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Abstract: Nowadays, deep learning methods based on a virtual environment are widely applied to
research and technology development for autonomous vehicle’s smart sensors and devices. Learning
various driving environments in advance is important to handle unexpected situations that can exist
in the real world and to continue driving without accident. For training smart sensors and devices of
an autonomous vehicle well, a virtual simulator should create scenarios of various possible real-world
situations. To create reality-based scenarios, data on the real environment must be collected from
a real driving vehicle or a scenario analysis process conducted by experts. However, these two
approaches increase the period and the cost of scenario generation as more scenarios are created. This
paper proposes a scenario generation method based on deep learning to create scenarios automatically
for training autonomous vehicle smart sensors and devices. To generate various scenarios, the
proposed method extracts multiple events from a video which is taken on a real road by using
deep learning and generates the multiple event in a virtual simulator. First, Faster-region based
convolution neural network (Faster-RCNN) extracts bounding boxes of each object in a driving video.
Second, the high-level event bounding boxes are calculated. Third, long-term recurrent convolution
networks (LRCN) classify each type of extracted event. Finally, all multiple event classification
results are combined into one scenario. The generated scenarios can be used in an autonomous
driving simulator to teach multiple events that occur during real-world driving. To verify the
performance of the proposed scenario generation method, experiments using real driving video data
and a virtual simulator were conducted. The results for deep learning model show an accuracy of
95.6%; furthermore, multiple high-level events were extracted, and various scenarios were generated
in a virtual simulator for smart sensors and devices of an autonomous vehicle.
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1. Introduction

Recently, autonomous vehicles have been a big trend in the development of advanced countries
worldwide [1–3]. Especially, studies on the perception system of an autonomous vehicle using smart
sensors and devices are being active widely because perception is one of key element of autonomous
vehicles. Recently in the autonomous vehicle industry, smart sensors and devices of autonomous
vehicles have been trained via virtual self-driving simulators that apply the deep learning technique
to reduce development costs and time and secure safety [4–10]. The virtual autonomous driving
simulators provide color image (RGB), depth, Lidar, and radar data to train autonomous vehicle’s
smart devices and sensors [4,5]. To enable an autonomous vehicle to run in real environments, it is
critical to train a self-driving car for a variety of driving environments in advance. Furthermore, it is
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also essential to learn scenarios reflecting a wide range of situations that may occur in the real world.
As an example, when an autonomous vehicle runs on a road in an urban area, the car needs to be
trained for scenarios with several people walking on the streets. When an autonomous vehicle runs on
an expressway, the car must be trained for scenarios of diverse types of situations that can occur by
interaction among cars on the expressway.

Existing studies are based on the scenario generation approaches for autonomous vehicle generated
scenarios based on real driving data acquired from the real environment or by using self-driving
scenario generation modeling based on expert knowledge [11–16]. However, such approaches require
a high ratio of manual processing, which increases the development costs and time for the self-driving
simulator. Thus, it is beneficial to investigate the approach for generating the scenarios by using deep
learning video analysis for automatically generating a wide range of realistic driving scenarios through
the collection and analysis of real driving data without scenario generation modelling.

The deep learning approach for analyzing driving data is limited as it can only analyze the actions
of one object [17,18]. As an example, when two individuals are talking and walking, and extraction
is to be performed based on a single object, only two walking individuals can be extracted. Such an
approach cannot analyze advanced events, including multiple objects and interaction.

This paper proposes an approach to generate the training scenario for autonomous vehicle
smart sensors and devices including multiple events while considering multiple objects based on
the automatic analysis of a driving video by using two types of deep learning approaches. An event
comprises the list of objects included in one specific situation and the actions of each object.

The first step is to extract the areas of objects existing in a driving video input to Faster-region
based convolution neural network (Faster-RCNN) [19]. Faster-RCNN is real-time object detection
network. Next, the high-level event area is estimated while considering the extracted areas of objects.
Then, the events are analyzed using long-term recurrent convolution networks (LRCN) [20] based on
the high-level event areas extracted. LRCN classifies the video class by convolutional neural network
(CNN) and long short-term memory (LSTM). Finally, the analyzed events are integrated into one
scenario. The generated scenario is delivered to the virtual simulator for the learning of an autonomous
vehicle, and the relevant scenario is deployed in front of an autonomous vehicle.

