts of molecules per sample (top).
The data are fitted to a straight line, which, however, is only to guide
the eye, as the low concentration samples are outside the linear range of
the qPCR standard curve. Fig. 1 also shows the measured Cq values in a
residual plot relative to the fitted straight line (bottom). The plots show
how the spread of replicates increases with decreasing amount of
target. This is expected due to sampling noise. As the expected number
of target copies decreases, the variation across replicates increases.
Although other factors also contribute to variation across replicates
[14], sampling noise, which can be modeled by the Poisson distribu-
tion, is expected to dominate at very low copy numbers [15,16]. In
Fig. 1 it is also seen that the low concentrated samples deviate from the
straight line by having somewhat lower Cq values than expected. This
bias is due to some of the replicate samples being negative (“non-
detect”) and not considered in the plots, resulting in an apparent lower
average Cq.

4. Limit of detection

LoD for qPCR methods can be estimated from analysis of replicate
standard curves [10]. From the definition of LoD follows that working
at 95% confidence, LoD is the measurand concentration that produces
at least 95% positive replicates. Under error free conditions, when only
sampling noise would contribute to replicate variation, LoD at 95%
confidence is 3 molecules [9]. For most real samples, LoD is also
affected by noise contributed to by sampling, extraction, reverse
transcription, and qPCR, and may be substantially higher. Fig. 2 plots
the fractions of positive replicates versus the number of target
molecules per sample for the ValidPrime/gDNA data. From visual

inspection, the LoD at 95% confidence is between 2 and 4 target
molecules. Fitting the data with the sigmoidal function:

y
e

= 1
1 +

,i α β c− − log ( )i (21)

allows for interpolation, which gives LoD = 2.5 target molecules. This
is even slightly below to the theoretical limit caused by sampling noise.
The precision of the estimate can be obtained by resampling of the data
(Fig. 2):

LoD with confidence interval( 95% ) = 2.0 ≤ 2.5 ≤ 3.7

The confidence interval encompasses the theoretical LoD of 3
molecules.

5. Limit of quantification

The LoQ can also be estimated from the replicate standard curves.
This is done by calculating the SD for the responses of the replicate
samples at the different concentrations. SD of the data can be calculated
in either log (Cq values) or linear scale (relative quantities) and does
not assume any particular distribution. In each case, SD reflects the
average difference of the measured values to the mean in the same
scale. In contrary to SD, calculation of the confidence interval assumes
normal distribution. For normally distributed data, 68% of the mea-
sured values are expected to be within the mean ± 1 SD, and 95%
within the mean ± 2 SD. SD is expected to increase with decreasing
target concentration due to sampling noise, which alone produces an SD
of 0.25 cycles when the average number of target molecules per
analyzed aliquot is 35 (Fig. 3). In practice, other factors such as losses
due to adsorption to surfaces, decreasing reaction yields at lower
concentrations, less efficient reactions, etc., contribute to the error.
Calculating SD of the qPCR data in logarithmic scale, i.e., on the Cq
values, has the advantage that data usually are normal distributed and
confidence intervals are readily calculated. However, for comparison
with other measurement techniques the SD should be converted into
linear scale and expressed in percentage of the mean, which is known as
the relative standard deviation or the coefficient of variation
(CV = 100 × SD/mean) which leads to the following expression for
the coefficient of variation:

CV E= (1 + ) * − 1SD Cq E
ln

( ( )) ln (1+ )2
(22)

where CVln is the coefficient of variation for log-normal distributed data
as expected for concentrations measured in replicates with qPCR,
having a qPCR efficiency: E, and standard deviation of replicate Cq-
values: SD(Cq).

Fig. 2. Limit of detection. Fractions of positive reads obtained with the ValidPrime assay when analyzing samples containing from 1 to 2048 target molecules on average per sample. The
measured fractions are fitted to a sigmoidal curve for the estimation of LoD (solid line). At 95% confidence LoD is 2.5 target molecules. Resampling of the data with recurrence (dashed
line) allows estimating the 95% confidence interval for the LoD = 2.0 ≤ 2.5 ≤ 3.7 (intersections of the horizontal line at 0.95 and the three sigmoidal curves).
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Fig. 4 shows the CV for the human gDNA samples assayed by
ValidPrime as a function of the expected number of target molecules in
the standard samples. CV increases with decreasing target concentra-
tion as expected due to increasing sampling noise and other factors. As
target concentration decreases some of the replicate samples starts to be
negative (“non-detect”). These concentrations are per definition below
the LoQ, and are indicated in red in Fig. 4. There is also a bias toward
lower values in the calculated SD, as the non-detect samples cannot be
considered.

