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Hepatocellular carcinoma (HCC) is the most prevalent type of primary liver cancer

characterized by highmortality andmorbidity rate. The lack of effective treatments

and the high frequency of recurrence lead to poor prognosis of patients with HCC.

Therefore, it is important to develop robust prediction tools for predicting the

prognosis of HCC. Recent studies have shown that cancer stem cells (CSC)

participate in HCC progression. The aim of this study was to explore the

prognostic value of CSC-related genes and establish a prediction model based

on data from The Cancer Genome Atlas (TCGA) database. In this study, 475 CSC-

related genes were obtained from the Molecular Signature Database and

160 differentially expressed CSC-related genes in HCC patients were identified

using the limma R package in the TCGA database. A total of 79 CSC-related genes

were found to be associated with overall survival (OS). Using the least absolute

shrinkage and selection operator (LASSO) and multivariate Cox regressions, a 3-

gene signature (RAB10, TCOF1, and PSMD14) was constructed. Receiver operating

characteristic (ROC) curves and Kaplan-Meier survival curves were constructed to

test the prediction performanceof the signature. Performanceof the signaturewas

validated using the International Cancer Genome Consortium (ICGC) dataset. In

addition, immune feature and functional enrichment analyses were carried out to

explore the underlying mechanisms. Moreover, a co-expression network was

constructed using the weighted gene correlation network analysis (WGCNA)

method to select genes significantly associated with risk scores in HCC in the

TCGA dataset. The SGO2 gene was found to be significantly associated with risk

scores of HCC. In vitro experiments revealed that it can promote HCC cell

proliferation. Therefore, SGO2 may be a potential therapeutic target for HCC

treatment. The constructed nomogram can help clinicians make decisions about

HCC treatment.
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Introduction

Liver cancer, which is ranked sixth and third in terms of

morbidity and mortality among all malignant tumors, has

become a major public health issue worldwide (Sung et al.,

2021). Of all subtypes of primary liver cancer, hepatocellular

carcinoma (HCC) accounts for 80% of all liver cancer patients

globally (Rumgay et al., 2022). Recent etiologic studies have

shown that infection with HBV or HCV is the leading cause

of HCC, and it mostly occurs in countries and regions with low

economic development (Ghouri et al., 2017). In addition, alcohol

addiction, metabolism-related liver disease, and dietary toxins,

including aflatoxins and aristolochic acid, are common risk

factors of HCC in some developed countries (El-Serag, 2012;

Yang et al., 2019a). To date, there is no elaborate treatment

strategy for HCC, which calls for studies to find a cure for this

disease. Several molecularly targeted drugs have been approved

for the treatment of HCC, but they only have moderate effects

and are not effective in all patients (Huang et al., 2020). Although

surgery, chemotherapy, and radiotherapy are widely used for the

HCC treatment, the prognosis of patients is still poor, with a 5-

years survival rate of only about 18% (Jemal et al., 2017).

Prediction of HCC prognosis is hampered by the complex

tumorigenesis mechanism, high degree of heterogeneity, and

frequent recurrence.

Recent studies have demonstrated that liver cancer stem cells

may be responsible for these malignant properties of HCC

(Yamashita and Wang, 2013). Cancer stem cells (CSCs), also

known as tumor-initiating cells, are a subpopulation of cells

within the tumor that possess stem cell-like capacity. Lee et al.

(2022) revealed that they are self-renewable and can differentiate

into aggressive tumor cells to promote tumor growth. These cells

may be the cause of tumor relapse and high heterogeneity. With

the advancement in experimental technology, several biological

markers of liver CSCs have been identified in HCC and were

recently reviewed by (Tsui et al., 2020). Some markers, including

CK19, ABCG2, CD44, and CD133, were found to be correlated

with highly invasive features, and patients with elevated

expression levels of these markers had worse prognosis and

shorter survival time (Yang et al., 2010). Therefore, the CSCs-

related gene signatures have the potential to become powerful

predictors of prognosis for HCC patients.

In this study, the mRNA expression profiles and

corresponding clinical data of HCC patients were retrieved

from public databases and used to identify the key genes

associated with liver CSCs. Consequently, a 3-gene signature

model was constructed using The Cancer Genome Atlas (TCGA)

cohort, and validated in the International Cancer Genome

Consortium (ICGC) cohort. We confirmed that this gene

signature was an independent predictor of overall survival

(OS) and the underlying mechanisms were explored, with the

overarching goal of providing a new strategy for accurately

predicting the prognosis of HCC patients.

Materials and methods

Data collection

Gene expression profiles of RNA-sequencing data and

corresponding clinical information of HCC patients were

extracted from TCGA database (https://portal.gdc.cancer.gov/

repository). Another dataset consisting of 231 samples was

downloaded from the ICGC database. The TCGA-LIHC

dataset was used as the training cohort and ICGC dataset as

the validation cohort. As the data from both TCGA and ICGC are

publicly available. Therefore, this study was exempted from

approval by the local ethics committee. Patients with no

follow up data from both TCGA and ICGC were excluded

from the analysis. All read count values were normalized.

A total of 475 CSC genes from 109 CSC-related gene sets

were obtained from a published Articles (Liang et al., 2020). The

109 CSC-related gene sets are provided in Supplementary

Table S1.

