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Abstract. The following paper considers pattern recognition-aided
optimization of complex and relevant problem related to optical net-
works. For that problem, we propose a four-step dedicated optimization
approach that makes use, among others, of a regression method. The
main focus of that study is put on the construction of efficient regression
model and its application for the initial optimization problem. We there-
fore perform extensive experiments using realistic network assumptions
and then draw conclusions regarding efficient approach configuration.
According to the results, the approach performs best using multi-layer
perceptron regressor, whose prediction ability was the highest among all
tested methods.

Keywords: Spectrally-spatially flexible optical networks · Routing ·
Space and spectrum optimization · Network optimization · Ensemble
learning · Pattern regression

1 Introduction

According to Cisco forecasts, the global consumer traffic in the Internet will
grow on average with annual compound growth rate (cagr) of 26% in years
2017–2022 [3]. The increase in the network traffic is a result of two main trends.
Firstly, the number of devices connected to the internet is growing due to the
increasing popularity of new services including Internet of Things (IoT ). The
second important trend influencing the traffic in the internet is popularity of
bandwidth demanding services such as video streaming (e.g., Netflix ) and cloud
computing. The Internet consists of many single networks connected together,
however, the backbone connecting these various networks are optical networks
based on fiber connections. Currently, the most popular technology in optical
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networks is wdm (Wavelength Division Multiplexing), which is expected to be
not efficient enough to support increasing traffic in the nearest future. In last few
years, a new concept for optical networks has been deployed, i.e., architecture of
Elastic Optical Networks (eons). However, in the perspective on the next decade
some new approaches must be developed to overcome the predicted “capacity
crunch” of the Internet.

One of the most promising proposals is Spectrally-Spatially Flexible Optical
Network (ss-fon) that combines Space Division Multiplexing (sdm) technol-
ogy [14], enabling parallel transmission of co-propagating spatial modes in suit-
ably designed optical fibers such as multi-core fibers (mcfs) [1], with flexible-grid
eons [4] that enable better utilization of the optical spectrum and distance-
adaptive transmissions [15]. In mcf-based ss-fons, a challenging issue is the
inter-core crosstalk (xt) effect that impairs the quality of transmission (QoT )
of optical signals and has a negative impact on overall network performance. In
more detail, mcfs are susceptible to signal degradation as a result of the xt
that happens between adjacent cores whenever optical signals are transmitted
in an overlapping spectrum segment. Addressing the xt constraints significantly
complicates the optimization of ss-fons [8].

Besides numerous advantages, new network technologies bring also challeng-
ing optimization problems, which require efficient solution methods. Since the
technologies and related problems are new, there are no benchmark solution
methods to be directly applied and hence many studies propose some dedicated
optimization approaches. However, due to the problems high complexity, their
performance still needs a lot of effort to be put [6,8]. We therefore observe a trend
to use artificial intelligence techniques (with the high emphasis on pattern recog-
nition tools) in the field of optimization of communication networks. According
to the literature surveys in this field [2,10,11,13], the researchers mostly focus
on discrete labelled supervised and unsupervised learning problems, such as traf-
fic classification. Regression methods, which are in the scope of that paper, are
mostly applied for traffic prediction and estimation of quality of transmission
(QoT ) parameters such as delay or bit error rate.

This paper extends our study initiated in [7]. We make use of pattern recog-
nition models to aid optimization of dynamic mcf-based ss-fons in order to
improve performance of the network in terms of minimizing bandwidth blocking
probability (bbp), or in other words to maximize the amount of traffic that can
be allocated in the network. In particular, an important topic in the considered
optimization problem is selection of a modulation format (mf) for a particu-
lar demand, due to the fact that each mf provides a different tradeoff between
required spectrum width and transmission distance. To solve that problem, we
define applicable distances for each mf (i.e., minimum and maximum length of
a routing path that is supported by each mf). To find values of these distances,
which provide best allocation results, we construct a regression model and then
combine it with Monte Carlo search. It is worth noting that this work does not
address dynamic problems in the context of changing the concept over time, as
is often the case with processing large sets, and assumes static distribution of
the concept [9].
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The main novelty and contribution of the following work is an in-depth anal-
ysis of the basic regression methods stabilized by the structure of the estimator
ensemble [16] and assessment of their usefulness in the task of predicting the
objective function for optimization purposes. In one of the previous works [7],
we confirmed the effectiveness of this type of solution using a regression algo-
rithm of the nearest weighted neighbors, focusing, however, much more on the
network aspect of the problem being analyzed. In the present work, the main
emphasis is on the construction of the prediction model. Its main purpose is:

– A proposal to interpret the optimization problem in the context of pattern
recognition tasks.

– Construction of the prediction model based on the introduced interpretation.
– Extensive experimental verification of the state-of-art regression algorithms

efficiency in a problems defined by datasets being the result of computer
simulations performed for the purposes of network optimization.

– Proposition and verification of the use of such models in optimization of the
problem.

The rest of the paper is organized as follows. In Sect. 2, we introduce studied
network optimization problem. In Sect. 3, we discuss out optimization approach
for that problem. Next, in Sect. 4 we evaluate efficiency of the proposed approach.
Eventually, Sect. 5 concludes the work.

2 Optimization of Spectrally-Spatially Flexible Optical
Network

The optimization problem is known in the literature as dynamic Routing, Space
and Spectrum Allocation (rssa) in ss-fons [5]. We are given with an ss-fon
topology realized using mcfs. The topology consists of nodes and physical link.
Each physical link comprises of a number of spatial cores. The spectrum width
available on each core is divided into arrow and same-sized segments called slices.

The network is in its operational state – we observe it in a particular time
perspective given by a number of iterations. In each iteration (i.e., a time point),
a set of demands arrives. Each demand is given by a source node, destination
node, duration (measured in the number of iterations) and bitrate (in Gbps).
To realize a demand, it is required to assign it with a light-path and reserve
its resources for the time of the demand duration. When a demand expires, its
resources are released. A light-path consists of a routing path (a set of links
connecting demand source and destination nodes) and a channel (a set of adja-
cent slices selected on one core) allocated on the path links. The channel width
(number of slices) required for a particular demand on a particular routing path
depends on the demand bitrate, path length (in kilometres) and selected modula-
tion format. Each incoming demand has to be realized unless there is not enough
free resources when it arrives. In such a case, a demand is rejected. Please note
that the selected light-paths in i -th iteration affect network state and alloca-
tion possibilities in the next iterations. The objective function is defined here
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as bandwidth blocking probability (bbp) calculated as a summed bitrate of all
rejected demands divided by the summed bitrate of all offered demands. Since
we aim to support as much traffic as it is possible, the objective criterion should
be minimized [5,8].

The light-paths’ allocation process has to satisfy three basic rssa constraints.
First, each channel has to consists of adjacent slices. Second, the same channel
(i.e., the same slices and the same core) has to be allocated on each link included
in a light-path. Third, in each time point each slice on a particular physical link
and a particular core can be used by at most one demand [8].

There are four modulation formats available for transmissions—8-qam,
16-qam, qpsk and bpsk. Each format is described by its spectral efficiency,
which determines number of slices required to realize a particular bitrate using
that modulation. However, each modulation format is also characterized by the
maximum transmission distance (mtd) which provides acceptable value of opti-
cal signal to noise ratio (osnr) at the receiver side. More spectrally-efficient
formats consume less spectrum, however, at the cost of shorter mtds. More-
over, more spectrally-efficient formats are also vulnerable to xt effects which
can additionally degrade QoT and lead to demands’ rejection [7,8]. Therefore,
the selection of the modulation format for each demand is a compromise between
spectrum efficiency and QoT.