This paper contributes to future research as follows. First, a scenario was successfully generated
via automatic analysis using deep learning for training and testing of autonomous vehicle’s smart
sensors and devices. Next, the approach enables the sophisticated analysis of events including
interactions among multiple objects as well as the analysis of only a single action by each object. Finally,
it is possible to generate higher-level scenarios including multiple events.

Section 2 in this paper describes the existing research on scenario generation for an autonomous
vehicle and the video analysis approach based on deep learning. Section 3 discusses the scenario
generation approach proposed in this paper, which extracts high-level events using deep learning-based
video analysis. Section 4 describes the experiments on the proposed approach and the results, and
Section 5 presents the conclusion and directions for further study.

2. Related Works

This section summarizes the existing studies on driving scenario generation approaches and deep
learning-based driving video analysis approaches. Then, the necessity for the approach proposed
herein is explained.

2.1. Driving Scenario Generation Approach

Several driving simulators has been investigated for development and verification of an
autonomous vehicle. The field of driving scenario generation for the operation of autonomous
vehicles has recently drawn substantial attention [11–16]. Research on driving scenario generation is
largely classified into model-based and data-based scenario generation.
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The model-based scenario generation approach defines driving elements, including traffic lane,
car, pedestrian, and accident events, in advance as well as scenarios depending on those elements.
In [11] the authors plan movements and generate scenarios by using the action tree of each car based
on the accident scenario defined in scripts, and the research in [12] predefines the accident scenario
between a car and a pedestrian in the intersection and generates the scenarios. In [13] the authors
generate the scenarios based on an analysis of real car accidents and survey data from ‘NMVCCS’
and in [14] the authors implement the ontology on the driving environment and generate scenarios
based on that ontology. For the model-based scenario generation approach above, a more complicated
scenario requires higher scenario modeling time and cost. Moreover, it is very difficult to modify or
supplement a scenario after it is generated using the approach above.

The data-based scenario generation approach generates a scenario only from real driving data.
The research presented in [15] generates the scenarios by using data recorded by experts after analyzing
information on a lane type, car, and pedestrian based on a driving video recorded for 30 h on a real
road. In [16] the authors acquire real driving data by using laser sensors and cameras and apply the
data to the virtual environment simulator. The scenario generation based on real driving data as
explained above enables an autonomous vehicle to learn practical scenarios but has disadvantages
related to the required time and cost of obtaining real driving data

For model-based and data-based driving scenario generation approaches as described above,
it is inevitable that the more diverse types of scenarios that are generated, the greater the required
time and cost. Accordingly, this paper attempts to address the disadvantages of existing studies by
developing an approach to automatically analyze real driving data and generate diverse types of
scenarios, including multiple events using analysis results.

2.2. Deep Learning-Based Driving Video Analysis Approach

The studies analyzing videos by using deep learning have been conducted actively [17,18], and in
particular, the dataset for training an autonomous vehicle has been continuously increasing [19,20].
Most studies analyzing deep learning-based videos extracted a specific vector from a series of video
frames by using a CNN and integrated the extracted specific vectors around the time axis. However,
most studies extracted each object and analyzed only the actions of that object. Furthermore, only one
event was analyzed per video. The research presented in [17] extracted RGB image-specific vectors
and optical flow vectors per frame by using CNN, entered that extracted specific vectors into CNN to
fuse two vectors, and classified it into one event class by using support vector machine (SVM). In [18]
the authors extracted specific vectors from RGM images and optical flow images per frame in the video
and segmented trajectory data by using CNN. Subsequently, it integrated and estimated three specific
vectors and classified the result as one event by SVM.

As described above, the existing studies on deep learning-based driving video analysis analyzed
the actions of only one object, rather than advanced events including interaction. They could analyze
only a single event per video. This paper proposes an approach to extract and analyze multiple events
that are more advanced.