Construction and validation of a
prognostic CSC-related gene signature

The “limma” R package was used to identify the differentially

expressed genes (DEGs) between tumor and adjacent normal

samples in the TCGA cohort, with false discovery rate (FDR) <
0.05 set as the cut-offs. Next, univariate Cox regression analysis

of overall survival (OS) was performed to determine the

prognostic value of CSC-related genes. 79 prognostic genes

was obtained after examining the intersection between the two

gene groups. Furthermore, to minimize overfitting, prognostic

CSC-related genes were assessed by least absolute shrinkage and

selection operator (LASSO) Cox proportional hazards regression

using the “glmnet” R package. The value of penalty parameter (λ)
corresponding to the lowest partial likelihood deviance was used

to select the best model by 10-fold cross-validation. We got a list

of genes with non-zero beta coefficients. Finally, a stepwise

multivariate Cox regression analysis were used to establish a

score system for calculating the survival risk for each HCC

patient based on the expression level of each prognostic gene

and its related regression coefficient. The following formula was

used: risk score = sum (gene expression level * regression

coefficient). Moreover, all patients were classified into high-

risk or low-risk group according to the median value of risk

score, which was used as the cut-off value. To observe the

clustering conditions of the gene signature, principal

component analysis (PCA), and t-SNE were performed using

the “prcomp” function of the “stats” R package and the “Rtsne” R

package, respectively. Time-dependent receiver operating

characteristic (ROC) curves were generated using the

“survivalROC” R package for evaluating the predictive

capacity of the novel gene signature. The survival curves for
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different groups were analyzed with the Kaplan-Meier method

with log-rank test. Finally, univariate and multivariate Cox

regression analyses were performed to determine whether the

CSC-related gene signature possessed the independent

prognostic value. To verify the effectiveness of the model, the

β value derived from the TCGA set was applied to the ICGC set,

all patients come from ICGC were also classified into high-risk or

low-risk group according to the same median value of risk score

in TCGA set.

Independence of the 3-CSC-related genes
signature from clinical features of other
TCGA-LIHC patients

Based on other clinical features (grade, age, TNM stage, and

T stage) of TCGA-LIHC patients, univariate and multivariate

Cox regression analyses were conducted to explore whether the

prognostic model was an independent variable. To confirm the

prognostic significance of the predictive model, TCGA-LIHC

patients were divided into two groups according to different

clinical characteristics. Patients were separately classified into the

following subgroups: grade I/II, grade III/IV, stage I/II, stage III/

IV, age <65, age ≥65, T1-T2, and T3-T4 subgroups. Survival

outcome analysis was then performed to verify the independent

prognostic significance of the gene signature in specific

subgroups. The ideal cut-off value of the risk score was

established using the surv_cutpoint function of “survminer” in

R package.

Immune infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) was

performed using “ssGSEA” R package to calculate the infiltrating

score of 16 immune cells and the activity of 13 immune-related

pathways of patients in the high-risk and low-risk groups.

Supplementary Table S2 shows the representative gene sets of

immune cells and related pathways.

Gene set variation analysis (GSVA)

Gene set variation analysis (GSVA) is a non-parametric and

unsupervised GSE method which can calculate enrichment

scores of predefined gene sets representing various biological

processes in each sample (Hanzelmann et al., 2013). The GSVA

was performed using the “clusterProfiler” R package to convert

the gene expression profiles of patients in high-risk and low risk

groups from TCGA and ICGC cohorts into the enrichment

scores in biological signaling pathways or functions. The

predefined pathway gene sets were obtained from the Kyoto

Encyclopedia for Genes and Genomes (KEGG) database.

Weighted gene correlation network
analysis (WGCNA)

To identify the risk score-related hub genes, WGCNA was

applied to HCC samples from the TCGA database using the

“WGCNA” R package. This analysis method has two parts.

One part classifies genes into different modules according to

their expression patterns and the other identifies modules that

are highly correlated with traits (Langfelder and Horvath,

2008). The WGCNA analysis was carried out on the

identified DEGs in HCC tumor samples. First, a gene

expression similarity matrix was constructed through

calculating the Pearson correlation coefficient between any

two genes. Next, a soft threshold of β = 8 was used to judge the

similarity of two genes, followed by converting the similarity

matrix into a weighted adjacency matrix. Finally, a topological

overlap matrix (TOM) was applied to further measure the

connectivity of genes in the co-expression network. Genes

were clustered according to the value of 1-TOM. In addition,

different modules were divided from the identified DEGs by

building the dynamic pruning tree, with each module

containing at least 30 genes. Similar modules were merged

at the cut-off value of 0.25.

Co-expression network was constructed and genes were

divided into modules, after which the relationships among

modules and traits were determined, which included risk

score and risk groups (low-risk = 0, high-risk = 1). Highly

correlated modules were selected for further analyses. Gene

ontology (GO) and KEGG analyses were then performed

using the “clusterProfiler” R package to evaluate the biological

functions of genes in the modules.

Establishment and evaluation of a
predictive nomogram

A nomogram was constructed based on gender, stage, grade,

age, and risk score (Iasonos et al., 2008). The area under the ROC

curve (AUC), 1-, 3-, and 5-years calibration curves, and decision

curve analyses (DCA) (Vickers and Elkin, 2006) were then used

to assess the nomogram’s prediction accuracy and discriminatory

capacity.