There is no general guidance specifying acceptable threshold value

of LoQ. What may be reasonable varies from case to case and depends
on the complexity of the samples and the required precision in any
decisions being supported by the test. At TATAA Biocenter, unless we
have other guidance, we specify LoQ as the lowest concentration where
replicates show a CV ≤ 35% on back calculated concentrations. Using
the ValidPrime method to analyze human gDNA, we find that the
lowest amount of gDNA that produces replicates with a CV ≤ 35% is 16
molecules. Hence, LoQ of the ValidPrime method as applied here is 16
molecules.

Fig. 3. SD due to sampling ambiguity. Contribution to the standard deviation from sampling ambiguity modeled by the Poisson distribution. Left graph: distribution of target molecules
across aliquots from containers with different concentrations modeled by the Poisson distribution. Right graph: SD of Cq values of replicates assuming sampling error only that can be
modeled by the Poisson distribution. A container concentration of 35 target molecules on average per aliquot produces SD = 0.25 cycles.

Fig. 4. Limit of Quantification. Coefficient of variation (CV = 100 × SD/mean) of the back-calculated concentrations of the human genome replicate samples analyzed with the
ValidPrime assays. Horizontal red dashed line indicates CV = 35% and vertical green dashed line indicates the lowest concentration of samples with a CV below 35%. Red symbols
indicate presence of negative (“non-detect”) samples among the replicates. Those are ignored when calculating SD, resulting in a bias toward lower SD values.
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6. Discussion

The accuracy of LoD and LoQ estimates depends primarily on the
concentration increments between the standard samples, while the
precision depends primarily on the number of replicates. In fact, LoQ
estimates are restricted to those target concentrations/amounts that
were contained in the standard sample. In our example the LoQ is 16
molecules, or perhaps less as this satisfies the CV ≤ 35% criteria, but it
does not reach 8 molecules, which was the amount of target molecules
in the next diluted standard sample. We currently have no reliable
means to interpolate the CV versus target amount data to obtain an
estimate of LoQ that would be in between 8 and 16 molecules. The
number of replicates performed of each standard sample determines the
precision in the SD and CV estimates. If these are poor, because of low
number of replicates, the LoQ criteria can accidentally be met at a
different concentration leading to an erroneous estimate. Occasionally
CV rises to over the set threshold (35% in our case) at a certain target
amount, then drops to below this threshold at a lower target amount
and then rises again. Such fluctuations are due to imprecision in the
estimated CV's usually due to too low a number of replicates. In those
cases, LoQ should be taken as the lowest target amount higher than any
concentration with a CV exceeding the set threshold. In addition to the
criteria above, LoQ can never be lower than LoD. Should experiments
give such an estimate, LoQ should be reported equal to LoD.

In our ValidPrime/gDNA example, LoD is less than 4 target
molecules but does not reach 2, as the standard samples containing in
average 4 target molecules have a positive call rate above 95%, while
the standard samples containing in average 2 target molecules have a
positive call rate below 95%. By interpolating the measured call rates as
a function of the average number of target molecules, we obtain a more
precise estimate of LoD. For the ValidPrime/gDNA we estimate LoD by
interpolation to 2.5 molecules. This is close to the expected LoD at a
95% positive call rate of 3 molecules predicted by the Poisson
distribution describing sampling noise, suggesting that other contribu-
tions to noise for the ValidPrime/gDNA qPCR analysis are negligible.

If sufficient number of replicates at each standard's concentration is
available, the confidence interval of the LoD estimate can be obtained
by resampling of the data with recurrence. A fairly high number of
replicates, often at least 20, at each concentration are needed to get
convergence. The LoD confidence interval is asymmetric, with a smaller
range toward lower target concentrations. For the ValidPrime method
analyzing human gDNA, the LoD for 95% positive call rate estimated
with a 95% confidence range was: LoD = 2.0 ≤ 2.5 ≤ 3.7 molecules.

The concentration range covered by the standard samples has very
low impact on the estimated LoD and LoQ. For the LoQ estimate, only
the lowest target amount with a CV below the set threshold and the
highest target amount with a CV above the set threshold are used. The
initial rough LoD estimate is also based on only two samples: the sample
with the lowest target amount that produces positive reads at a rate
above the set criteria (typically 95%) and the sample with highest
target amount that produces positive reads at a rate below the set
criteria. A more precise estimate of LoD can be obtained by interpolat-
ing the measured positive rates taking into account more standard
samples. But even in this case only a small number of standard samples
is considered, as only those that produce fractional positive rates (i.e.,
above 0 and below 100%) contribute appreciably to the fitting.

Therefore, from a practical point of view and cost performance, it is
better to narrow the target concentration range of the standards to just
cover the expected LoD and LoQ and increase the number of replicates
to improve precision. In practice, LoD and LoQ are not known ahead of
the experiment. A pragmatic approach is then to obtain an initial rough
estimate of LoD and LoQ, perhaps as part of the regular standard curve
that is measured when establishing any new method to estimate the
PCR efficiency, repeatability and dynamic range, and then in a second
experiment narrow down the concentration range and increase the
number of replicates for more precise estimates of LoD and LoQ.
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