3. Multi-Event-Based Scenario Generation Approach

This paper proposes an approach to generate scenarios for training autonomous vehicle’s smart
sensors and devices by extracting and analyzing multiple events from driving video using deep
learning methods. Figure 1 illustrates the scenario generation process based on the deep learning
video analysis approach proposed in this paper. The first step is to extract a high-level event area to
detect the objects existing in a video by using Faster-RCNN, which is optimal for detecting objects
with the first frame of the input. The objects whose bounding boxes overlap among detected objects
are extracted as one event area. Next, the scenario generation step analyzes the images extracted based
on the event area in the previous step by using LRCN, which is a type of deep learning-based video
classification model, and generates the scenarios for self-driving learning based on the analysis. The
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generated scenario is finally used as the input data for the self-driving simulator. In the proposed
approach, the events are presented as the list of objects and high-level event class included in the
relevant events, and scenarios are presented as the list of events. Figure 1 shows the entire process of
the proposed approach.

Figure 1. Proposed multi-event-based scenario generation approach.

3.1. High-Level Event Area Extraction Step

Figure 2 shows the process to extract more optimum event areas in the driving data. The process
comprises the object detection and event area integration in that sequence. For the object detection
task, the first image (frame) is received using the Faster-RCNN approach, and the areas of dynamic
objects such as a person, car, and animal, which can be the subject of an event, are extracted. The
Faster-RCNN includes Convolutional neural network (ConvNet), Region proposal network (RPN),
Region of Interest pooling, regression and classification layer. After extracting an event bounding box
based on a single object area, it is difficult to extract high-level events including interactions between
objects. The proposed approach enables the extraction of higher-level event areas by integrating
neighboring single object bounding boxes into one even bounding box.

Figure 2. Multiple high-level events extraction process.

Figure 3 illustrates the approach to integrate the object areas detected using Faster-RCNN into
the high-level event area. The first step sorts the boxes whose areas are overlapped among bounding
boxes of detected objects. Next, the top and left sides of an event bounding box are set to the minimum
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value among the bounding boxes of overlapped objects, and the right and bottom sides are set to
the maximum value among the bounding boxes of overlapped objects. Algorithm 1 is the algorithm
to integrate event areas. The overlapped bounding boxes of objects are integrated into one event
bounding box through Algorithm 1; subsequently, multiple event areas are extracted based on the
integration results.

Figure 3. High-level event area extraction process.

Algorithm 1. Event Area Integration Algorithm

E: An event includes the list of objects included in the event and the class of the event
O: Objects including persons, animals, or cars
Initialize E
GET O

For each i in O
IF E = [] THEN increment new e
For each j in E

IF Oi overlaps Ej THEN
IF Oi > Ej THEN

merge Oj into Ej
ELSE increment new e
ENDFOR

ENDFOR

3.2. Scenario Generation Step

The scenario generation process based on multiple event images extracted comprises the
LRCN-based event classification task and the scenario generation task depending on the classification
results. As shown in Figure 4, the deep learning model structure classifying events based on LRCN
comprises the combination of CNN extracting the features of the extracted images and LSTM learning
the sequential data. The specific feature vectors per frame are extracted via CNN after receiving
individual frames of each event image based on the extracted event areas. Next, the result values
acquired after entering the specific vectors per frame to LSTM in consecutive order, which are classified
into the event label via the Fully Connected Layer. As the event areas include only a part of the full
image, the specific vectors in the first frame of the original video on the full area as well as the feature
value of event area frame are entered into the last Fully Connected Layer to include the features of full
images, including weather and road type.

Multiple event images are classified by repeating the process above and stored as one scenario. A
scenario is the list of events, and each event includes the types of objects contained in the relevant event
and the high-level event class of the relevant event. A list of scenario elements is presented in Table 1.