Cell culture

Human HCC cell lines Huh-7 and human kidney cells lines

HEK293T were purchased from American Type Culture

Collection. All cells were cultured in Dulbecco’s modified

Eagle medium (HyClone, USA) supplemented with 10% fetal

bovine serum (Gibco, USA) and 100U penicillin/streptomycin

(HyClone, USA) at 37°C in a humidified thermal incubator with

5% CO2.
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CRISPR-Cas9-mediated
SGO2 knockdown

Two optimal guide RNAs (CCAGTCTATTGGCCGCAGAT

and AATAGTTCAGATGTCGATAT) targeting come from the

different sites of the human SGO2 gene exon 6 were designed on

the CRISPOR website (http://crispor.tefor.net/). Next, the

gRNAs were cloned into pLentiCRISPRv2 (Addgene plasmid

#52961). HEK293T cells (2x105) were first seeded in 6-well plates

and then transfected with pLentiCRISPRv2-gRNA plasmid or

empty pLentiCRISPRv2 (2 µg) together with two lentiviral

packaging plasmid psPAX2 (1 μg, Addgene plasmid #12260)

and pMD2.G (1 μg, Addgene plasmid #12259) to generate

lentivirus. After transfection for 48 h, the upper media

containing lentivirus was collected and filtered using 0.45 µm

membrane filters. On the other hand, Huh-7 cells were seeded in

6-well plates at a density of 2x105 cells per well. After incubation

for 24 h, the media were replaced with a mixture of two

lentiviruses and fresh media (1:1:2) containing polybrene

(10 μg/ml). The infected cells were selected by treatment with

1 μg/ml puromycine for 4 days until the death of control Huh-7

cells. Finally, the expression of SGO2 was determined using

quantitative real-time polymerase chain reaction (qRT-PCR).

Cell proliferation and colony formation

Cell Counting Kit-8 (CCK-8, Dojindo Laboratories,

Kumamoto, Japan) was used to explore the effect of SGO2

knockdown on cell proliferation of HCC cells. Briefly, cells

were first seeded into 96-well plates at a density of 1x103 cells

per well. Next, the CCK-8 solution (10 µl in 90 µl DMEM) was

added to each well and incubated at 37°C for 1 h. Finally, the

optical density of the medium was measured at a wavelength of

450 nm.

Colony formation experiment: Cells were placed in 6-well

plates (1,000 cells per well). After 14 days of incubation, the

colonies were fixed in 4% paraformaldehyde (Cat. 15,700,

Electron Microscopy Sciences, USA) for 30 min, stained with

0.1% crystal violet (Beyotime, Beijing, China) for 15 min, and

then washed it. Finally, colonies were photographed and counted

using ImageJ software.

Quantitative real-time PCR

Total RNA of wildtype and SGO2 knockdown Huh-7 cells

were extracted using TRIzol reagent (TAKARA, Japan). qRT-

PCR was then performed with MonAmp™ ChemoHS qPCRMix

(Monad) in accordance with the manufacturer’s instructions.

Relative expression of SGO2 mRNA was normalized to β-actin

mRNA (internal control) and calculated using the 2-ΔΔCt method.

The sequences of primer used were as follows: SGO2: 5’- GCC

CAGTCTATTGGCCGCAG -3’ (forward) and 5’- TTCAATCTT

TTCCCCAATAT -3’ (reverse); β-actin: 5’- CACCATTGGCAA

TGAGCGGTTC -3’ (forward) and 5’- AGGTCTTTGCGGATG

TCCACGT-3’ (reverse).

Statistical analyses

The students t test was used to evaluate gene expressions

differences between normal and tumor tissues, while the chi-

square test was used to compare proportional differences

between normal and tumor tissues. The Kaplan Meier and

log-rank tests were used for comparisons of OS for various

clinical subgroup. Univariate and multivariate Cox regression

analysis were used to identify independent predictors of OS. For

data analysis, the R program (version 4.1.0) was utilized. Unless

otherwise stated, p < 0.05 denotes significance.

Results

Identification of prognostic cancer stem
cell (CSC)-related DEGs in TCGA cohort

Supplementary Figure S1 shows the flow chart of the study.

The detailed clinical characteristics of these patients come

TABLE 1 Clinical characteristics of the HCC patients used in this study.

TCGA cohort ICGC cohort

No. of patients 365 231

Age (median, range) 61(16-90) 69(31-89)

Gender (%)

Female 119(32.6%) 61(26.4%)

Male 246(67.4% 170(72.6%)

Grade (%)

Grade 1 55(15.1%) NA

Grade 2 175(47.9%) NA

Grade 3 118(32.3%) NA

Grade 4 12(3.3%) NA

Unknown 5(1.4%) NA

Stage (%)

I 170(46.6%) 36(15.6%)

II 84(23.0%) 105(45.5%)

III 83(22.7%) 71(30.7%)

IV 4(1.1%) 19(8.2%)

unknown 24(6.6%) 0(0.0%)

