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During the evolution of land plants many body plans have been developed.
Differences in the cross-sectional geometry and tissue pattern of plant axes
influence their flexural rigidity, torsional rigidity and the ratio of both of
these rigidities, the so-called twist-to-bend ratio. For comparison, we have
designed artificial cross-sections with various cross-sectional geometries
and patterns of vascular bundles, collenchyma or sclerenchyma strands,
but fixed percentages for these tissues. Our mathematical model allows
the calculation of the twist-to-bend ratio by taking both cross-sectional geo-
metry and tissue pattern into account. Each artificial cross-section was
placed into a rigidity chart to provide information about its twist-to-bend
ratio. In these charts, artificial cross-sections with the same geometry did
not form clusters, whereas those with similar tissue patterns formed clusters
characterized by vascular bundles, collenchyma or sclerenchyma arranged
as one central strand, as a peripheral closed ring or as distributed individual
strands. Generally, flexural rigidity increased the more the bundles or fibre
strands were placed at the periphery. Torsional rigidity decreased the
more the bundles or strands were separated and the less that they were
arranged along a peripheral ring. The calculated twist-to-bend ratios
ranged between 0.85 (ellipse with central vascular bundles) and 196 (triangle
with individual peripheral sclerenchyma strands).
1. Introduction
1.1. Body plans of plants
In their natural environment, plants are exposed to a wide range of bending
and torsional loads. Figure 1a shows an upright foliage leaf in a windless situ-
ation with a slender and tapered petiole that is rigid enough to support the
huge lamina against gravitational force and even a multiple of its own
weight [1]. Figure 1b depicts the same leaf under wind loads, with the petiole
being flexible enough to bend and twist simultaneously, resulting in a stream-
lined shape that ultimately prevents the leaf from damage. This mechanical
behaviour of the petiole is influenced by both its flexural rigidity and its tor-
sional rigidity, the trade-off of which can be elegantly expressed by the
dimensionless twist-to-bend ratio [2].

Generally, the biomechanical performance of plants is determined by their
so-called general body plan, which is a set of morphological features common
to many members of a phyllum [3]. The body plan of petioles includes the
cross-sectional geometry, the tapering mode and the three-dimensional distri-
bution of various tissues. These aspects form the basis for a straightforward
description of plant biomechanics.
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Figure 1. Peltate leaf of Caladium bicolor. (a) The petiole stands upright
under windless conditions. (b) The petiole bends (blue arrow) and twists
(red arrow) simultaneously under wind load.

Table 1. Elastic bending modulus E of individual plant tissues derived from
the literature [9]. *Wood can differ significantly in the longitudinal,
tangential and radial directions.

tissue E (MPa) references

sclerenchyma 24 500− 45 000 [7,10,11]

wood (sec. xylem)* 2600–16 000 [10]

collenchyma 1000–2600 [7,10,12]

vascular bundles 30–840 [7,10,13]

epidermis + periderm 350–500 [14]

epidermis 3–250 [10,13,15]

parenchyma (non-lignified) 5–100 [10]
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1.2. Structural properties of plant axes
The flexural rigidity (�EI (Nmm2)) and torsional rigidity (�GK
(Nmm2)) of a plant axis are structural properties composed
of its geometric properties (axial second moment of area I
(m4), torsion constant = torsional second moment of area K
(m4)) and its effective material properties (effective bending
elastic modulus �E (Nm−2), effective torsional modulus �G
(Nm−2)). In this context, the term ‘effective’ describes the
material properties of the entire axis, which are a function
of the material properties of the individual tissues involved,
their respective volume fraction and their three-dimensional
arrangement. In the past, the term ‘structural’ was sometimes
used instead of ‘effective’ [4]. Most petioles of foliage leaves
are easier to twist than to bend, resulting in high twist-
to-bend ratios (�EI/�GK (−)) [2]. In rare cases, such as the
transition zone between the petiole and the lamina of foliage
leaves, plant axes exhibit twist-to-bend ratios of less than 1.0;
this means that they are easier to bend than to twist [5].

1.3. Geometric properties of plant axes
The cross-sectional geometry of a plant stem, such as a circle,
ellipse, triangle, square or U-profile, influences its biomechani-
cal performance. For bending loads, the axial secondmoment of
area I is the relevant geometric property. For torsional loads, the
polar second moment of area (J (m4)) or the torsion constant
(K (m4)) are of geometrical relevance. Since the polar second
moment of area is calculated as the sum of the axial second
moment of area in the x-direction and y-direction (J = Ix + Iy),
the ratio of I/J (–) can never exceed 1.0. For circular cross-
sections J and K are identical. For all other geometries, the tor-
sion constant K is smaller than J, and is sometimes even a
small fraction of the polar second moment of area [6,7]. Conse-
quently, I/K can become larger than 1.0 and thus can contribute
to high twist-to-bend ratios. The U-profiled petioles of Hosta x
tardiana ‘El Niño’ (hereafter H. tardiana) exhibit median values
of I/K = 1.08, which contribute to median twist-to-bend ratios
of �EI=�GK ¼ 23:66 [1] (see also the brief description in electronic
supplementary material, S1 and table S1.1).

It is well known that most plant axes exhibit a taper in the
apical direction, which means that their diameter changes
along the length of the axis. The twist-to-bend ratio, however,
is a dimensionless variable that is invariant under scaling of
the diameter of the cross-section, since both the torsional and
the flexural rigidity obtain the same scale factor. Since—for
this study—we are mainly concerned with the twist-to-bend
ratio, we thus exclusively consider the cross-sectional geometry
of a plant stem, assuming that the stem is a simple beam with
constant geometry and tissue pattern. We note that our model
remains valid if the change in cross-sectional geometry is on a
length scale much larger than the diameter, in which case one
simply obtains a slowly varying twist-to-bend ratio along the
plant axis, as seen, for example, along the petiole ofMusa sp. [8].

1.4. Mechanical properties of plant axes
The biomechanical performance of each plant stem also
depends on the tissues that compose it. From a mechanical
viewpoint, each plant axis is characterized by both anatom-
ical heterogeneity through a specific three-dimensional
arrangement of various tissues and mechanical anisotropy
through the various mechanical properties of the individual
tissues. Plant tissues include dermal tissues (e.g. epidermis,
periderm, hypodermis), ground tissues (e.g. parenchyma,
chlorenchyma, hydrenchyma), vascular tissues (e.g. vascular
bundles including xylem and phloem) and strengthening
tissues (e.g. collenchyma and sclerenchyma), which differ
significantly in their mechanical properties.

Table 1 shows that the values for the elastic modulus E
((Nmm2) = (MPa)) of individual plant tissues differ by orders
of magnitude. The same holds true for their shear modulus G,
which (in the framework of isotropic linearized elasticity) is
related to the elastic modulus by Poisson’s ratio n (–), the
latter being the transverse elongation divided by the amount
of axial compression [7]. For most individual plant materials,
the ratio of E to G lies between 2 and 3 if Poisson’s ratio
is between 0 and 0.5. However, for entire plant structures
�E≫ �G, the ratio of the effective bending elastic modulus
and effective torsional modulus (�E/�G (–)) of the plant axes is
significantly higher and thus contributes to high twist-to-
bend ratios. For example, the almost circular petioles of
Caladium bicolor exhibit a median ratio of �E/�G = 63.73, which
markedly contributes to the median twist-to-bend ratio of
�EI/�GK = 39.19 [1] (see also the brief description in electronic
supplementary material, S1 and table S1.1).