After a scenario is generated in the structure described above, the relevant data is transferred
to the virtual simulator, as illustrated in Figure 5. The input scenarios execute the events in front of
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an autonomous vehicle depending on the object list and action contained in each event. The virtual
simulator operates the input scenario and then the autonomous vehicle learn the scenario by training
their virtual sensing device data such as RGB-D, Lidar, and Radar data.

Figure 4. Long-term recurrent convolution networks (LRCN)-based event classification model structure.

Table 1. List of scenario elements.

Elements Symbols Description

Scenario s = (e list) One scenario includes multiple events

Event e = (o list, event class) An event includes the list of objects included in
the event and the class of the event

Object o = object Objects including persons, animals, or cars

High-level event class c = event class Types of events occurring in the driving video

Figure 5. Execution of multiple events in a virtual simulator through the scenario input.



Sensors 2019, 19, 4456 7 of 14

4. Experiments and Analysis

This section describes the experiments and analysis of the scenario generation approach based
on the deep learning image analysis proposed herein to verify its performance. To this end, the
experimental environment is described and learning data is presented. The results of the algorithm
extracting multiple event areas are compared to those of the existing Faster-RCNN. Next, the image
analysis algorithm performance proposed herein is compared to that of the existing RCNN algorithm
and analyzed. Finally, the final extracted scenario was executed in the simulator, which was constructed
for the experiment, and the results are analyzed.

4.1. Experiment Environment and Training Data

The proposed method’s development environment was implemented on a computer with Intel
i5, Nvidia GTX 1070 GPU, and DDR 5 H/W. The scenario generation model utilizing the deep
learning-based video analysis was implemented in Keras (Backend-Tensorflow), which is a deep
learning library. The scenario generated using the proposed approach was finally applied to the virtual
simulator, which was made by us, based on Unity for autonomous vehicle’s smart sensors and devices
to train. Artificial intelligence objects such as people, animals, and cars exist in the virtual simulator
and act based on artificial intelligence according to the input scenario. Based on the input scenario,
human, animal, and vehicle agents are operated in front of an autonomous car. The autonomous
vehicle’s virtual sensing device is trained by using RGB, depth, Lidar, and Radar data. Figure 6 shows
the virtual simulator environment screenshot.

Figure 6. Virtual simulator environment for an autonomous vehicle to train.

Studies analyzing driving videos via deep learning have been actively conducted using public
driving datasets [21,22]. However, the public driving data have only single action labels. Accordingly,
the experiment in this paper collected videos, including events that occurred on roads or streets, and
labelled their ground truth. In total, 725 videos were collected and classified into 23 classes. Table 2
summarizes the event class types. The event classes have high-level event classes, including single
actions of cars, animals, and people and the interactions among them.

As shown in Table 3, nine object types were identified from the analysis on the objects included in
each event.
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Table 2. List of event types.

High-Level Event Class No. of Video Clips

human_push_car 36
human_motocyling 27

human_hugging 85
vehicle_changeLane 16
human_wave_hand 20
human_pet_animal 12

vehicle_turn 24
human_checkVictim 22

vehicle_stop 50
human_walk 53

vehicle_pass_by 70
human_crossroad 39

human_run 13
human_wait 81

human_getoff 15
human_check Car 5
human_use_phone 7

human_fight 10
human_phone_call 27

human_talk 12
human_smoking 53

human_trash_collecting 24
human_sit 24

23 725

Table 3. List of object types.

Object Types (Total Nine Types)

Person, car, bike, motorbike, bus, truck, bird, cat, dog

4.2. High-Level Event Area Extraction Results

This subsection analyzes the Faster-RCNN-based event image extraction results. Although only
the areas of each object are extracted, as shown in Figure 7, when extracting event areas only by
using the existing Faster-RCNN, it is verified that the high-level event areas including objects that are
correlated one another are extracted when the event area integration algorithm is applied as well, as
shown in Figure 8.

Figure 7. Faster-region based convolution neural network (RCNN) results.
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Figure 8. Faster-RCNN based event area integration algorithm results.