Survival status OS days (median) 556 780

Survival status

Dead 130 189

Alive 235 42
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from TCGA are summarized in Table 1. A total of 160 CSC-

related DEGs were identified between HCC cancer

samples and adjacent normal samples (Supplementary

Figures S2A,B). Among them, 79 DEGs were found to be

associated with OS in the univariate Cox regression

analysis (Figures 1A,B). Analysis of the heatmap plot

showed that most of these prognostic DEGs were

upregulated in the cancer samples (Figure 1C). GO analysis

revealed that these CSC-related genes were mainly enriched in

response to stem cell differentiation, mesenchyme

development, mesenchymal cell differentiation, maintenance

of stem cell population, and stem cell development

(Supplementary Figure S2C). Moreover, KEGG pathway

analysis revealed that these genes were correlated with the

hippo signaling pathway, Wnt signaling pathway, TGF-beta

pathway, and notch signaling pathway (Supplementary

Figure S2D).

Construction and evaluation of a CSC-
related prognostic signature in the TCGA
cohort

To further filter the genes and reduce the risk of

overfitting, LASSO Cox regression was employed.

According to the multivariate Cox regression of OS, A 3-

gene signature (RAB10, TCOF1, and PSMD14) was eventually

identified based on the minimum value of λ (Figures 1D,E).

Next, the risk score of each HCC patient in the TCGA dataset

was calculated using the following formula: 0.238*expression

level of RAB10 + 0.609*expression level of

TCOF1+0.360*expression level of PSMD14. Patients were

stratified into two groups based on the risk score; patients

with risk scores higher than the median value were classified in

high-risk group (n = 182), whereas patients with risk scores

lower than the median value were classified in low-risk group

FIGURE 1
Identification and construction of CSC-related gene signature from TCGA corhot. (A) Volcano map of CSC-related DEGs in tumor and normal
tissues from the TCGA dataset. (B) Venn plot used for selection of DEGs with prognostic value. (C) Heatmap illustrating differences in expression of
79 overlapping genes. (D) LASSOCox regression analysis (E) Forest plot showing the relationship between the 3 genes andOS. CSC: cancer stem cell;
DEG: Differentially expressed genes; LASSO: least absolute shrinkage and selection operator; OS: overall survival.
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(n = 183) (Figure 2A). Results showed that the three genes

were significantly upregulated in the high-risk group

(Figure 2B). PCA and t-SNE analysis revealed that patients

in the two groups were well distributed in different directions

(Figures 2D,E). Further analysis showed that patients in the

high risk score group had shorter the survival time and

mortality risk (Figure 2C). Time-dependent ROC curves

were generated to evaluate the prediction power of the risk

score. Results demonstrated that the area under the curve

(AUC) for 1-, 2-, and 3-years OS was 0.775, 0.686, and 0.675,

respectively, indicating that the gene signature could predict

the prognosis of HCC (Figure 2F). Analysis of Kaplan-Meier

survival curves showed that patients in the high-risk group

had poor OS and platinum-free interval (PFI) (p < 0.001; p =

0.025, Figures 2G,H).

Validation of the prognostic model in the
ICGC cohort

The dataset downloaded from the ICGC was used to verify

the generality of the novel CSC-related prognostic model. The

risk score was used to divide patients from the ICGC dataset into

high-risk groups and low-risk groups (Figure 3A). Similarly, the

three prognostic risk genes were upregulated in the high-risk

group (Figure 3B). PCA and t-SNE analyses indicated that

patients in the different risk groups were distributed in two

discrete sections (Figures 3C,D). Results of the scatterplot and

Kaplan-Meier survival curves showed that patients with high-risk

scores had short survival time and high mortality rate (Figures

3E,F), consistent with findings in the TCGA cohort. The AUC of

time-dependent ROC ranged from 0.705 to 0.703 for 3 years

FIGURE 2
The prognosis prediction value of CSC-related gene signature in TCGA cohort. (A) The distribution of patients in high risk and low risk groups in
the TCGA dataset. (B)Heatmap showing differences in expression levels of the 3 genes between the two risk groups. (C) The distribution of OS status
and OS among various risk score groups. (D) PCA analysis of the TCGA dataset. (E) t-SNE analysis of the TCGA dataset. (F) AUC of time-dependent
ROC curves for the risk score. (G) Kaplan-Meier survival curves showing the OS of patients in the two risk groups. (H) Kaplan-Meier survival
curves showing the disease-free interval of patients in the two risk groups. AUC: area under the ROC curve; DFI: disease-free interval; OS: overall
survival; PCA: Principal Component Analysis; ROC: Receiver Operating Characteristic.
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(Figure 3G), indicating that the gene signature could predict the

prognosis of patients in the ICGC cohort. Moreover, the risk

score showed better prediction than most the clinical

characteristics such as gender and age (Figure 3H).

Independent prognostic value of the 3-
CSC-related genes signature

To further evaluate the prognostic value of the risk score,

univariate and multivariate Cox regression analyses were applied

among risk score and some clinicopathological characteristics in

both TCGA and ICGC cohorts. The univariate Cox regression

analysis results showed that the risk score (p < 0.001, HR = 1.623,

95% CI = 1.422-1.854) and tumor stage (p < 0.001, HR = 2.500,

95% CI = 1.721-3.632) were significantly associated with OS in

the TCGA cohort (Figure 4A). In the multivariate Cox regression

analysis of the two variables, the risk score (p < 0.001, HR = 1.635,

95% CI = 1.418-1.884) and tumor stage (p < 0.001, HR = 2.361,

95% CI = 1.624-3.432) were independent prognostic factor in the

TCGA dataset (Figure 4C). The risk score was also an

independent prognostic factor in the ICGC cohort (p < 0.001,

HR = 3.534, 95% CI = 1.862-6.709) (Figure 4B, Figure 4D).