1.5. Twist-to-bend ratios of plant axes
In 1992, Vogel presented the relationship between the cross-
sectional geometry and twist-to-bend ratio of petioles and



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220131

3
plant stems [2]. He measured the flexural and torsional rigid-
ity of circular and non-circular herbaceous stems and petioles.
Specimens with non-circular cross-sections had higher twist-
to-bend ratios and thus were relatively more flexible in twist-
ing than in bending. However, all twist-to-bend ratios were in
the single-digit range. In 1993, Ennos investigated the mech-
anics of the triangular flower stalks of Carex acutiformis and
reported twist-to-bend ratios in the two-digit range between
22 and 51 [16]. In 2003, Etnier mapped ideal beams and bio-
logical axes into a size-normalized mechanospace defined by
flexural and torsional rigidity. Based on assumed material
values and chosen cross-sectional geometries (circle, ellipse),
she defined boundaries that mirrored possible extremes for
biological beams and found that 53 of the 57 selected speci-
mens (¼93%) fell within the bounded region [17]. In
addition to circular and elliptic geometries, petioles exhibit
lengthwise grooving with high twist-to-bend ratios of up to
100 [1,18]. The twist-to-bend ratios of U-profiled petioles of
banana leaves (Musa sp.) range between 40 and 100 [19,20].
A numerical sensitivity analysis [8] has shown that plant
axes tend to form grooves and U-profiles when high twist-to-
bend ratios are mechanically favourable.

The triangular flower stalks of Carex pendula (hereafter
C. pendula) have twist-to-bend ratios of up to 400, which are
the highest values ever measured in stems of herbaceous
plants [21] (see also the brief description in electronic
supplementary material, S1 and table S1.1).

1.6. Tissue patterns of plant axes
With respect to the three-dimensional arrangement of plant
tissues, we refer to a review focusing on the form–function
relationship of large foliage leaves from a mechanical per-
spective [22]. Niklas related stress distribution to tissue
distribution in the circular plant axis. The tensile and com-
pressive stress components that result from bending and
torsional shear stress reach their maximum intensities at the
surface of the petiole. In contrast, the shear stresses resulting
from bending reach their maximum intensities at the centre of
a circular cross-section [7,22]. Dependent on the general body
plan of the respective plants, these stresses are accommo-
dated either by living and hydrostatic (= turgor dependent)
tissues such as parenchyma and collenchyma or by dead
and rigid tissues such as the xylem of the vascular bundles
(tracheids, vessels) and sclerenchyma [22].

Figure 2 illustrates various transverse sections of plant
axes with differing cross-sectional geometries and tissue
patterns. Based on stained thin sections from previous studies
[1,21,23–25], corresponding schematic drawings were created
depicting the cross-sectional geometry of the plant axes and
the distribution of the tissues involved. These plant examples
were selected because their geometric, mechanical and struc-
tural properties were available for discussion of the results of
the simulations of this study (electronic supplementary
material, S1 and table S1.1). Moreover, a brief description of
each plant species is given in electronic supplementary
material, S1.

1.7. Aim of the study
To date, no mathematical models have been developed that
simultaneously account for the influence of cross-sectional
geometry and tissue pattern on the flexural rigidity, torsional
rigidity and twist-to-bend ratio of plant axes. However,
quantification of the influence of individual properties and
their combinations can provide general indications concern-
ing the functional morphology of plants. Furthermore,
rigidity charts might form the basis for the development of
bioinspired designs by engineers.

Our aim has been to find answers to the following scien-
tific question: How do the cross-sectional geometry and/or
the arrangement of vascular bundles or strengthening tissues
influence the flexural rigidity, the torsional rigidity and thus
the twist-to-bend ratio of plant axes? We have addressed
four main aspects: (i) the design of artificial cross-sections dif-
fering in geometry and/or the tissue pattern of vascular
bundles, collenchyma fibre strands and sclerenchyma fibre
strands; (ii) the development of a mathematical model for
numerical determination of flexural rigidity and torsional
rigidity of the artificial cross-sections; (iii) the arrangement
of the artificial cross-sections in rigidity charts; and (iv) an
analysis of flexural and torsional rigidity as a function of
the number of peripheral individual strands.
2. Material and methods
2.1. Mathematical modelling
As in previous work [8,9], we use methods from linearized
elasticity and Saint-Venant’s theory of pure torsion of non-
homogeneous elastic beams. We therefore describe a plant stem
as a long thin elastic rod with domain B ¼ V� ð0, LÞ of length L
and simply connected cross-section V remaining constant along
the longitudinal axis. The heterogeneity of the cross-section V is
described by spatially dependent mechanical moduli that are
determined by the elastic modulus E(x, y) and the shear modulus
G(x, y) of the specific material of the tissue located at position
ðx, yÞ [ V. Unless the cross-section V consists of one single
material, the quantities E and G thus differ from the effective
bending elastic modulus �E and the effective torsional modulus �G.

Assuming now that E(x, y) and G(x, y) are piece-wise con-
stant in V and following rigorous results from [26], the
minimal and maximal flexural rigidity along the principal axes
are given by

Dmax=min ¼ Dmean +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDx �DyÞ2

4
þD2

xy

s0
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where

Dx ¼
ð
V

Eðx, yÞx̂2 dxdy, Dy ¼
ð
V

Eðx, yÞŷ2 dxdy,

Dxy ¼
ð
V

Eðx, yÞx̂ŷdxdy,

with centroids

ŷ ¼ y�
Ð
V Eðx, yÞydxdyÐ
V Eðx, yÞdxdy , x̂ ¼ x�

Ð
V Eðx, yÞxdxdyÐ
V Eðx, yÞdxdy ,

and spatially dependent elastic modulus E(x, y).
Torsional rigidity, on the other hand, can be expressed by

Prandtl’s stress function ϕ(x, y) (e.g. [27,28]), satisfying

r � 1
Gðx, yÞ rf

� �
¼ �2, in V,

f ¼ 0 on @V,
ð2:1Þ

with the spatially dependent shear modulus G(x, y). Using the
stress function ϕ, the torsional rigidity is therefore given by

