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Imprinted genes are important in development and their allelic
expression is mediated by imprinting control regions (ICRs). On
their DNA-methylated allele, ICRs are marked by trimethylation
at H3 Lys 9 (H3K9me3) and H4 Lys 20 (H4K20me3), similar to
pericentric heterochromatin. Here, we investigate which histone
methyltransferases control this methylation of histone at ICRs.
We found that inactivation of SUV4-20H leads to the loss of
H4K20me3 and increased levels of its substrate, H4K20me1.
H4K20me1 is controlled by PR-SET7 and is detected on both
parental alleles. The disruption of SUV4-20H or PR-SET7 does not
affect methylation of DNA at ICRs but influences precipitation of
H3K9me3, which is suggestive of a trans-histone change. Unlike
at pericentric heterochromatin, however, H3K9me3 at ICRs does
not depend on SUV39H. Our data show not only new similarities
but also differences between ICRs and heterochromatin, both of
which show constitutive maintenance of methylation of DNA
in somatic cells.
Keywords: genomic imprinting; SUV4-20H; PR-SET7;
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INTRODUCTION
Genomic imprinting is an epigenetic phenomenon that leads to
the mono-allelic expression of genes, depending on the parental

origin of the allele. Almost one hundred imprinted genes have
been discovered, many of which are important in development
(Morison et al, 2005). Most imprinted genes are organized into
chromosomal domains, and allelic repression is controlled by
essential sequence elements called ICRs (imprinting control
regions; Delaval & Feil, 2004). ICRs are marked by methylation
of DNA on either their maternally or their paternally inherited
allele. This provides parental allele-specific function to the ICRs
and thereby mediates imprinted gene expression. A well-studied
imprinted domain is the insulin-like growth factor 2 (Igf2)-H19
locus on mouse chromosome 7, which is controlled by a
paternally methylated ICR, the H19 ICR (Thorvaldsen et al,
1998). Directly adjacent is the Kcnq1-imprinted domain, which is
controlled by a maternally methylated ICR, the KvDMR1 (Kvlqt1
differentially methylated region 1; Fitzpatrick et al, 2002).
Perturbation of differential methylation at these ICRs is involved
in growth-related diseases and also occurs in cancer. This raises
the important question of how the differential methylation at ICRs
is maintained throughout development, and whether chromatin
features are important in this process. Recently, it was found
that the methylated alleles of ICRs are consistently marked
by trimethylation at H3 Lys 9 (H3K9me3) and H4 Lys 20
(H4K20me3; Wu et al, 2006; Delaval et al, 2007; Regha et al,
2007; Wagschal et al, 2008), as has been reported previously for
pericentric heterochromatin (Lehnertz et al, 2003; Schotta et al,
2004). To unravel the role of this histone methylation, it is
important to determine which histone methyltransferases (HMTs)
are involved. This was determined by exploring candidate SET
domain proteins with small interfering RNA and gene targeting
approaches. Our findings highlight a sequential pathway that
implicates PR-SET7 in the bi-allelic induction of mono-methyla-
tion of H4K20 (H4K20me1) at ICRs, and recruitment of SUV4-20H
specifically to the DNA-methylated allele, to promote trimethyla-
tion of Lys 20. Our study identifies not only new similarities but
also differences between ICRs and pericentric heterochromatin.
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RESULTS AND DISCUSSION
SUV4-20H controls H4K20me3 at ICRs
First, we determined whether ICRs show differential H4K20me3 in
mouse embryonic fibroblasts (MEFs), the model system of this
study. As an example of an ICR with methylation of maternal
DNA, we studied the KvDMR1 and, as a model of a paternal ICR,
the H19 ICR (Fig 1A). Chromatin immunoprecipitation (ChIP) on
native chromatin was performed on primary MEFs derived from
embryos that were (C57BL/6�Mus spretus)F1 for distal chromo-
some 7 (Fig 1B). Using PCR amplification followed by allelic
discrimination using single strand conformation polymorphisms,
we determined the relative abundance of maternal and paternal
alleles in the antibody-bound and unbound fractions. Chromatin
on the DNA-methylated alleles of the ICRs was enriched in both
H4K20me3 and H3K9me3. The unmethylated allele, by contrast,
was associated with H3K4me2 and H3K9 acetylation (H3K9ac;
Fig 1B,C). The same differential modifications were detected in
immortalized MEFs (data not shown).