Collectively, these results suggest that the constructed risk score

was an independent prognostic predictor of OS.

To assess the prognostic value of the model in various clinic-

pathological subgroups, clinical variables and samples were

randomized into two subgroups in term of TNM stage, age,

grade, and T stage. The obtained results indicated that the 3-

CSC-related genes signature was significantly correlated with the

FIGURE 3
Validation of the prognostic prediction accuracy of the signature in the ICGC cohort. (A) The distribution of patients between high risk and low
risk groups in the ICGCdataset. (B)Heatmap showing differences in expression levels of 3 genes between the two risk groups. (C) PCA analysis for the
ICGC dataset. (D) t-SNE analysis for the ICGC dataset. (E) The distribution of OS status and OS among various risk score groups. (F) Kaplan-Meier
survival curves for the OS of patients in the two risk groups. (G) AUC of time-dependent ROC curves for the risk scores. (H) AUC of ROC curves
for the risk score and various clinical characteristics. AUC: area under the ROC curve; DFI: disease-free interval; OS: overall survival; PCA: Principal
Component Analysis; ROC: Receiver Operating Characteristic.
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survival of patients in different clinic-pathological subgroups in

the TCGA-LIHC cohort (Supplementary Figure S3).

The correlation between immune status
and risk score

HCC patients were classified into high-risk and low-risk

groups based on the risk score. It was evident that patients

with high-risk scores were more likely to have poor prognosis,

which has been confirmed above. However, the correlation

between poor prognosis and high-risk score was not clear. We

suspected that there might be a difference in immune status

between the two risk groups. To this effect, the ssGSEA method

was applied to all HCC samples in the high-risk and low-risk

groups to evaluate immune cells infiltration and the activities of

immune-related pathways. Figure 5A and Figure 5B show the

enrichment scores of 16 types of infiltrating immune cells. In

TCGA and ICGC cohorts, the scores of aDCs, macrophages,

Th2 cells, and Tregs were significantly upregulated in the high-

risk score group, whereas the scores of neutrophils and NK cells

were lower than those in the low-risk group (p < 0.05). Among

the screened immune-related functions or pathways, the

expression of MHC class I was increased in the high-risk

score group. In contrast, the activities of type I IFN response

and type II IFN response were inhibited in the high-risk score

group (p < 0.05, Figures 5C,D).

Identification of biological functions
associated with the risk score

To further explore the differences in the activities of various

biological signaling pathways between high-risk and low-risk

FIGURE 4
The forest plot showing results of univariate andmultivariate Cox regression analyses of OS in the TCGA (A,C) and ICGC cohort (B,D). OS: overall
survival.
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groups, GSVA enrichment analysis was performed for each sample

from the TCGA and ICGC cohorts. Results showed that the

common pathways and functions enriched in samples from

high-risk groups in both TCGA and ICGC cohorts were

homologous recombination, cell cycle, RNA degradation,

splicesome, and ubiquitin mediated proteolysis (Figures 6A,B).

On the other hand, the activities of various metabolism-related

pathways in the low-risk groupswere substantially higher than those

FIGURE 5
The enrichment scores of 16 types of immune infiltrating cells and 13 immune-related functions in the TCGA (A,C) and ICGC (B,D) cohorts. *p <
0.05, **p < 0.01, ***p < 0.001.

FIGURE 6
Heatmap showing the KEGG pathways enriched in high- and low-risk groups in the TCGA (A) and ICGC (B) cohorts. KEGG: Kyoto Encyclopedia
of Genes and Genomes.
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in the high-risk groups, including glycine-serine and threonine

metabolism, fatty acid metabolism, linoleic acid metabolism, and

the PPAR signaling pathway. In addition, one immune-related

pathway, complement and coagulation cascades, was enriched in

the low-risk groups (Figures 6A,B).

Hub genes associated with high-risk in
HCC patients

To screen out the hub genes responsible for the high-risk of

poor prognosis in HCC, WGCNA was performed on the DEGs

between tumor and normal tissues identified from TCGA database.

A co-expression network of 5,301 genes was built and 14 modules

were divided from it through setting the optimal soft-thresholding

power at 8 (scale free R2 = 0.85, Figures 7A–C). The correlation

coefficients between each module and risk score or risk groups

(high-risk = 1; low-risk = 0) were calculated and presented in a

heatmap. The results suggested that the cyan module was the most

closely and positively associated with risk score and the high-risk

group, with correlation coefficients of 0.8 and 0.67, respectively (p <
0.001, Figure 7D). Therefore, the cyan module was selected for

further analysis. GO and KEGG enrichment analyses were

conducted on the 2,815 genes in the cyan module to reveal the

functional link between key genes. The top 10 GO terms and KEGG

pathways enriched from the genes of cyan module are shown in

Supplementary Figure S4.