Dz ¼ 2
ð
V

fdxdy:
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Figure 2. Cross-sections of plant axes. Petioles of (a,b) Pilea peperomioides, (c,d ) Caladium bicolor and (e,f ) Hemigraphis alternata, flower stalks of (g,h) Leonurus cardiaca
and (i,j ) Carex pendula and petioles of (k,l ) Hosta x tardiana ‘El Niño’. Left side (a,c,e,g,i,k): schematic drawings; abbreviations and colour code: ae, aerenchyma (white); co,
collenchyma fibres (yellow); ch, chlorenchyma (grey); e, epidermis (blue); hy, collenchymatous hypodermis (green); pa, parenchyma (grey); pc, pith cavity (light grey); ph,
phloem (purple); sc, sclerenchyma fibres (black); vb, vascular bundles (red); xy, secondary xylem (magenta). Right side: (b,d,f,j,l ) thin sections stained with toluidine blue O
highlighting lignified cell walls in blue and non-lignified cell walls in red; (h) thin section stained with acridine orange highlighting lignified tissues in bright yellow-green.
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From equation (2.1), it follows that, for homogeneous elastic
beams, the quantities Dz and Dmax/min depend linearly on the
constants E and G and thus coincide with the quantities �EI and
�GK described above.
Usually, of course, the minimal flexural rigidity Dmin is
the decisive factor for the mechanical suitability of a given
design. In the following, we are therefore concerned with the
evaluation and comparison of the twist-to-bend ratio Dmin/Dz
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Figure 3. Artificial cross-sections. Each cross-section consists of an outer epidermis (blue), parenchymatous ground tissue (light grey) and vascular bundles or
collenchyma or sclerenchyma (black). In diverse geometries, (a) circle, (b) ellipse, (c) square, (d ) triangle, (e) U-profile, a variety of tissue patterns created by
the vascular bundles or strengthening tissues are embedded in the parenchyma: x.1 central position, x.2 star-shaped, x.3 closed peripheral ring, x.4 central position
and individual strands in the periphery, x.5 randomly scattered, x.6 individual strands in the periphery, x.7 corner position.
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of various cross-sections with different types and shapes of
reinforcing materials.

In order to compute the rigidities numerically, we normalize
the elastic moduli (Eest) of all contained materials with respect to
the elastic modulus of sclerenchyma, i.e. we set Enorm = 1 for
sclerenchyma and obtain the normalized elastic moduli of the
other materials by appropriate scaling; see table 1. Further, we
assume a constant Poisson’s ratio n for all materials involved
and compute the normalized torsional modulus Gnorm as

Gnorm ¼ Enorm

2ð1þ nÞ ,

for a given elastic modulus Enorm. Assumption of a constant Pois-
son’s ratio is reasonable because the value range n∈ [0.2, 0.5] is
typical for many plant axes [29] and, thus, a change in n among
the materials is negligible for our model. Hereafter, we set n =
0.35, which is an appropriate choice for herbaceous plants [13,29].

Once Prandtl’s stress function ϕ is determined from equation
(2.1), numerical integration suffices for the computation of
the rigidities Dz and Dmin. Therefore, we have employed P1
triangular finite-element discretizations of five reference cross-
sections including various types of materials and have thereby
solved the elliptic equation (2.1) numerically. The various
materials were described by functions E(x, y) and G(x, y) of the
elastic and shear modulus of the certain materials determined
on the mesh points of the discretization. The implementation
of this standard finite-element method (C + +-code) is made avail-
able in electronic supplementary material, S2. Raw data of the
mathematical model are given in electronic supplementary
material, S3 and table S3.1.

One should note that, owing to the high contrast of material
parameters in some plants studied here, we reach the bounds
of the regions of validity for our torsion and bendingmodels. How-
ever, as our main objective is a grouping of reinforcement strategies
in terms of system parameters, more general trends for effective
properties suffice. In particular, the ‘winning’ strategies in terms
of the twist-to-bend ratio (i.e. C. pendula) are reliably predicted.
A more detailed quantitative comparison is beyond the scope
of this work, as then other material properties such as turgor,
anisotropy or viscoelasticity would also have to be considered.

2.2. Artificial cross-sections
The differences in the geometry of the entire axis, the multitude of
possible plant tissues involved together with their individual
mechanical properties and the great variety of possible tissue
arrangements within the plant axes result in ever new combi-
nations and are thus the basis for the plethora of body plans of
plants. For systematic analyses, we have designed artificial cross-
sections differing in their cross-sectional geometry (e.g. circle, ellipse,
triangle, square, U-profile) and/or tissue pattern by means of the
arrangement of vascular bundles, collenchyma or sclerenchyma
(e.g. central, star-shaped, ring, scattered, corner) (figure 3).

Our mathematical model simultaneously provides infor-
mation concerning the influence of the cross-sectional geometry
and tissue pattern on flexural rigidity and torsional rigidity
and on the twist-to-bend ratio (see also electronic supplementary
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material, S3 and table S3.1). This allows us to place each artificial
cross-section in a rigidity landscape, which is defined by the flex-
ural and torsional rigidity. The respective place in the rigidity
chart provides information about the trade-off between rigidity
in bending and torsion and, thus, about the twist-to-bend ratio.

1. Artificial cross-section is an umbrella term for the following
three types of designed cross-sections.

1.1. Standard cross-sections were designed by means of vascular
tissue, parenchyma and epidermis, three tissues that are
necessary for a vascular plant. Each tissue has a character-
istic elastic modulus E (table 1) and a fixed percentage of
cross-sectional area A

— epidermis: E = 50 (MPa), A ¼ 1%
— parenchyma: E = 20 (MPa), A ¼ 84%
— vascular bundles: E = 1 (GPa), A ¼ 15%

1.2. Collenchyma-modified cross-sections were created by comple-
tely replacing vascular bundles with strands of collenchyma
fibres:

— epidermis: E = 50 (MPa), A ¼ 1%
— parenchyma: E = 20 (MPa), A ¼ 84%
— collenchyma: E = 2.5 (GPa), A ¼ 15%

1.3. Sclerenchyma-modified cross-sectionswere createdby completely
replacing vascular bundles with strands of sclerenchyma
fibres:

— epidermis: E = 50 (MPa), A ¼ 1%
— parenchyma: E = 20 (MPa), A ¼ 84%
— sclerenchyma: E = 45 (GPa), A ¼ 15%

2. In order to assess the sensitivity of the twist-to-bend ratio to the
number of fibres, we simulated design x.6 with increasing num-
bers of individual vascular bundles or strands of collenchyma
or sclerenchyma. Similarly, each tissue has the above-men-
tioned characteristic elastic modulus E (table 1) and fixed
percentage of cross-sectional area A. Circles, ellipses, triangles
and U-profiles start with three bundles/strands, whereas
squares start with four bundles/strands. The number of indi-
vidual bundles/strands was increased step by step: circles
and ellipses one per step, U-profiles two per step, triangles
three per step and squares four per step. The maximum
number was reached when the bundles/strands were still
present individually and had not yet merged.