To answer that problem, we use the procedure introduced in [7] to select
a modulation format for a particular demand and routing path [7]. Let m =
1, 2, 3, 4 denote modulation formats ordered in increasing mtds (and in decreas-
ing spectral efficiency at the same time). It means that m = 1 denotes 8-qam
and m = 4 denotes bpsk. Let MTD = [mtd1,mtd2,mtd3,mtd4] be a vector of
mtds for modulations 8-qam, 16-qam, qpsk, bpsk respectively. Moreover, let
ATD = [atd1, atd2, atd3, atd4] (where atdi <= mtdi, i = 1, 2, 3, 4) be the vector
of applicable transmission distances. For a particular demand and a routing path
we select most spectrally-efficient modulation format i for which atdi is grater of
equal to the selected path length and the xt effect is on an acceptable level. For
each candidate modulation format, we asses the xt level based on the adjacent
resources’ (i.e., slices and cores) availability using procedure proposed in [7]. It
is important to note that we do not indicate atd4 (for bpsk) since we assume
that this modulation is able to support transmission on all candidate routing
paths regardless of their length. Please also note that when xt level is too high
for all modulation formats, the demand is rejected regardless of the light-paths’
availability.

3 Pattern Recognition Model to Aid Optimization
of SS-FONs

In Sect. 2 we have studied rssa problem and emphasised the importance of effi-
cient modulation selection task. For that task we have proposed solution method
whose efficiency strongly depends on the applied atd vector. Therefore, we aim
to find atd∗ vector that provides best results. The vector elements have to be
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positive and have upper bounds given by vector mtd. Moreover, the follow-
ing condition have to be satisfied: atdi < atdi+1, i = 1, 2. Since solving rssa
instances is a time consuming process, it is impossible to evaluate all possible
atd vectors in a reasonable time. We therefore make use of regression methods
and propose a scheme to find atd∗ depicted in Fig. 1.

Fig. 1. Optimization procedure for dynamic ss-fon.

A representative set of 1000 different atd vectors is generated. Then, for each
of them we simulate allocation of demands in ss-fon (i.e., we solve dynamic
rssa). For the purpose of demands allocation (i.e., selection of light-paths), we
use a dedicated algorithm proposed in [7]. For each considered atd vector we
save obtained bbp. Based on that data, we construct a regression model, which
predicts bbp based on an atd vector. Having that model, we use Monte Carlo
method to find atd∗ vector, which is recommended for further experiments.

3.1 Solving RSSA

To solve an rssa instance for a particular atd vector, we use heuristic algorithm
proposed in [7]. We work under the assumption that there are 30 candidate
routing paths for each traffic demand (generated using Dijkstra algorithm). Since
the paths are generated in advance and their lengths are known, we can use
an atd vector and preselect for these paths modulation formats based on the
procedure discussed in Sect. 2. Therefore, rssa is reduced to the selection of one
of the candidate routing paths and a communication channel with respect to the
resource availability and assessed xt levels.

3.2 Construction and Validation of the Model

From the perspective of pattern recognition methods, the abstraction of the
problem is not the key element of processing. The main focus here is the rep-
resentation available to construct a proper decision model. For the purposes of
considerations, we assume that both input parameters and the objective function
take only quantitative and not qualitative values, so we may use probabilistic
pattern recognition models to process them. If we interpret the optimization task
as searching for the extreme function of many input parameters, each simulation
performed for their combination may also be described as a label for the training
set of supervised learning model.

In this case, the set of parameters considered in a single simulation becomes
a vector of object features (xn), and the value of the objective function acquired
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around it may be interpreted as a continuous object label (yn). Repeated sim-
ulation for randomly generated parameters allows to generate a data set (X)
supplemented with a label vector (y). A supervised machine learning algorithm
can therefore gain, based on such a set, a generalization abilities that allows
for precise estimation of the simulation result based on its earlier runs on the
random input values.

A typical pattern recognition experiment is based on the appropriate division
of the dataset into training and testing sets, in a way that guarantees their sepa-
rability (most often using cross-validation), avoiding the problem of data peeking
and a sufficient number of repetitions of the validation process to allow proper
statistical testing of mutual model dependencies hypotheses. For the needs of the
proposal contained in this paper, the usual 5-fold cross validation was adopted,
which calculates the value of the r2 metric for each loop of the experiment.