Genes in the module were ranked by the scores and p values

of gene significance (GS) and module membership (MM).

Notably, the top 10 genes are listed in Table 2. Given that the

mechanism of the number 1 gene (BUB1B) in HCC has already

been elucidated (Qiu et al., 2020), we chose the number 2 key

gene (SGO2) for subsequent analyses. Notably, in vitro

experiments were conducted to further investigate the

FIGURE 7
Identification of hub genes related to the risk score by WGCNA. (A) Analysis of the optimal soft-thresholding power based on scale-free
network. (B) Mean connectivity analysis of soft-thresholding powers. (C) Cluster dendrogram of co-expressed genes. Each branch represents a
module and is given a unique color. (D)Heatmap showing the correlation coefficients (upper row) and significance (p values showed in the brackets)
between modules and risk score or risk groups. WGCNA: Weighted Gene Co-expression Network analysis.
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biological functions of SGO2 in HCC. Specifically, the expression

level of SGO2 was knocked down in Huh-7 cells by CRISPR/Cas

9 system as illustrated in Figure 8A. The success of SGO2

knockdown was confirmed using qRT-PCR analysis

(Figure 8B). The CCK-8 assay results showed that decreased

expression of SGO2 had a significant inhibitory effect on the

proliferation of Huh-7 cells (Figure 8C).Clone formation

experiments showed, Huh-7 cells with knockdown of SGO2

showed worse ability to form colonies.The difference was

statistically significant (p < 0.05), as shown in Supplementary

Figure S5. The results showed that SGO2 knockdown effectively

inhibited the clone formation ability of HCC cells.

TABLE 2 Genes in the cyan module ranked by scores and p values of MM and GS.

Gene MM Correlation coefficients and p-values

Risk score Risk group

BUB1B 0.8407 (3.29E-22) 0.8814 (8.60E-27) 0.5789 (2.28E-08)

SGO2 0.9126 (1.24E-31) 0.8558 (9.66E-24) 0.6264 (6.65E-10)

STIP1 0.7749 (5.29E-17) 0.8464 (9.16E-23) 0.7098 (2.43E-13)

NCAPG 0.7764 (4.21E-17) 0.8447 (1.34E-22) 0.5237 (7.33E-07)

PRC1 0.7758 (4.61E-17) 0.8339 (1.44E-21) 0.5418 (2.51E-07)

HJURP 0.8376 (6.54E-22) 0.8315 (2.40E-21) 0.5658 (5.53E-08)

SPC25 0.7419 (5.22E-15) 0.8312 (2.52E-21) 0.5789 (2.28E-08)

KPNB1 0.8374 (6.82E-22) 0.8294 (3.69E-21) 0.5746 (3.08E-08)

SPATS2 0.8872 (1.39E-27) 0.8278 (5.16E-21) 0.6553 (5.63E-11)

KIF23 0.8164 (4.77E-20) 0.8263 (6.89E-21) 0.5478 (1.74E-07)

FIGURE 8
CRISPR-Cas9mediated SGO2 knockdown inhibits the proliferation of HCC cells. (A) Two specific gRNAs targeting the gene sequence of SGO2.
(B) Confirmation of expression level of SGO2mRNA in Huh-7 SGO2 knockdown cells and control cells by Quantitative real-time PCR assay. (C) The
cell proliferation status, evaluated daily for 6 days using the CCK-8 assay (n = 6). CCK-8: Cell Counting Kit-8; HCC: Hepatic cell carcinoma; PCR:
Polymerase Chain Reaction.
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Establishment and validation of the
predictive nomogram

To make the prognostic signature more convenient for

clinical application, we constructed a nomogram and tested its

capacity to predict OS on the TCGA-LIHC cohort at 1-, 3-, and

5-years based on risk scores, and other signifcant independent

risk factors (Figure 9A). The 1-, 3-, and 5-years OS calibration

curves of the TCGA-LIHC data revealed that the nomogram had

good predictive discrimination and accuracy (Figure 9B).

Moreover,the nomogram had a higher consistency index

compared to other clinical markers and the risk score

(Figure 9C). In addition, Comparison of the net benefits of

various models, such as none, risk score, all, nomogram, and

FIGURE 9
Construction of a nomogram based on independent prognostic factors for predicting OS in TCGA cohort. (A) The prediction performance of
the nomogram for theOS at 1-, 3- and 5-years. (B)Calibration curves for the predicted 1-, 3-, and 5-years OS. (D)DCA curve. (C)Concordance index
demonstrating the concordance measure of the predictor with patient survival. (E–G) ROC curves for the predicted 1-, 3-, and 5-years OS. DCA:
decision curve analyses; LIHC: Liver hepatocellular carcinoma; OS: overall survival; ROC: Receiver Operating Characteristic.
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clinical indicators revealed that the nomogram had a higher net

income and a wider threshold probability (Figure 9D). The

analysis results revealed that the nomogram had a better

prognostic ROC value compared to the 3-CSC-related-genes

signature and other four clinical indicators, and it could

predict OS for 1-, 3-, and 5-years (Figures 9E–G).Finally, the

predictive value of nomogram was further validated in the ICGC

dataset (Supplementary Figure S6). Altogether, results of ROC,

DCA, calibration curve, and C index analyses indicated that the

nomogram had better clinical benefits than risk scores based on

the four 3-genes signatures alone.