The HMTs that regulate H4K20me3 at pericentric heterochro-
matin, SUV4-20H1 and SUV4-20H2, are almost identical (Schotta
et al, 2004). To determine whether they could control H4K20me3

at ICRs, we performed native ChIP on MEFs lacking both
SUV4-20H1 and SUV4-20H2 (SUV4-20H dn cells). By using
real-time PCR amplification, we measured the precipitation levels
of H4K20me3 in SUV4-20H dn and wild-type MEFs at the
H19 and KvDMR1 ICRs, as well as at the gene-trap locus 2
(Gtl2; Ig-DMR; Lin et al, 2003), Snrpn (Shemer et al, 1997) and Igf2
receptor (Igf2r; Regha et al, 2007) ICRs. At all five ICRs and at the
major satellite DNA (at pericentric heterochromatin), we observed
a strong reduction in the levels of H4K20me3 in SUV4-20H
dn compared with wild-type MEFs. This result suggests that
SUV4-20H maintains H4K20me3 at ICRs as in pericentric
heterochromatin (Fig 2A).

Next, we explored whether SUV4-20H physically associates
with chromatin at the H19 and KvDMR1 ICRs by using ChIP on
crosslinked chromatin. We used an antiserum that binds to both
SUV4-20H1 and SUV4-20H2, and, as a control for the quality of
the chromatin preparations, we analysed H3K27me3 and H3K9ac
(Delaval et al, 2007). We quantified the precipitated fractions by
using real-time PCR amplification (Fig 2B) and corrected (in all
ChIP experiments of this study) the obtained values against
background precipitation with a non-immune IgG control
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antiserum. We found that SUV4-20H is recruited to the ICRs
in wild-type cells. Furthermore, we demonstrated that this
association occurred preferentially on the DNA-methylated allele
by digesting the precipitated chromatin DNA with McrBC, a
restriction endonuclease that is active only on methylated DNA.
We then quantified the non-digested fraction of the DNA by real-
time PCR amplification (Fig 2C). We also observed association of
SUV4-20H with major satellite, which is DNA-methylated.

PR-SET7 mediates mono-methylation of H4K20 at ICRs
By analogy with the HMTs that regulate H3K9me3 (Peters et al,
2003), SUV4-20H could use H4K20me1 as a substrate to generate

H4K20me3. Therefore, we explored whether H4K20me1 was also
allele-specifically enriched at ICRs. At the H19 ICR and KvDMR1,
we did not detect precipitation of H4K20me1 specifically on the
DNA-methylated allele. Rather, precipitation was from both
parental chromosomes and, at the KvDMR1, precipitation was
even stronger on the unmethylated allele (Fig 3A). We also tested
a third methylation state of H4K20, H4K20me2, which was
reported to be abundant in human cells (Yang et al, 2008), but we
did not observe any significant precipitation above the back-
ground at ICRs (data not shown).

Recently, we and others have reported that the HMT PR-SET7
(also known as SET8) controls the levels of H4K20me1 in human
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Fig 2 | Allelic SUV4-20H recruitment controls H4K20me3 at imprinting control regions. (A) Loss of H4K20me3 at ICRs and at the major satellite DNA

in immortalized SUV4-20H-deficient MEFs (SUV4-20H dn) and corresponding WT cells. Quantification of bound fractions was by qPCR amplification.

Error bars represent standard deviation between three or more different ChIP experiments on independent chromatin preparations. (B) qPCR

quantification of SUV4-20H, H3K27me3 and H3K9ac precipitation in SUV4-20H dn MEFs, and the corresponding WT MEFs at the H19 and KvDMR1

ICRs and at the major satellite DNA. (C) DNA was extracted from the WT chromatin precipitated with the antiserum against SUV4-20H, and

digested with (þ ) or without (�) McrBC (which cuts methylated DNA only), followed by qPCR amplification. ChIP, chromatin immunoprecipitation;