3.3 Finding ATD∗

Having constructed regression model, we are able to predict bbp value for a sam-
ple atd vector. Please note that the time required for a single prediction is sig-
nificantly shorter that the time required to simulate a dynamic rssa. The last
step of our optimization procedure is to find atd∗—vector providing lowest esti-
mated bbp values. To this end, we use Monte Carlo method with a number of
guesses provided by the user.

4 Experimental Evaluation

4.1 Experiments Set-Up

The rssa problem was solved for two network topologies—dt12 (12 nodes, 36
links) and Euro28 (28 nodes, 82 links). They model Deutsche Telecom (German
national network) and European network, respectively. Each network physical
link comprised of 7 cores wherein each of the cores offers 320 frequency slices of
12.5 GHz width. We use the same network physical assumptions and xt levels
and assessments as in [7]. Traffic demands have randomly generated end nodes
and birates uniformly distributed between 50 Gbps and 1 Tbps, with granularity
of 50 Gbps. Their arrival follow Poisson process with an average arrival rate λ
demands per time unit. The demand duration is generated according to a neg-
ative exponential distribution with an average of 1/μ. The traffic load offered
is λ/μ normalized traffic units (ntus). For each testing scenario, we simulate
arrival of 106 demands. Four modulations are available (8-qam, 16-qam, qpsk,
bpsk) wherein we use the same modulation parameters as in [7].

For each topology we have generated 9 different datasets, each consists of
1000 samples of atd vector and corresponding bbp. The datasets differ with the
xt coefficient (μ = 1 · 10−9 indicated as “xt1”, μ = 2 · 10−9 indicated as “xt2”,
for more details we refer to [7]) and network links scaling factor (the multiplier
used to scale lengths of links in order to evaluate if different lengths of routing
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paths influence performance of the proposed approach). For dt12 we use follow-
ing scaling factors: 0.4, 0.6, 0.8, . . . , 2.0. For Euro28 the values are as follows:
0.104, 0.156, 0.208, 0.260, 0.312, 0.364, 0.416, 0.468, 0.520. We indicate them as
“Sx.xxx” where x.xxx refers to the scaling factor value. Using these datasets we
can evaluate whether xt coefficient (i.e., level of the vulnerability to xt effects)
and/or average link length influence optimization approach performance.

The experimental environment for the construction of predictive models,
including the implementation of the proposed processing method, was imple-
mented in Python, following the guidelines of the state-of-art programming inter-
face of the scikit-learn library [12]. Statistical dependency assessment metrics
for paired tests were calculated according to the Wilcoxon test, according to the
implementation contained in scipy module. Each of the individual experiments
was evaluated by r2 score – a typical quality assessment metric for regression
problems. The full source code, supplemented with employed datasets is publicly
available in a git repository1.

Five simple recognition models were selected as the base experimental
estimators:

– knr—k-Nearest Neighbors regressor with five neighbors, leaf size of 30 and
euclidean metric approximated by Minkowski distance,

– dknr—knr regressor weighted by distance from closest patterns,
– mlp—a Multilayer Perceptron with one hidden layer of one hundred neurons,

with the ReLU activation function and adam optimizer,
– dtr—cart tree with mse split criterion,
– lin—Linear Regression algorithm.

5 Experimental Evaluation

In this section we evaluate performance of the proposed optimization approach.
To this end, we conduct three experiments. Experiment 1 focuses on the num-
ber of patterns required to construct a reliable prediction model. Experiment
2 assesses the statistical dependence of built models. Eventually, experiment 3
verifies efficiency of the proposed approach as a function of number of guesses
in the Monte Carlo search.

5.1 Experiment 1

The first experiment carried out as part of the approach evaluation is designed
to verify how many patterns – and thus how many repetitions of simulations
– must be passed to individual regression algorithms to allow the construction
of a reliable prediction model. The tests were carried out on all five considered
regressors in two stages. First, the range from 10 to 100 patterns was analyzed,
and in the second, from 100 to 1000 patterns per processing. It is important to

1 https://github.com/w4k2/regression-aided-optimization.

https://github.com/w4k2/regression-aided-optimization
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Fig. 2. Dependency between number of training objects and quality of predictions of
analyzed regression models according to r2 metric for dt12 topology.