4.3. LRCN-Based Event Classification Result

To analyze the extracted event images, the image analysis model was implemented based on the
LRCN model combining CNN and LSTM. Next, an autonomous vehicle learned using the collected
data and the accuracy of event classification was evaluated. Cross-validation, one of the methods to
measure the effectiveness of classification performance in the field of computer vision recognition, was
adopted to verify the learning model in this study. Cross-validation is a representative method to
measure the accuracy by comparing the estimates with actual values when verification data is entered
into the model after learning. Table 4 presents the confusion matrix with estimates and actual values.

Table 4. Confusion of estimates and actual values.

Confusion Matrix
Actual Values

Positive Negative

Estimates
Positive True Positive

(TP)
False Positive

(FP)

Negative False Negative
(FN)

True Negative
(TN)

Accuracy indicates how close the measured values are to the true values. Equation (1) estimates
the accuracy based on the confusion matrix in Table 4.

Accuracy =
TP + TN

TP + FN + FP + FN
. (1)

We applied Inception-v3 [23] which is a pre-trained model of CNN to LRCN. The training data
was divided into 600 for training and 125 for testing. The input data size is 240 × 240 and the batch
sizes are 34 for 200 epochs and two for 600 epochs. Figure 9 shows the confusion matrix of the result.

The Table 5 presents the comparison results of LRCN and the proposed method. The proposed
approach’s classification accuracy exceeds 96.5%.

Table 5. Comparison results of classification models.

LRCN [19] LRCN + Full
Area

LRCN (Inception-v3) + Full Area
(Proposed Approach)

Classification Accuracy 78.2 80.5 95.6
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Figure 9. Confusion matrix of the LRCN result.

4.4. Scenario Generation and Implementation Results

Using the trained proposed model, we generated four scenarios as below. Tables 6–9 show the
input original video data which was taken in real world and the scenario generated by analyzing the
driving video using deep learning and the results of implementing that scenario in the simulator. The
implementation of this scenario verified that the objects detected from real driving data were analyzed
per event unit and saved to the scenario file, and relevant multiple events were generated through
artificial intelligence objects in the virtual simulator based on the scenario.

Table 6. Scenario Generation Result #1.

Input Data
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Table 6. Cont.

Output data (= scenario)

s1 = {e1(human_motocyling), e2(vehicle_changeLane)}

Final result in simulator

Table 7. Scenario Generation Result #2.

Input Data

Output data (= scenario)

s2 = {e1(vehicle_turn), e2(vehicle_stop)}

Final result in simulator
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Table 8. Scenario Generation Result #3.

Input Data

Output data (= scenario)

s3 = {e1(vehicle_stop), e2(human_motocyling e3(vehicle_stop)}

Final result in simulator

Table 9. Scenario Generation Result #4.

Input data

Output data (= scenario)

s4 = {e1(human_pet_animal), e2(vehicle_stop)}

Final result in simulator
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Table 9. Cont.

5. Conclusions

This paper proposed an approach to automatically analyze real driving data by using the deep
learning image analysis method without complicated scenario generation modeling and then generated
a scenario for smart sensor and devices of an autonomous vehicle such as camera, Lidar, or Radar
to train in virtual simulator, including multiple events based on the automatic analysis results. The
approach proposed in this paper includes multiple events by extracting them from one driving image
and enables high-level event analysis, including interactions among objects, not rather than analyzing
only a single action of an object.

The experiment achieved an accuracy of 95.6% by training the model using the dataset constructed
in this paper and evaluating the event analysis model classified into 23 classes. Accordingly, it was
verified that multiple high-level events could be acquired from a single video as compared to the
existing deep-learning algorithm. Furthermore, it was observed that multiple events extracted were
saved as one scenario and executed in a similar manner as the input driving data in the virtual
self-driving simulator.

Further studies must investigate extraction of dynamic events while tracking dynamically moving
objects by analyzing all consecutive frames of a video when extracting the event areas. Moreover,
further studies will attempt to determine the approach to enable analysis on a wide range of elements,
including the movement direction and speed of an object, individual actions, weather, and road
conditions included in the events as well as the event types.
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