ICR, imprinting control region; MEF, mouse embryonic fibroblast; qPCR, quantitative PCR; WT, wild type.
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cells ( J^rgensen et al, 2007; Tardat et al, 2007). To determine
whether this HMT regulates H4K20me1 in the mouse as well, in
particular at ICRs, we inhibited its expression in MEFs using
an RNA-mediated interference strategy. A short hairpin RNA
(shRNA) designed against PR-SET7 (shPR-SET7) was stably
expressed in MEFs after retroviral infection and reduced the
expression of this protein by about 50% (Fig 3B). This partial
reduction in PR-SET7 did not affect cellular proliferation of the
MEFs (data not shown). The expression of a luciferase-specific
shRNA (shLuc), as a negative control, did not affect the expression
of PR-SET7. In both cases, b-actin protein levels were not affected.
The specificity of shPR-SET7 was verified by an shRNA-based
protein replacement approach, in which shRNA-resistant wild-
type PR-SET7 protein (SR) was expressed at physiological levels.
This established that shPR-SET7 specifically downregulated the
PR-SET7 protein (Fig 3B).

Next, we performed ChIP on the shPR-SET7 and shLuc cells.
In agreement with the approximate 50% reduction in PR-SET7, a
decrease of around 50% in H4K20me1 was observed at the H19
ICR and KvDMR1 in the knockdown cells, showing that PR-SET7
controls at least in part the mono-methylation of H4K20 (Fig 3C).
The reduction in H4K20me1 correlated with a similar decrease in
the levels of H4K20me3. This result suggests that H4K20me1 is
converted into H4K20me3. Moreover, we obtained similar levels
of precipitation of H3K4me2 and H3K9ac in shPR-SET7 and shLuc
cells, a result that emphasizes the reproducibility of ChIP between
cell lines (Fig 3C). Unexpectedly, however, in the shPR-SET7 cells,
we observed a reduced precipitation of H3K9me3. To verify
that the altered histone modifications were caused entirely by

downregulation of PR-SET7, we performed ChIP on PR-SET7
knockdown cells in which we had restored the physiological
levels of PR-SET7. In these cells (shPR-SET7þ PR-SET7SR), the
levels of H4K20me1 and H4K20me3 were again comparable to
those in the shLuc control MEFs (supplementary Fig 1 online).

Methylation of DNA in the absence of H4K20me3
Although H4K20me3 is generally not enriched at the promoters of
inactive genes (Mikkelsen et al, 2007), it is consistently associated
with the methylated DNA of ICRs and pericentric hetero-
chromatin. This raises the question of whether the maintenance
of methylation of DNA could be linked to that of H4K20me3. We
analysed methylation of DNA in SUV4-20H dn cells in
comparison with primary (data not shown) and immortalized
wild-type MEFs (Fig 4A), by purifying genomic DNA and digesting
it with McrBC. Then, we quantified the non-digested fraction of
the DNA by using real-time PCR amplification (Fig 4A), and
observed that in both wild-type and SUV4-20H cells half of the
chromosomes at the H19 and KvDMR1 ICRs were unmethylated,
as expected. Furthermore, at the major satellite DNA, we detected
complete digestion by McrBC, indicating that it had retained
full methylation of DNA in the SUV4-20H dn cells. For KvDMR1,
we performed bisulphite sequencing and found that on the
methylated allele all CpG dinucleotides had remained methylated
in the double knockout cells (Fig 4B). These results indicate
that H4K20me3 is dispensable for the maintenance of methylation
of DNA at the ICRs. Similarly, downregulation of PR-SET7,
which causes a reduction in H4K20me3, did not alter methylation
of DNA at the H19 and KvDMR1 ICRs (supplementary
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Fig 2A online). In addition, we downregulated PR-SET7 in the
SUV4-20H dn MEFs to perturb further the methylation of
H4K20 (supplementary Fig 3 online). Nevertheless, methylation
of DNA remained unaltered at the ICRs (Fig 4A). Taken together,
these data establish that H4K20me3 is dispensable for the
maintenance of methylation of DNA in cultured MEFs. It is
possible, however, that in combination with other histone
modifications, it contributes to the faithful maintenance of
methylation imprints in vivo.

Impact of methylation of H4K20 on chromatin
Next, we explored the impact of H4K20me3 depletion on other
histone modifications. In SUV4-20H dn cells, we detected
augmented precipitation of H4K20me1 at the H19 and KvDMR1
ICRs, and at the major satellite DNA (Fig 4C). The increase in
H4K20me1 occurred entirely on the DNA-methylated allele, the
allele to which SUV4-20H is recruited in wild-type cells (Fig 4D).
Previously, we reported that in human cells, a global decrease in
H4K20me1 is associated with a decrease in global levels of
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H4K20me3 on down-regulation of PR-SET7 (Tardat et al, 2007).
Thus, H4K20me1 is a main substrate of SUV4-20H to promote
H4K20me3, which explains the accumulation of H4K20me1 in
the SUV4-20H dn MEFs (Fig 4C; supplementary Fig 3 online).