Fig. 3. Dependency between number of training objects and quality of predictions of
analyzed regression models according to r2 metric for Euro28 topology.

note that due to the chosen approach to cross-validation, in each case the model
is built on 80% of available objects.

The analysis was carried out independently on all available data sets, and
due to the non-deterministic nature of sampling of available patterns, its results
were additionally stabilized by repeating a choice of the objects subset five times.

In order to allow proper observations, the results were averaged for both
topologies. Plots for the range from 100 to 1000 patterns were additionally sup-
plemented by marking ranges of standard deviation of r2 metric acquired within
the topology and presented in the range from the .8 value.

The results achieved for averaging individual topologies are presented in
Figs. 2 and 3. For dt12 topology, mlp and dtr algorithms are competitively
the best models, both in terms of the dynamics of the relationship between the
number of patterns and the overall regression quality. The Linear Regression
clearly stands out from the rate. A clear observation is also the saturation of the
models, understood by approaching the maximum predictive ability, as soon as
around 100 patterns in the data set. The best algorithms already achieve qual-
ity within .8, and with 600 patterns they stabilize around .95. The relationship
between each of the recognition algorithms and the number of patterns takes the
form of a logarithmic curve in which, after fast initial growth, each subsequent
object gives less and less potential for improving the quality of prediction. This
suggests that it is not necessary to carry out further simulations to extend the
training set, because it will not significantly affect the predictive quality of the
developed model.
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Very similar observations may be made for Euro28 topology, however, noting
that it seems to be a simpler problem, allowing faster achievement of the max-
imum model predictive capacity. It is also worth noting here the fact that the
standard deviation of results obtained by mlp is smaller, which may be equated
with the potentially greater stability of the model achieved by such a solution.

5.2 Experiment 2

The second experiment extends the research contained in Experiment 1 by assess-
ing the statistical dependence of models built on a full datasets consisting of a thou-
sand samples for each case.The results achieved are summarized inTables 1a and b.

Table 1. Mean r2 scores achived by partricular regression algorithms for all cases of
both analyzed topologies.

(a) dt12 topology.

dataset knr dknr mlp dtr lin

XT1-S0.4 0.621 0.631 0.725 0.789 0.000

5 1, 5 1, 2, 5 all —

XT1-S0.6 0.902 0.928 0.927 0.928 0.585

5 1, 5 1, 5 5 —

XT1-S0.8 0.934 0.946 0.967 0.964 0.516

5 1, 5 1, 2, 5 1, 2, 5 —

XT1-S1.0 0.928 0.941 0.959 0.962 0.654

5 1, 5 1, 5 1, 2, 5 —

XT1-S1.2 0.833 0.852 0.891 0.915 0.582

5 1, 5 1, 2, 5 all —

XT1-S1.4 0.883 0.903 0.962 0.954 0.479

5 1, 5 1, 2, 5 1, 5 —

XT1-S1.6 0.896 0.912 0.976 0.975 0.481

5 1, 5 1, 2, 5 1, 2, 5 —

XT1-S1.8 0.961 0.968 0.987 0.988 0.623

5 1, 5 1, 2, 5 1, 2, 5 —

XT1-S2.0 0.964 0.969 0.989 0.992 0.725

5 1, 5 1, 2, 5 1, 2, 5 —

XT2-S0.4 0.966 0.969 0.954 0.987 0.776

3, 5 1, 3, 5 5 all —

XT2-S0.6 0.952 0.958 0.963 0.978 0.681

5 1, 5 1, 5 all —

XT2-S0.8 0.965 0.966 0.970 0.968 0.752

5 1, 5 5 5 —

XT2-S1.0 0.951 0.953 0.953 0.944 0.857

4, 5 1, 4, 5 4, 5 5 —

XT2-S1.2 0.888 0.901 0.908 0.907 0.744

5 1, 5 5 5 —

XT2-S1.4 0.879 0.897 0.965 0.941 0.500

5 1, 5 all 1, 2, 5 —

XT2-S1.6 0.933 0.945 0.983 0.971 0.539

5 1, 5 all 1, 2, 5 —

XT2-S1.8 0.967 0.971 0.989 0.980 0.700

5 1, 5 all 1, 2, 5 —

XT2-S2.0 0.976 0.979 0.989 0.984 0.809

5 1, 5 all 1, 2, 5 —

(b) Euro28 topology.