Discussion

Herein, 456 cancer stem cell-related genes were identified

in HCC tumor samples. The correlation of these genes with

clinical outcomes was explored. Among them, three genes

(RAB10, TCOF1, and PSMD14) were found to be significantly

upregulated in tumor samples, and univariate Cox regression

showed that they were also significantly associated with overall

survival. Consequently, the three genes were used to construct

a novel prognosis prediction model. The effectiveness of the

model as a prognosis predictor was then confirmed using

internal and external validation cohorts, with results

showing that it was an independent variable of HCC

prognosis.

Previous studies reported the biological functions of the

three genes in cancers. Consistent with our results, the

expression level of these genes was upregulated in human

HCC (He et al., 2002; Lv et al., 2020; Wu et al., 2022). RAB10 is

a member of the RAS superfamily. It encodes a protein that

functions as small GTPase and plays a crucial role in

intercellular vesicular trafficking (Pereira-Leal and Seabra,

2000; Chua and Tang, 2018). Some studies have revealed

that RAB10 knockdown significantly suppressed

proliferation of HCC cells both in vitro and in nude mice

xenografts, suggesting that RAB10 was involved in

tumorigenesis (Wang et al., 2017). Furthermore, RAB10

silencing could induce cell cycle arrest and apoptosis in

HCC cells, thereby affecting a number of cellular signaling

pathways (Wang et al., 2017). TCOF1 encodes the protein

named treacle, a nucleolar factor that can regulate the

transcription of not only ribosomal DNA but even of DNA

elsewhere in the genome (Valdez et al., 2004). It has been

found to activate the transcription of oncogenes and increase

ribosomal production in HCC cells, thereby promoting tumor

growth (Wu et al., 2022). Wu et al. (2022) reported that

expression of TCOF1 can alter the immune

microenvironment of HCC and induce the antitumor

immune cell infiltration, which indirectly facilitates HCC

progression. Furthermore, although not reported in HCC,

the tumor-initiating capacity and self-renewal ability of

triple-negative breast cancer cells were affected by TCOF1

depletion, which indicates its significance in maintaining CSC

stemness (Hu et al., 2022). PSMD14 is a subunit of the 19S

regulatory cap of the 26S proteasome that mediates substrate

deubiquitination, a deubiquitinase belonging to the JAMM

domain metalloprotease family. It has recently been identified

as an oncogene, and has been shown to be associated with

multiple solid tumors and poor prognosis (Luo et al., 2017;

Song et al., 2017). Moreover, PSMD14 has been found to

interact with various signaling pathways in HCC, such as

stabilizing E2F1 to hyperactivate its downstream pro-

survival signaling thereby promoting cell proliferation

(Wang et al., 2015); deubiquitinating TGF-β receptors

(TGFBR1 and TGFBR2) and CAV1 to facilitate tumor

metastasis (Wang et al., 2019), and protecting GRB2 from

degradation to regulate HCC progression (Lv et al., 2020). In

summary, these three genes modulate HCC tumorigenesis,

and influence cancer progression and prognosis through

complex mechanisms. Therefore, they can be use as risk

factors for evaluating clinical outcomes in HCC patients.

In this study, patients were classified into two groups based

on the 3-gene signature: high-risk or low-risk

group. Experiments were conducted based to uncover the

potential relationships between CSC and poor prognosis in

HCC from a holistic point of view. Considering that most

HCC cases were driven by chronic liver inflammation, the

patients’ immune status was of concern. GSVA results showed

that that homologous recombination, cell cycle, RNA

degradation, splicesome, and ubiquitin mediated proteolysis

were positively enriched in TCGA and the ICGC cohort, which

suggested that the dysregulation of these pathways was closely

related to HCC development. The ssGSEA analysis found that

high-risk patients tended to have higher infiltration levels of

macrophages and Treg cells in TCGA and the ICGC cohort.

Previous studies have demonstrated that increased tumor-

associated macrophages (Zhang et al., 2019; Zhou et al.,

2016) or Treg cells (Fu et al., 2007; Zhou et al., 2016) are

related to poor prognosis in HCC patients due to their role in

immune invasion. Of note, these immune cells have previously

been identified as immunosuppressive cells in the tumor

microenvironment that can inactivate anti-tumor immunity

and help tumor cells escape immune attack, thereby

promoting tumor growth. They have also been reported to

be associated with poor prognosis of HCC patients (Dong

et al., 2016; Fu et al., 2007; Lu et al., 2019). Moreover, some

anti-tumor immune responses were impaired in the high-risk

group, including decreased neutrophils and NK cells as well as

the activity of type I and type II IFN response. In line with our

results, a recent study by Dai et al. (2021) found that CSCs

were involved in immune evasion, suggesting that they can be

used as immunotherapeutic targets for HCC. Therefore, one

reasonable explanation for the poor prognosis of patients in

the high-risk group is the immunosuppressive
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microenvironment created by cancer stem cells. Furthermore,

GSVA results suggested that homologous recombination, cell

cycle, RNA degradation, splicesome, and ubiquitin mediated

proteolysis were positively correlated with risk score. In

addition, the activity of many metabolism pathways,

including glycine-serine and threonine metabolism, fatty

acid metabolism, linoleic acid metabolism, and the PPAR

signaling pathway, was inhibited in the high-risk

group. These results suggest that dysfunction of these

signaling pathways may contribute to cancer progression,

which is worthwhile for future studies and provides new

insights into the molecular mechanisms of tumorigenesis

and the search for a HCC cure.