3. Results
3.1. Twist-to-bend ratios of artificial cross-sections
Table 2 presents the calculated twist-to-bend ratios of the
artificial cross-sections with vascular bundles, collenchyma
strands and sclerenchyma strands (figure 3). We also
calculated the change factors of the twist-to-bend ratios of
the fibre-modified cross-sections in relation to the standard
cross-sections with vascular bundles. The change factors of
the collenchyma-modified cross-sections ranged between 0.95
and 2.23. The change factors of the sclerenchyma-modified
cross-sections were between 0.91 and 14.64. Different change
factors were found depending on the design, indicating that
the designs do not scale linearlywith the change of elastic mod-
ulus. The twist-to-bend ratios of designs x.1 (central position)
and x.3 (peripheral closed ring) are similar evenwhen collench-
yma or sclerenchyma is used instead of vascular bundles
(change factor: ≈1.0). By contrast, design x.6 (individual
strands in the periphery) for the circle, ellipse andU-profile con-
sistently show the highest values of twist-to-bend ratio for the
standard cross-sections and fibre-modified cross-sections. This
is different from the square and triangular cross-sections,
where a design change takes place with regard to the highest
twist-to-bend ratios. Design x.7 (corner position) has the highest
twist-to-bend ratios for standard and collenchyma-modified
cross-sections, whereas design x.6 (individual strands in
the periphery) shows the highest twist-to-bend ratios for the
sclerenchyma-modified cross-sections. For design x.6, the influ-
ence of the number of single strands on the twist-to-bend ratio
plays a major role (see §3.3).

3.2. Rigidity landscapes of artificial cross-sections
Each artificial design (figure 3) of the standard cross-sections
(figure 4), collenchyma-modified cross-sections (figure 5) and
sclerenchyma-modified cross-sections (figure 6) was placed
into a rigidity chart defined by the minimal flexural rigidity
Dmin as a function of the torsional rigidity Dz. The position in
the chart corresponds to the respective twist-to-bend ratio.
Furthermore, a rigidity chart containing all cross-sections
is presented in electronic supplementary material, S4 and
figure S4.1.

Similarities and dissimilarities found in the three rigidity
charts can be summarized as follows.

— Cross-sections with the same geometry, such as the circle,
ellipse, square, triangle or U-profile, did not cluster, i.e.
artificial cross-sections with different geometries were
found scattered on the rigidity charts.

— Independent of whether vascular bundles, collenchyma
or sclerenchyma strands were used for the modelling,
two designs had a twist-to-bend ratio of less than 1.0.
The ellipse with a closed ring of bundles/strands in the
periphery (b.1) and the ellipse with a central position of
bundles/strands (b.3) were stiffer in torsion than in bend-
ing (over the small side of the ellipse).

— Two clusters clearly emerge in all charts and are character-
ized by the following tissue pattern: cross-sections with a
central position of bundles/strands (x.1) and cross-sections
with a closed peripheral ring of bundles/strands (x.3).
Although the designs of the two clusters differ in both
flexural and torsional rigidity, they have comparable low
values of the twist-to-bend ratio. Ultimately, this is the
consequence of moving the positions of the artificial
designs along the diagonal lines in the rigidity chart,
which represent fixed values of the twist-to-bend ratio.

— All remaining designs differ considerably in the values
of the minimum flexural rigidity, whereby the values of
the torsional rigidity among each other are similar.
Since angular designs (triangles, squares and U-profiles)
and circular cross-sections with individual strands in
the periphery (x.4 and x.6) have high values of the mini-
mal flexural rigidity, they exhibit high twist-to-bend
ratios.

— The torsional rigidity of the cluster characterized by
a closed peripheral ring of bundles/strands (x.3) is
markedly higher than the torsional rigidity of all other
designs.

— The torsional rigidity of the clusters having designs with
a central position (x.1) and designs with individual bun-
dles/strands is similar in terms of vascular bundles and
collenchyma fibres. By contrast, with respect to sclerench-
yma fibres, the torsional rigidity of the cluster with
individual strands is markedly smaller than that of the
cluster with central position designs.



Table 2. Twist-to-bend ratios calculated for the artificial cross-sections shown in figure 3. Vascular bundles of the standard cross-sections were replaced either
by strands of collenchyma fibres or by sclerenchyma fibres. The highest value for each geometry is shown in italics. Twist-to-bend ratios of the fibre-modified
cross-sections were normalized to the value of the standard cross-sections. Resulting change factors indicate an increase (greater than 1.0) or decrease (less than
1.0) of the twist-to-bend ratio.

vasc. bundles collenchyma sclerenchyma change factor change factor

geometry artificial twist-to-bend twist-to-bend twist-to-bend collenchyma/ sclerenchyma/

design ratio Dmin/Dz ratio Dmin/Dz ratio Dmin/Dz vasc. bundles vasc. bundles

circle (a.1) 1.36 1.37 1.37 1.00 1.01

(a.2) 4.53 9.18 66.36 2.03 14.64

(a.3) 1.37 1.39 1.38 1.01 1.01

(a.4) 8.56 19.09 124.23 2.23 14.51

(a.5) 5.91 12.67 73.05 2.14 12.36

(a.6) 9.12 20.13 131.62 2.21 14.43

ellipse (b.1) 0.85 0.86 0.86 1.00 1.00

(b.2) 2.99 5.95 30.19 1.99 10.10

(b.3) 0.86 0.86 0.87 1.00 1.00

(b.4) 6.57 14.52 88.11 2.21 13.50

(b.5) 4.90 10.40 53.92 2.12 11.00

(b.6) 6.84 15.24 92.29 2.23 13.50

square (c.1) 1.54 1.50 1.45 0.98 0.95

(c.2) 10.76 23.38 147.72 2.17 13.73

(c.3) 1.77 1.79 1.80 1.01 1.02

(c.4) 11.07 24.49 154.40 2.21 13.95

(c.5) 6.52 13.46 71.89 2.06 11.02

(c.6) 11.68 25.98 165.11 2.22 14.14

(c.7) 15.45 29.93 80.07 1.94 5.18

triangle (d.1) 2.15 2.11 2.05 0.98 0.95

(d.2) 16.49 34.42 143.70 2.09 8.71

(d.3) 2.18 2.18 2.17 1.00 1.00

(d.4) 15.72 34.42 181.23 2.17 11.53

(d.5) 9.19 18.62 87.86 2.03 9.56

(d.6) 16.52 36.08 195.90 2.18 11.86

(d.7) 26.31 45.79 90.02 1.74 3.42

U-profile (e.1) 2.41 2.29 2.19 0.95 0.91

(e.2) 9.72 19.05 70.76 1.96 7.28

(e.3) 1.95 2.10 2.44 1.07 1.25

(e.4) 12.81 26.35 113.86 2.06 8.89

(e.5) 11.55 23.20 90.71 2.01 7.85

(e.6) 13.60 28.07 125.67 2.06 9.24
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— The square and triangular designs with the sclerenchyma
positioned in the corners (x.7) form a fourth cluster.