dataset knr dknr mlp dtr lin

XT1-S0.104 0.971 0.974 0.977 0.967 0.875

5 1, 5 1, 5 5 —

XT1-S0.156 0.966 0.972 0.990 0.991 0.746

5 1, 5 1, 2, 5 all —

XT1-S0.208 0.969 0.970 0.969 0.986 0.751

5 5 5 all —

XT1-S0.260 0.852 0.858 0.889 0.830 0.534

4, 5 1, 4, 5 all 5 —

XT1-S0.312 0.960 0.963 0.971 0.963 0.752

5 5 5 5 —

XT1-S0.364 0.957 0.962 0.967 0.951 0.861

5 1, 4, 5 1, 4, 5 5 —

XT1-S0.416 0.907 0.918 0.970 0.945 0.677

5 1, 5 all 1, 2, 5 —

XT1-S0.468 0.933 0.942 0.983 0.971 0.607

5 1, 5 all 1, 2, 5 —

XT1-S0.520 0.960 0.965 0.988 0.986 0.644

5 1, 5 1, 2, 5 1, 2, 5 —

XT2-S0.104 0.956 0.959 0.972 0.947 0.810

5 1, 5 all 5 —

XT2-S0.156 0.975 0.978 0.993 0.992 0.777

5 1, 5 all 1, 2, 5 —

XT2-S0.208 0.950 0.951 0.956 0.959 0.893

5 5 5 5 —

XT2-S0.260 0.952 0.958 0.965 0.964 0.696

5 1, 5 1, 5 5 —

XT2-S0.312 0.957 0.962 0.978 0.963 0.670

5 1, 5 1, 2, 5 5 —

XT2-S0.364 0.911 0.921 0.951 0.911 0.698

5 1, 5 all 5 —

XT2-S0.616 0.897 0.911 0.972 0.961 0.483

5 1, 5 1, 2, 5 1, 2, 5 —

XT2-S0.468 0.938 0.949 0.986 0.979 0.551

5 1, 5 all 1, 2, 5 —

XT2-S0.520 0.955 0.962 0.990 0.989 0.660

5 1, 5 1, 2, 5 1, 2, 5 —
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As may be seen, for the dt12 topology, the lin algorithm clearly deviates neg-
atively from the other methods, in absolutely every case being a worse solution
than any of the others, which leads to the conclusion that we should completely
reject it from considering as a base for a stable recognition model. Algorithms
based on neighborhood (knr and dknr) are in the middle of the rate, in most
cases statistically giving way to mlp and dtr, which would also suggest depart-
ing from them in the construction of the final model. The statistically best
solutions, almost equally, in this case are mlp and dtr.

For Euro28 topology, the results are similar when it comes to lin, knr and
dknr approaches. A significant difference, however, may be seen for the achieve-
ments of dtr, which in one case turns out to be the worst in the rate, and in
many is significantly worse than mlp. These observations suggest that in the final
model for the purposes of optimization lean towards the application of neural
networks.

What is important, the highest quality prediction does not exactly mean the
best optimization. It is one of the very important factors, but not the only one.
It is also necessary to be aware of the shape of the decision function. For this
purpose, the research was supplemented with visualizations contained in Fig. 4.

Algorithms based on neighborhood (knn, dknn) and decision trees (dtr)
are characterized by a discrete decision boundary, which in the case of visu-
alization resembles a picture with a low level of quantization. In the case of
an ensemble model, stabilized by cross-validation, actions are taken to reduce
this property in order to develop as continuous a border as possible. As may
be seen in the illustrations, compensation occurs, although in the case of knn
and dknn leads to some disturbances in the decision boundary (interpreted as
thresholding the predicted label value), and for the dtr case, despite the gen-
eral correctness of the performed decisions, it generates image artifacts. Such a
model may still retain high predictive ability, but it has too much tendency to
overfit and leads to insufficient continuity of the optimized function to perform
effective optimization.