Interestingly, in SUV4-20H dn MEFs, we observed increased
precipitation levels of H3K9me3 at ICRs, whereas H3K4me2
and H3K9ac remained unchanged. This higher precipitation of
H3K9me3 in unfixed chromatin occurred entirely on the DNA-
methylated alleles of the ICRs (Fig 4D). This was in agreement
with our finding that in wild-type cells, H3K9me3 is deposited on
the same parental allele as H4K20me3 (Fig 1B). At present, we are
unable to explain clearly this increased precipitation of H3K9me3.
One hypothesis would be that H4K20me1 is linked to H3K9me1
and that the latter is the substrate for conversion into H3K9me3. In
agreement with this, it was reported that in MEFs, H4K20me1 and
H3K9me1 are enriched at the same chromosomal regions and that
these mono-methylations are present on the same nucleosomes
(Sims et al, 2006). Conversely, the reduction in H4K20me3 could
have led to a conformational change in chromatin (Benetti et al,
2007), providing a higher accessibility of the H3K9me3 antibody
to its epitope. However, in the shPR-SET7 cells, a decrease in
H4K20me3 correlated with reduced H3K9me3 precipitation
(Fig 3), a finding that does not support this explanation. To
explore this question further, we studied another H3 modification,
H3K27me3, which is present on the same parental allele as
H3K9me3. We did not obtain evidence for altered H3K27me3
precipitation in the SUV4-20H dn MEFs, and the same was

observed for H3K4me2 and H3K9ac (Fig 4C). Nevertheless, we
did not observe a clear change in the precipitation of H3K9me3 in
formaldehyde crosslinked chromatin of SUV4-20H dn cells (data
not shown), indicating that whatever the nature of the alteration
on histone H3, this is shown best in native chromatin.

Whatever their precise inter-relationship, the observed altera-
tions in the methylation of H4K20 and H3K9 did not affect the
maintenance of differential DNA methylation at ICRs in cultured
fibroblasts (Fig 4; supplementary Fig 2A online). As expected,
we did not observe changes in allelic gene expression at the
Igf2-H19- and Kcnq1-imprinted domains in the shPR-SET7 cells
(supplementary Fig 2B online). The question remains as to
whether imprinted expression is also faithfully maintained when
PR-SET7 and SUV4-20H are disrupted in the in vivo context of the
developing embryo.

As PR-SET7 and SUV4-20H affected not only methylation of
H4K20 but also the precipitation of H3K9me3, we explored which
enzymes could regulate H3K9me3 at ICRs. As SUV39H1 and
SUV39H2 control H3K9me3 at pericentric heterochromatin, we
focused our attention on these HMTs (Peters et al, 2003). In
SUV39H1 and SUV39H2 double-knockout MEFs (SUV39H dn;
Lehnertz et al, 2003), we could not detect H3K9me3 and
H4K20me3 at the major satellite DNA, whereas H4K20me1 was
increased (Fig 5A), confirming our earlier work on hetero-
chromatin (Schotta et al, 2004). At the H19 and KvDMR1 ICRs,
by contrast, there was no reduction in H3K9me3 (or H4K20me1
or H4K20me3) in SUV39H dn MEFs (Fig 5A), as was recently
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At the H19 and KvDMR1 ICRs, there is no loss of H3K9me3 (or H4K20me3) in SUV39H dn cells. (B) Unaltered methylation of DNA at the H19

and KvDMR1 ICRs. Genomic DNA of SUV39H dn and WT MEFs was digested with McrBC, followed by qPCR. (C) ChIP on crosslinked

chromatin indicates precipitation of HP1g at ICRs. Digestion with McrBC shows that precipitation occurred mostly on the DNA-methylated allele.

ChIP, chromatin immunoprecipitation; HP1, heterochromatin protein 1; ICR, imprinting control region; MEF, mouse embryonic fibroblast;

qPCR, quantitative PCR; WT, wild type.
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reported for the Igf2r ICR (Regha et al, 2007). Methylation of DNA
was also unaltered at ICRs in the SUV39H dn cells (Fig 5B). These
data indicate that a yet unknown HMT controls H3K9me3 at ICRs.