3.3. Twist-to-bend ratio as a function of the
bundle/strand number

Figure 7 shows the results of the mathematical calculations of
the twist-to-bend ratioDmin/Dz as a function of the number of
individual fibres in circular, square, triangular, elliptic and U-
profiled cross-sections. We increased the number of fibres
according to the procedure described in §2.2, in which the
total area of the fibre strands is fixed during the whole pro-
cedure. Thus, the number of fibre strands is the only free
variable in this model and the twist-to-bend ratio is deter-
mined by a function f (N ) depending only on the strand
number N. The graphs of Dmin/Dz illustrate that an optimal
number of fibre strands exists in order to achieve high twist-
to-bend ratios that depend noticeably on the reference geome-
try and the material of the fibres. For cross-sections with
corners (i.e. triangle, square, U-profile) and vascular bundles
or collenchyma strands, the optimum is always reached for
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Figure 4. Rigidity chart of standard cross-sections with various patterns of vascular bundles. Minimal flexural rigidity (Dmin) is given as a function of torsional rigidity
(Dz) on a logarithmic scale. Each artificial cross-section is placed in the chart according to its twist-to-bend ratio. Dashed lines equal twist-to-bend ratios of 1
(magenta), 10 (violet) or 100 (brown). Three clusters were defined in terms of the arrangement of the vascular bundles: (1) closed peripheral ring, (2) central
position and (3) distributed position (= individual bundles scattered throughout the parenchyma or in the periphery and slender bundles). In each of the three
clusters, the angular geometries with two, three or four corners exhibit the highest twist-to-bend ratios.
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torsional rigidity (Dz) on a logarithmic scale. Each artificial cross-section is placed in the chart according to its twist-to-bend ratio. Dashed lines equal twist-to-bend
ratios of 1 (magenta), 10 (violet) or 100 (brown). Three clusters were defined in terms of the arrangement of the collenchyma strands: (1) closed peripheral ring, (2)
central position and (3) distributed position (= individual bundles scattered throughout the parenchyma or in the periphery and slender bundles). The highest twist-
to-bend ratios exhibit geometries with corners and scattered strands. In each of the three clusters, the angular geometries with two, three or four corners exhibit the
highest twist-to-bend ratios.
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bundles/strands placed in the corners of the reference geome-
try. This is different for sclerenchyma fibres. Here Dmin/Dz

first increases, with approximately linear growth, reaching a
maximum for triangular and square cross-sections. For the
U-profiled cross-section, this optimum is not reached, as
more than 25 single bundles/strands would merge, and thus
the procedure was stopped.

For circular and elliptic cross-sections, the behaviour is
similar except that here the optimal number of bundles/
strands for the achievement of high twist-to-bend ratios for
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Figure 6. Rigidity chart of sclerenchyma-modified cross-sections with various patterns of sclerenchyma strands. Minimal flexural rigidity (Dmin) is given as a function
of torsional rigidity (Dz) on a logarithmic scale. Each artificial cross-section is placed in the chart according to its twist-to-bend ratio. Dashed lines equal twist-to-
bend ratios of 1 (magenta), 10 (violet) or 100 (brown). Each artificial cross-section is placed in the chart according to its twist-to-bend ratio. Four clusters were
defined in terms of the arrangement of the sclerenchyma strands: (1) closed peripheral ring, (2) central position, (3) distributed position (= individual bundles
scattered throughout the parenchyma or in the periphery and slender bundles), (4) corner position.
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vascular bundles and collenchyma strands is not determined
by the number of corners. Furthermore, the charts of the
twist-to-bend ratios are similar for elliptic and circular geo-
metries, as the optimum number of bundles/strands varies
only slightly for the three different materials. Nevertheless,
the ratios at the optimum differ markedly; this can be
explained because the twist-to-bend ratio Dmin/Dz includes
the minimal flexural rigidity Dmin along the principal axes.
Because of symmetry, Dmin is smaller for an elliptic geometry
than for a circular geometry of the cross-section.

As the flexural rigidity remains nearly constant from a
small number of bundles/strands, the chart of the twist-to-
bend ratio is driven by the torsional rigidity, which first
decreases almost linearly in N and, after reaching a minimum
(for all cross-sections except the U-profiled), increases again
(electronic supplementary material, S5 and figure S5.1).
This behaviour is caused by two competing effects: a falling
amplitude of Prandtl’s stress function ϕ around bundles/
strands and a sieve effect caused by decreasing distances
between single bundles/strands (see [9] for more details).
Thereby, the number of bundles/strands for which the mini-
mum torsional rigidity is reached depends decisively on the
shape of the reference cross-section with N being the lowest
for circular cross-sections and the highest for triangular
cross-sections. Furthermore, the minimum of the torsional
rigidity is approximately the same for all reference cross-
sections. This is different for flexural rigidity, which differs
noticeably between the reference geometries, thus resulting
in a marked difference in the twist-to-bend ratio for circular,
elliptic, U-profiled, square and triangular cross-sections;
see figure 7 and electronic supplementary material, S5 and
figure S5.1.

Comparing the values taken by Dmin/Dz for the optimal
number of bundles/strands among all three materials, a
trend emerges showing an increasing twist-to-bend ratio
along the reference geometries in the order: elliptic, circular,
square, U-profiled, triangular.
4. Discussion
4.1. Clusters in the rigidity charts
Since plants are simultaneously exposed to a wide range
of bending and torsional loads, various morphological,
anatomical and mechanical adaptations by means of the
optimization of partly contradictory mechanical properties
have developed during evolution [30]. Our previous investi-
gations on the morphology and anatomy of plant stems have
revealed a variety of cross-sectional geometries combined
with various tissue patterns (figure 2). Furthermore, the geo-
metric, mechanical and structural properties of entire axes
could be determined in the framework of biomechanical tests
(electronic supplementary material, S1 and table S1.1). The
question remains as towhat extent themorphological–anatom-
ical features and/or mechanical properties are responsible for
the structural properties of the plant stem. This study provides
answers, because we have systematically analysed, by normal-
ized artificial cross-sections, the simultaneous influence of the
two-dimensional geometry of the entire plant stem and the
cross-sectional arrangement of vascular bundles or strands of
collenchyma and sclerenchyma on the flexural rigidity, the tor-
sional rigidity and, thus, the trade-off between them, namely
the dimensionless twist-to-bend ratio. High values of twist-
to-bend ratio indicate that the plant axis has high flexural rigid-
ity combined with low torsional rigidity. High flexural rigidity
ensures that the plant axes remain upright, even under
additional loads such as top loads of flowers and fruits, perch-
ing birds, passing animals, snow and rain. High torsional
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Figure 7. Evaluation of the twist-to-bend ratio for an increasing number of bundles/strands for various cross-sectional geometries (circle, ellipse, square, triangle,
U-profile) and materials (vascular bundles, collenchyma strands, sclerenchyma strands). The circular (a–c), elliptic (d–f ), triangular ( j–l ) and U-profiled (m–o) cross-
sections start with three bundles/strands, whereas the square cross-sections (g–i) start with four bundles/strands.
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flexibility guarantees streamlining under wind load by twist-
ing of the plant axis downwind with the supported of a
gentle bending of the axis [2,7,16,19,20,31].