Clear decision boundaries are implemented by both the lin and mlp
approaches. However, it is necessary to reject lin from processing due to the
linear nature of the prediction, which (i) in each optimization will lead to the
selection of the extreme value of the analyzed range and (ii) is not compatible
with the distribution of the explained variable and must have the largest error
in each of the optimas.

Summing up the observations of Experiments 1 and 2, the mlp algorithm
was chosen as the base model for the optimization task. It is characterized by
(i) statistically best predictive ability among the methods analyzed and (ii) the
clearest decision function from the perspective of the optimization task.
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Fig. 4. Exemplary subspace visualization of decision function modeled by different
regression algorithms supplemented by scatter plot of original objects inside subspace.

5.3 Experiment 3

The last experiment focuses on the finding of best atd vector based on the
constructed regression model. To this end, we use Monte Carlo method with
different number of guesses. Tables 2 and 3 present the obtained results as a
function of number of guesses, which changes from 101 up to 109. The results
quality increases with the number of guesses up to some threshold value. Then,
the results do not change at all or change only a little bit. According to the
presented values, Monte Carlo method applied with 103 guesses provides satis-
factory results. We therefore recommend that value for further experiments.
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Table 2. Results of Experiment 3 for dt12 (miny-r is minimum observed bbp (in the
dataset), miny-e is minimum estimated bbp, y-mc(g) is bbp estimation for atd found
using regression model and Monte Carlo with g guesses.

dataset min y-r min y-e y-mc(g=...) r2

10 100 1 k 10 k 100 k 1 m

XT1-S0.4 0.0062 0.0075 0.0085 0.0076 0.0075 0.0074 0.0074 0.0074 0.731

XT1-S0.6 0.0001 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.933

XT1-S0.8 0.0000 0.0001 0.0001 −0.0000 −0.0002 −0.0002 −0.0002 −0.0002 0.971

XT1-S1.0 0.0011 0.0010 0.0024 0.0012 0.0008 0.0008 0.0007 0.0007 0.965

XT1-S1.2 0.0030 0.0039 0.0042 0.0038 0.0035 0.0034 0.0034 0.0034 0.899

XT1-S1.4 0.0042 0.0050 0.0053 0.0050 0.0048 0.0047 0.0047 0.0047 0.966

XT1-S1.6 0.0024 0.0026 0.0036 0.0025 0.0024 0.0024 0.0024 0.0024 0.976

XT1-S1.8 0.0034 0.0044 0.0046 0.0029 0.0027 0.0027 0.0026 0.0026 0.987

XT1-S2.0 0.0035 0.0047 0.0049 0.0040 0.0033 0.0032 0.0032 0.0032 0.989

XT2-S0.4 0.0000 −0.0002 −0.0000 −0.0002 −0.0003 −0.0003 −0.0003 −0.0004 0.951

XT2-S0.6 0.0000 −0.0001 −0.0002 −0.0003 −0.0003 −0.0004 −0.0004 −0.0004 0.963

XT2-S0.8 0.0006 0.0009 0.0010 0.0009 0.0008 0.0008 0.0008 0.0008 0.971

XT2-S1.0 0.0037 0.0041 0.0068 0.0046 0.0039 0.0038 0.0038 0.0038 0.954

XT2-S1.2 0.0047 0.0050 0.0078 0.0063 0.0042 0.0042 0.0042 0.0041 0.922

XT2-S1.4 0.0048 0.0059 0.0083 0.0068 0.0055 0.0054 0.0054 0.0054 0.965

XT2-S1.6 0.0059 0.0065 0.0091 0.0074 0.0063 0.0061 0.0061 0.0061 0.982

XT2-S1.8 0.0073 0.0080 0.0102 0.0085 0.0074 0.0072 0.0071 0.0071 0.989

XT2-S2.0 0.0060 0.0066 0.0086 0.0066 0.0061 0.0057 0.0057 0.0056 0.988

Table 3. Results of experiment 3 for Euro28 (miny-r is minimum observed bbp (in
the dataset), miny-e is minimum estimated bbp, y-mc(g) is bbp estimation for atd
found using regression model and Monte Carlo with g guesses.