What, then, dictates the allelic recruitment of SUV4-20H
specifically to the DNA-methylated allele of ICRs? As this is not
determined by H4K20me1, which is bi-allelic, recruitment could
be achieved through the methylated DNA sequences themselves.
Alternatively, it could occur through H3K9me3 and its recognition
by heterochromatin protein 1 (HP1) proteins (Schotta et al, 2004;
Benetti et al, 2007). In particular, we analysed Hp1g, an HP1
protein detected by immunofluorescence at both heterochromatic
and euchromatic regions (Dialynas et al, 2008). An antibody
against Hp1g gave significant precipitation at the H19 and
KvDMR1 ICRs, and at the Igf2r ICR, as reported previously by
Regha et al (2007). The precipitation of HP1g at ICRs seemed
preferential as it was detected mostly on the DNA-methylated
allele (Fig 5C). Another non-exclusive hypothesis for the recruitment
of SUV4-20H follows from the finding that deficiency in the pocket
protein(s) retinoblastoma protein (pRb) disrupts H4K20me3
(Gonzalo & Blasco, 2005). pRb family members interact with
many proteins that repress heterochromatin, and in particular with
SUV4-20H and DNMT1 (DNA methyltransferase 1; Nielsen et al,
2001; Gonzalo & Blasco, 2005; Isaac et al, 2006). Two recently
identified pRb-binding proteins (Rbbp1 and Rbbp1-like1) con-
tribute to the maintenance of both H4K20me3 and H3K9me3 at
the Snrpn ICR (Wu et al, 2006). Our study defines the first HMTs
involved in methylation of histone at ICRs, and shows mechanistic
similarities and differences between ICRs and heterochromatin
(summarized in supplementary Fig 4 online). It is important to
further unravel the regulation of methylation of histone at ICRs,
a prerequisite for understanding their perturbation in human
diseases and cancer. In future research, it would also be
interesting to explore the extent to which these specialized
sequence elements comprising (imperfect) tandem repeats
contribute to the unusual organization of chromatin at ICRs.

METHODS
Cell lines. SUV4-20H dn primary and immortalized MEFs were
derived from Suv4-20h1/h2 double-knockout embryos (Schotta
et al, 2008). SUV39H dn MEFs were derived from Suv39h1/h2
double-knockout embryos (Lehnertz et al, 2003). Both knockout
MEF lines, and the corresponding control wild-type MEFs, were on
a mixed genetic background of 129/SV and C57BL/6J origin.
ChIP on native and crosslinked chromatin. ChIP on native and
crosslinked chromatin was performed as described previously
(Umlauf et al, 2004). All ChIP experiments were performed
three or more times on independent chromatin preparations.
Details of the antibodies used are described in the supplementary
information online.
shRNA preparation and infection. Wild-type MEFs were derived
from fetuses that were (C57BL/6�M. spretus)F1 for mouse distal
chromosome 7 (SDP711 mice; Wagschal et al, 2008). A PR-SET7
shRNA was designed to target only PR-SET7 mRNA. A firefly
luciferase nonspecific control shRNA was also used (supplementary
Table 2 online). The shRNA sequences were introduced into the
retroviral vector RNA-mediated interference Ready pSiren (BD
BioSciences, Le Pont-de-Claix, France). Cells were infected with
the corresponding retroviral particles, selection with puromycin
(10 mg/ml) was started 48 h later, and the cells were collected

5 days after infection. PR-SET7 SR constructs were prepared by
introducing silent mutations into PR-Set7 cDNA (Tardat et al,
2007). For stable expression of PR-SET7 SR, the cells were infected
and selected with hygromycin B (100mg/ml). Western blotting was
as described previously (Tardat et al, 2007) and antisera are
described in the supplementary information online.
Methylation of DNA and gene expression. Genomic DNA was
isolated from cells, digested with McrBC and then analysed by
quantitative PCR amplification together with undigested DNA,
as described in Wagschal et al (2008). Bisulphite sequencing
was performed as described previously (Wagschal et al, 2008).
Oligonucleotides used are given in supplementary Table 1 online.
For allelic gene expression analysis, we applied single-nucleotide
and restriction fragment length polymorphisms (supplementary
Table 2 online).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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