We placed our artificially designed cross-sections (figure 3)
in rigidity charts defined by flexural and torsional rigidity. On
the basis of the respective place in the rigidity chart, we pro-
vided information about the values of minimal flexural
rigidity (along the y-axis), torsional rigidity (along the x-axis)
and the twist-to-bend ratio (along the dashed diagonals repre-
senting constant twist-to-bend ratios) of the cross-sectional
designs. We then defined clusters based on the arrangement
of the individual designs. In 2003, Etnier also provided a
stiffness mechanospace defined by flexural stiffness and tor-
sional stiffness. She placed ideal beams characterized by their
cross-sectional geometries and Poisson’s ratios into the
mechanospace diagram and defined boundaries for possible
extremes of botanical and zoological rod-shaped structures.
However, the calculations did not take into account the cross-
sectional tissue patterns [17].

For vascular bundles (figure 4), strands of collenchyma
fibres (figure 5) and strands of sclerenchyma fibres (figure 6),
we defined at least three clusters with respect to the position
of the artificial designs in the rigidity charts: (1) cross-sections
with a closed ring of vascular tissues, collenchyma or
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sclerenchyma in the periphery (x.3) exhibiting low twist-to-
bend ratios (0.86−2.18); (2) cross-sections with a central pos-
ition (x.1) also having low twist-to-bend ratios (0.85−2.99); (3)
cross-sections with scattered bundles/strands in the parench-
yma or individual bundles/strands in the periphery. In each
of these three clusters, the angular cross-sections (square, tri-
angle and U-profile) exhibited the highest twist-to-bend
ratios. In addition to the three clusters found for all types of
strengthening tissue, the square (c.7) and triangular designs
(d.7), which had the sclerenchyma positioned in the corners,
formed a fourth cluster with high twist-to-bend ratios of
80.07 and 90.02, respectively. All values are provided in table 2.

Because of the high degree of abstraction of our artificial
cross-sections, engineers can also use the rigidity landscapes
for the transfer of the cross-sectional geometry, together
with the two-dimensional pattern of reinforcements, in tech-
nical applications (biomimetics). Moreover, the results of our
simulation of artificial cross-sections provide a deeper under-
standing of the body plans of plants in the framework of
reverse biomimetics [32].

In the following, we discuss the results of the mathematical
simulations with respect to plant axes in general, and to the
plant models shown in figure 2 in particular. Since the clusters
are characterized by the tissue patterns and not by the cross-
sectional geometry, we will focus on plant axes with similar
tissue patterns. For the different geometries, we give a short
overview of the plant families in which they mainly occur.
With respect to the cross-sectional arrangement of the vascular
tissue in stems and roots of higher plants, botanists distinguish
between various types of stelar systems (= primary conductive
tissue). In petioles, the vascular bundle distribution is often
somewhat different from that in the stem. Wherever possible,
we will refer to the various steles without going into detail,
as our focus in this study is the mechanical aspects.

4.2. Cross-sectional geometries of plant axes
Most (upright) plant axes have an almost circular cross-sec-
tional geometry (design a). The Opuntioideae, for example,
a subfamily of the cactus family (Cactaceae), possess elliptic
branches, so-called cladodes (design b). Square cross-sections
(design c) are widespread in the mint family (Lamiaceae).
Triangular cross-sections (design d) can be found in the
grass families Poaceae, Cyperaceae and Juncaceae. U-profiled
cross-sections (design e) are well known from petioles of
Musaceae (e.g. banana, Musa sp.), Cannaceae (e.g. canna lily,
Canna sp.), Strelitziaceae (e.g. bird-of-paradise, Strelitzia
reginae) and plantain lilies (Hosta sp.).

4.3. Cross-sections with a central position of vascular
bundles and fibre strands

Design x.1: Plant axes with a central position of the vascular tis-
sues (= haplostele) or strengthening tissues (x.1) show low
twist-to-bend ratios, which are not noticeably increased when
replacing the vascular bundles by collenchyma and sclerench-
yma strands. Change factors range between 0.91 and 1.01
(table 2). In rare cases, such as b.1 and b.3, the twist-to-bend
ratios are even below 1.0 and the axes are easier to bend
along the minor axis than to twist. The central position of the
vascular bundles and fibre strands in plant axes is often inter-
preted as an adaptation to predominantly occurring tensile
stresses, as in roots, climbing tendrils or plant organs occurring
in flowing water. Because of their low flexural rigidity, these
organs can bear only low bending stresses.

Dicotyledonous tap roots possess a central vascular cylin-
der surrounded by parenchyma and epidermis (a.1). They
withstand shear and tensile stresses and are thus resistant
to being pulled out of the soil. Roots thus firmly anchor the
plant in the soil [33]. Tendrils (a.1) of the climbing plants
Parthenocissus tricuspidata [34] and Passiflora discophora [35]
and attachment roots (d.1) of the climbing Vanilla spp. and
English ivy [36], which are predominantly under tensile
loads, also have a core of vascular bundles.

In addition, some aquatic plants, which are subjected to
tensile stresses from water flow, show a central positioning
of the vascular tissues embedded in aerenchyma and par-
enchyma and surrounded by epidermis. The earliest land
plants in the late Silurian/early Devonian, such as Cooksonia
sp., Rhynia gwynne-vaughanii, Aglaophyton major and Zostero-
phyllum sp., had aerial stems with a central core of vascular
tissue, which might be reminiscent of their ancestors that
lived in water [37,38].

4.4. Cross-sections with a closed peripheral ring of
vascular bundles and fibre strands

Design x.3: A closed ring of vascular tissues (= siphonostele)
or strengthening tissue increases the torsional rigidity and
contributes even more to high flexural rigidity the further
the ring is positioned to the periphery.

An intriguing example is the growth form of lianas, such
as Aristolochia macrophylla. Young lianas build circular
searcher stems that have circular cross-sections and a periph-
eral closed ring of sclerenchyma, and that are therefore (very)
rigid in bending and torsion (a.3). These searcher stems are
mechanically self-supporting. Once attachment is secured,
secondary growth processes are intensified and, during
growth, the secondary xylem and phloem increasingly take
up space within the ring, causing radial and tangential stres-
ses and thus leading to cracks in the ring. The cracks are
sealed with parenchyma cells, leading to fragmentation of
the ring. Thus, older liana stems that are secured to the
host tree possess, in addition to the very flexible core of ‘lia-
nescent’ wood, a fragmented ring of sclerenchyma (a.6),
which is however much more flexible in bending and
torsion [36,39].

Comparisons of free-standing and tree-supported climb-
ing stems of Croton pullei have shown that the larger the
diameter, the greater the differences in the twist-to-bend
ratio. Free-standing stems possess dense wood with small-
lumen vessels, whereas tree-supported stems have a much
higher proportion of large diameter vessels in their ‘lianes-
cent’ wood. In the highest class of stem diameter (15.1–
20mm), young free-standing stems have twist-to-bend
ratios of 10.3 and older non-self-supporting stems have
ratios of 6.5 [40].