dataset min y-r min y-e y-mc(g=...) r2

10 100 1k 10 k 100 k 1 m

XT1-S0.104 0.0023 0.0030 0.0056 0.0032 0.0024 0.0023 0.0022 0.0022 0.979

XT1-S0.156 0.0055 0.0068 0.0076 0.0068 0.0066 0.0065 0.0064 0.0064 0.989

XT1-S0.208 0.0075 0.0091 0.0093 0.0090 0.0088 0.0088 0.0087 0.0087 0.970

XT1-S0.260 0.0033 0.0048 0.0048 0.0043 0.0043 0.0042 0.0042 0.0042 0.891

XT1-S0.312 0.0016 0.0027 0.0027 0.0024 0.0024 0.0023 0.0023 0.0023 0.971

XT1-S0.364 0.0052 0.0063 0.0100 0.0063 0.0055 0.0053 0.0053 0.0053 0.968

XT1-S0.416 0.0053 0.0057 0.0094 0.0063 0.0054 0.0054 0.0053 0.0053 0.969

XT1-S0.468 0.0055 0.0068 0.0095 0.0070 0.0064 0.0061 0.0061 0.0061 0.983

XT1-S0.520 0.0050 0.0058 0.0080 0.0060 0.0057 0.0056 0.0056 0.0056 0.988

XT2-S0.104 0.0015 0.0023 0.0033 0.0023 0.0016 0.0015 0.0015 0.0014 0.971

XT2-S0.156 0.0078 0.0092 0.0106 0.0090 0.0090 0.0084 0.0084 0.0084 0.993

XT2-S0.208 0.0006 0.0013 0.0005 0.0003 0.0004 0.0003 0.0002 0.0002 0.951

XT2-S0.260 0.0000 0.0000 0.0001 −0.0000 −0.0001 −0.0001 −0.0001 −0.0001 0.964

XT2-S0.312 0.0002 0.0005 0.0005 0.0003 0.0003 0.0003 0.0003 0.0003 0.977

XT2-S0.364 0.0030 0.0034 0.0054 0.0041 0.0033 0.0033 0.0033 0.0033 0.957

XT2-S0.416 0.0038 0.0043 0.0060 0.0048 0.0040 0.0040 0.0039 0.0039 0.975

XT2-S0.468 0.0050 0.0052 0.0078 0.0063 0.0053 0.0052 0.0051 0.0051 0.986

XT2-S0.520 0.0064 0.0079 0.0087 0.0073 0.0069 0.0064 0.0063 0.0063 0.990
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6 Conclusions

The following work has considered the topic of employing pattern recognition
methods to support ss-fon optimization process. For a wide pool of generated
cases, analyzing two real network topologies, the effectiveness of solutions imple-
mented by five different, typical regression methods was analyzed, starting from
Logistic Regression and ending with neural networks.

Conducted experimental analysis shows, with high probability obtained by
conducting proper statistical validation, that mlp is characterized by the greatest
potential in this type of solutions. Even with a relatively small pool of input
simulations, constructing a data set for learning purpouses, interpretable in both
the space of optimization and machine learning problems, simple networks of
this type achieve both high quality prediction measured by the r2 metric, and
continuous decision space creating the potential for conducting optimization.

Basing the model on the stabilization realized by using ensemble of estima-
tors additionally allows to reduce the influence of noise on optimization, which –
in a state-of-art optimization methods – could show a tendency to select invalid
optimas, burdened by the nondeterministic character of the simulator. Further
research, developing ideas presented in this article, will focus on the generaliza-
tion of the presented model for a wider pool of network optimization problems.
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