Soffiati & Rowe [41] have investigated the climbing cactus
Selenicereus setaceus, the stems of which have in common a
core of vascular tissue (x.1), a stiff dermal tissue represented
by a hypodermis and, in older stems, also a peridermal cover-
age (x.3), but various cross-sectional geometries at different
stages of growth. The cactus has cylindrical to elliptic basal
stems with a cylinder of secondary wood, triangular climbing
stems with a core of vascular tissue and apical star-shaped
stems with centrally positioned vascular tissue that search
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for new supports. The three different types of stem differ sig-
nificantly with respect to the axial second moment of area
and the elastic modulus. The flexural rigidity of the basal cir-
cular and the apical star-like stem parts do not differ
significantly. However, the flexural rigidity of the triangular
stems is significantly smaller, i.e. the basal (supporting)
stem parts and apical searching stems are stiffer in bending
than are the climbing stem parts [41].

Another example is the elliptic to U-profiled cross-
sections of Hemigraphis alternata petioles (figure 2e,f ) that
combine a U-profiled arrangement of five vascular strands
along the major axis with a closed ring of collenchymatous
hypodermis in the periphery (b.3). The petioles exhibit a
twist-to-bend ratio of approximately 12; i.e. they are 12
times more rigid in bending than in torsion. These petioles
bear a lamina that weighs, at median, 7.5 times as much as
the leaf stalk itself [1] (electronic supplementary material,
S1 and table S1.1).

Square cross-sections of flower stalks of Leonurus cardiaca
(figure 2g,h) combine a peripheral ring of strengthening
tissue (c.3) with a corner position of collenchyma (d.7).
Kaminski et al. [24] showed that, during ontogeny, the area
sum of collenchyma fibres is characterized by clear negative
allometric scaling (α = 0.721). By contrast, the area sums of
the vascular tissue (α = 1.098) and parenchyma (α = 1.071)
reveal moderate positive allometric growth. In other words,
vascular tissue and parenchyma grow at a faster rate
than the other tissues of the internode. The ontogenetic
changes are also reflected when comparing internodes
from different heights above ground and in samples from
June and September. Spatial comparisons of the second
and third apical internodes and temporal comparisons of
the respective internodes in June and September have
revealed median twist-to-bend ratios between ≈14 and ≈19,
with none of the four possible comparisons showing a signifi-
cant difference. By contrast, the absolute values of flexural
rigidity and torsional rigidity increase significantly from the
second and third apical internodes measured in the same
months or for the same internode measured in June and
September, respectively (electronic supplementary material,
S1 and table S1.1).

4.5. Cross-sections with individual vascular bundles and
fibre strands

The tissue patterns of cross-sections with individual strands
of vascular and strengthening tissue form another cluster,
which includes designs x.2, x.4–x.6 and partly x.7.

Design x.2: The star-shaped arrangement of vascular
tissue in the cross-section, the so-called actinostele (ancient
Greek ακτινοτός, which means surrounded by rays), can be
found in the aerial stems of the Lycopodiopsida and in the
central cylinder of the roots of some cormophytes (a.2). Com-
pared with design x.1 the star-shaped core of design x.2
increases the flexural rigidity (electronic supplementary
material, S3 and table S3.1) as a result of the displacement
of the strengthening material into the periphery. Designs
x.1 and x.2 exhibit comparable values of torsional rigidity
with respect to vascular tissues (figure 4) but lower values
with respect to collenchyma (figure 5) and sclerenchyma
(figure 6). A small change in the tissue pattern from circular
(x.1) to star-shaped (x.2) leads, with the same material input,
to a substantial increase in the twist-to-bend ratio (table 2).
This increase cannot be found in land plants with a star-
shaped actinostele, for example in Asteroxylon mackiei. In
these early lycopsids, the indentations of the actinostele are
relatively shallow, so that no significant increase in flexural
rigidity occurs compared with circular cross-sections. The
‘selective advantage’ of actinosteles compared with haplos-
teles in early land plants is their higher surface-to-volume
ratio, i.e. the larger contact area with the surrounding par-
enchyma. This facilitates and improves the exchange of
water between the water-conducting actinostele and the par-
enchyma, which serves as the main stabilizing tissue in these
turgor-stabilized plants [37,38].

Design x.4: The succulent leaves of the genus Delosperma
show an arrangement of centrally positioned vascular bun-
dles combined with several peripheral individual bundles.
The leaves of Delosperma cooperi are circular (a.4) to oval
(b.4), whereas the leaves of Delosperma ecklonis have a triangu-
lar geometry (d.4) [13,42]. With respect to table 2 the twist-to-
bend ratios of a.4 and b.4 are approximately half the value of
that of d.4. These differences are the result of the smaller flex-
ural rigidity and higher torsional rigidity of a.4 and b.4
compared with d.4. From a technical point of view, Delos-
perma leaves can be described as a five-shell model, the
layers of which have various thicknesses and are alternately
under pre-tension (epidermis, ring of individual strands of
vascular tissue, central strand of vascular bundles) and pre-
compression (outer chlorenchyma, inner hydrenchyma).
These pre-stresses play a major role in the sealing of
damage when the entire leaf bends or contracts until the
wound edges meet [43,44]. Since only the ratios of the layer
thicknesses and elastic moduli of the five tissues are relevant
for the sealing mechanism, a transfer into technical materials
is possible [43].

Design x.5: Monocotyledonous stems mostly show ran-
domly scattered vascular bundles in the parenchyma, forming
the so-called atactostele (ancient Greek άτακτος, which means
disordered). Although Pilea peperomioides is a dicotyledonous
plant, the cross-sectional tissue pattern of its petioles can be
compared most closely to that of artificial design a.5. However,
the vascular tissues are not randomly scattered in the parench-
yma, but lie more in the centre of the circular cross-section
(figure 2a,b). Petioles of P. peperomioides exhibit twist-to-bend
ratios of ≈13 [1] (electronic supplementary material, S1 and
table S1.1). Mechanical tests of the transition zone between
the petiole and the lamina, however, reveal median twist-to-
bend ratios of 0.67, which means that the transition zones are
easier to bend than to twist [5].

According to table 2 the complete replacement of the
vascular tissue by collenchyma results in a doubling of the
twist-to-bend ratio (change factor: 2.01–2.14) for all investi-
gated geometries. If the vascular tissue is completely
replaced by sclerenchyma, the change factor lies between
7.85 for U-profiles and 12.36 for circles.

Design x.6: With respect to the mathematical calculations
shown in table 2, the twist-to-bend ratio of design x.6 with
individual peripheral reinforcement strands is approximately
doubled if all vascular bundles are replaced by collenchyma
(change factor: 2.06–2.23). If the vascular bundles are comple-
tely replaced by sclerenchyma fibres, the change factor is
between 9.24 (U-profile) and 14.43 (circle). Further simu-
lations show that the twist-to-bend ratio depends on the
number of individual strands in the periphery (figure 7).
With the exception of small numbers of peripheral strands,
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the flexural rigidity is almost constant, whereas the torsional
rigidity decreases with an increasing number of strands and
the total volume ratio of bundles being kept constant (elec-
tronic supplementary material, S5 and figure S5.1). In other
words, the twist-to-bend ratio is determined by the torsional
rigidity, which decreases with increasing numbers of periph-
eral reinforcement strands.

Design e.6 is represented by the U-profiled petioles of
H. tardiana (figure 2k,l ) equipped with a median of 23 vascular
bundles. The U-profile is special in the sense that the median
ratio I/K = 1.08, which means that the geometric properties
increase the twist-to-bend ratio slightly [1]. With the exception
of theU-profilewith three bundles, which showextremely high
twist-to-bend ratios, the values are much smaller and slightly
decrease with increasing bundles (figure 7m) (electronic sup-
plementary material, S1 and table S1.1).

However, in real plants, not all vascular bundles are
replaced by strengthening tissue. Instead, plant axes with
scattered vascular bundles (x.5) in the parenchyma are
additionally strengthened by peripheral reinforcement
strands (x.6). Investigations of C. bicolor petioles (figure 2c,d )
have revealed that their mechanical properties exhibit a high
value of �E/�G≈ 64, resulting in a twist-to-bend ratio of
approximately 40 [1] (electronic supplementary material, S1
and table S1.1). The almost circular petioles have in the
periphery a median of 66 individual collenchyma strands,
which are elliptical in cross-section [23]. By contrast,
figure 7b shows that, according to our calculations, 45 col-
lenchyma strands already merge. This difference between
44 and 66 individual strands is caused by the geometry of
the strands, which are elliptical in the petiole but are assumed
to be circular in our calculation, and by the different percen-
tage area of the collenchyma strands with A ¼ 4:75% in the
petiole and A ¼ 15% in the artificial cross-section.

Investigations of the internodes of the flower stalk of
C. pendula (figure 2i,j ) have revealed peak values of the
twist-to-bend ratio ever measured for herbaceous plant
axes. With a median of I/K = 0.99, the geometric properties
only minimally reduce the twist-to-bend ratio. The huge
median values of �E/�G≈ 179 result in extremely high twist-
to-bend ratios ranging between 85 and 403 [21]. Based on
these results, Wolff-Vorbeck et al. [9] carried out simulations
on triangular cross-sections consisting of vascular bundles
scattered in the parenchyma and numerous strands of
collenchyma or sclerenchyma in the periphery with sur-
rounding epidermis. Similar to the results in this study, and
depending on the number of sclerenchyma strands, the flex-
ural rigidity is almost constant and the torsional rigidity
shows a U-shaped curve (see [9, figs 4 and 5]). The twist-
to-bend ratio is maximal when 49 peripheral sclerenchyma
strands are added to the triangular cross-section. This opti-
mum of 49 strands found in the simulation corresponds
well with the average value of 49 ± 8, which is calculated
from the numbers of strands of the apical and more basal
internodes of real C. pendula plants [21].

4.6. Cross-sections with a corner position of fibre
strands

Design x.7: Square cross-sections with four strands (c.7) and
triangular cross-sections with three strands (d.7) of collench-
yma or vascular bundles at the corners exhibit the highest
twist-to-bend ratios, which decrease with an increasing
number of bundles/strands (figure 7d,e,g,h). On the contrary,
squares and triangles with sclerenchyma strands in the cor-
ners have the lowest twist-to-bend ratio compared with
designs c.6 and d.6, which possess numerous strands and
form their own clusters (figure 6). Since L. cardiaca is a
combination of designs c.6 and c.7, we discussed it in the
above section.
5. Conclusion
The ultimate aim of our study has been to find answers to the
scientific question: How do the cross-sectional geometry
and/or the arrangement of vascular bundles or strengthening
tissues influence the flexural rigidity, the torsional rigidity
and thus the twist-to-bend ratio of plant axes? As answers,
we can derive from our research the following general state-
ments, which give an in-depth understanding of the
functional morphology of plants and might provide a basis
for engineers developing bioinspired designs.

1. On the basis of our mathematical calculations and exper-
imental research, we can summarize our results as follows.
1.1. Flexural rigidity (�EI) and torsional rigidity (ḠK) are

determined by geometric characteristics (axial
second moment of area I and torsion constant K)
and effective mechanical properties (elastic modulus
�E and torsional modulus Ḡ ).

1.2. Flexural rigidity increases when the vascular bundles
or strengthening tissues are placed more peripherally.

1.3. Torsional rigidity decreases the more the vascular
bundles or strengthening tissues are separated.

1.4. The twist-to-bend ratio (�EI/ḠK) is a trade-off
between flexural and torsional rigidity.

1.5. Plant axes with high twist-to-bend ratios are stiff
enough to remain upright under bending loads and
are flexible enough to twist under torsion loads.

1.6. Plant axes with a twist-to-bend ratio �EI/ḠK of less
than 1.0 are particularly stiff in torsion, since their
torsional rigidity is greater than their flexural
rigidity.

1.7. High ratios of effective elastic modulus and effective
torsional modulus (�E/Ḡ ) result in high twist-to-bend
ratios.

1.8. Cross-sectional geometry can contribute to high
twist-to-bend ratios if the ratio of the axial second
moment of area and torsion constant I/K is greater
than 1.0.

2. Conclusions from the rigidity charts of all artificial cross-
sections in which the flexural rigidity is shown as a
function of the torsional rigidity can be summarized
as follows.
2.1. Artificial cross-sections with the same basic cross-sec-

tional geometry do not cluster in the rigidity chart.
2.2. Clusters are found for artificial cross-sections with a

closed ring of vascular bundles or strengthening tis-
sues in the periphery exhibiting low twist-to-bend
ratios.

2.3. Clusters are found for artificial cross-sections with a
central position of vascular bundles or strengthening
tissues with low twist-to-bend ratios.
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2.4. Clusters are found for artificial cross-sections with
individual strands of strengthening tissue or vascular
bundles.

2.5. A fourth cluster is found for square and triangular
cross-sections with sclerenchyma in the stem corners.

3. The number of individual bundles/strands influences the
structural properties as follows.

3.1. With the exception of small numbers of peripheral
bundles/strands, the flexural rigidity is almost
constant with an increasing number of vascular
bundles or strands of strengthening tissues.

3.2. With the exception of small numbers of peripheral
bundles/strands, the torsional rigidity initially
decreases almost linearly and, after reaching a mini-
mum, increases again with an increasing number of
bundles/strands. This behaviour is caused by two
competing effects: a falling amplitude of Prandtl’s
stress function ϕ around bundles/strands and the
sieve effect caused by decreasing distances between
single bundles/strands.

3.3. Theminimumvalues of the torsional rigidity are almost
the same for all geometries, whereas the values of the
flexural rigidity differ between the geometries.

3.4. The twist-to-bend ratio is determined, on the one
hand, by the torsional rigidity, which decreases
with increasing numbers of bundles/strands to simi-
lar minimum values for all geometries and, on the
other hand, by the different values of flexural rigid-
ity, which in turn depend on the geometry.
3.5. The maximum and minimum values of the twist-to-
bend ratio are achievedwith different numbers of indi-
vidual bundles/strands, depending on the respective
cross-sectional geometry and on whether vascular
bundles, collenchyma strands or sclerenchyma strands
are considered.
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