Finally, to determine key genes significantly associated with

HCC prognosis, we performed WGCNA using DEGs identified

from the TCGA dataset, with risk scores and risk groups as the

traits. A gene module was identified from the constructed co-

expression network. BUB1B, the first gene in the module, has

been reported to promote HCC progression by activating the

mTORC1 signaling pathway (Qiu et al., 2020). It has been found

to have highly expressed in tumor tissues and HCC cell lines, and

BUB1B knockdown significantly inhibited the proliferation,

migration, and invasion of HCC cells (Qiu et al., 2020).

Moreover, several bioinformatics analyses have considered it

as a prognostic marker and potential therapeutic target for

HCC (Fu et al., 2021; Yang et al., 2019b; Zhou et al., 2019;

Zhuang et al., 2018). Therefore, we hypothesized that the second

gene in the same module, SGO2, may play a similar oncogenic

role as BUB1, although its biological function in HCC remains

poorly understood. Results obtained after conducting the in vitro

experiment suggested that SGO2 plays a critical role in HCC cell

proliferation, and knockdown of SGO2 largely suppressed cell

growth. However, further mechanistic studies should be

performed to investigate the oncogenic role of SGO2, and

explore its value as a new therapeutic target and prognostic

marker of HCC.

In summary, this study identified three cancer stem cell

related genes that were associated with poor prognosis in

HCC patients. The three genes were used to construct a novel

model for accurate and independent prediction of clinical

outcome of HCC patients. Therefore, this model can be

widely used to predict the prognosis of HCC patients, and

provides valuable insights for improving patient outcomes.

Moreover, this study demonstrates for the first time the

tumor-promoting role of SGO2 in HCC using cellular

experiments. Collectively, our results provide a fundamental

contribution to elucidating the pathogenesis of HCC as well

as the search for new therapeutic targets in the future.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

X-YL and Z-HD conceived and designed the study. X-YP

developed method. X-YL performed analyses and experiments.

X-DZ revised the manuscript. M-YD and R-LD drafted the

manuscript. All the authors read and agreed to the manuscript.

Funding

This study was supported by grants from project of Baise

scientific research and technology development plan in 2021 (No.

20212347), and the Basic Ability Improvement Project for Young

and Middle-aged Teachers in Colleges and Universities of

Guangxi (Grant No. 2022KY0532).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.888601/full#supplementary-material

Frontiers in Genetics frontiersin.org14

Liang et al. 10.3389/fgene.2022.888601

https://www.frontiersin.org/articles/10.3389/fgene.2022.888601/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.888601/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.888601


References

Chua, C., and Tang, B. L. (2018). Rab 10-a traffic controller in multiple cellular
pathways and locations. J. Cell. Physiol. 233 (9), 6483–6494. [Journal Article;
Research Support, Non-U.S. Gov’t; Review]. doi:10.1002/jcp.26503

Dai, X., Guo, Y., Hu, Y., Bao, X., Zhu, X., Fu, Q., et al. (2021). Immunotherapy for
targeting cancer stem cells in hepatocellular carcinoma. Theranostics 11 (7),
3489–3501. [Journal Article; Research Support, Non-U.S. Gov’t; Review]. doi:10.
7150/thno.54648

Dong, P., Ma, L., Liu, L., Zhao, G., Zhang, S., Dong, L., et al. (2016). CD86⁺/
CD206⁺, diametrically polarized tumor-associated macrophages, predict
hepatocellular carcinoma patient prognosis. Int. J. Mol. Sci. 17 (3), 320. [Journal
Article; Research Support, Non-U.S. Gov’t]. doi:10.3390/ijms17030320

El-Serag, H. B. (2012). Epidemiology of viral hepatitis and hepatocellular
carcinoma. Gastroenterology 142 (6), 1264–1273. N.I.H., Extramural; Research
Support, Non-U.S. Gov’t; Review]. doi:10.1053/j.gastro.2011.12.061

Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007). Increased regulatory
T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular
carcinoma patients.Gastroenterology 132 (7), 2328–2339. [Journal Article; Research
Support, Non-U.S. Gov’t]. doi:10.1053/j.gastro.2007.03.102

Fu, J., Zhang, X., Yan, L., Shao, Y., Liu, X., Chu, Y., et al. (2021). Identification of
the hub gene BUB1B in hepatocellular carcinoma via bioinformatic analysis and
in vitro experiments. PeerJ 9, e10943. doi:10.7717/peerj.10943

Ghouri, Y. A., Mian, I., and Rowe, J. H. (2017). Review of hepatocellular
carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 16, 1

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. [Journal Article;
Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov’t]. doi:10.
1186/1471-2105-14-7

He, H., Dai, F., Yu, L., She, X., Zhao, Y., Jiang, J., et al. (2002). Identification and
characterization of nine novel human small GTPases showing variable expressions
in liver cancer tissues. Gene Expr. 10 (5-6), 231–242. Gene Expr.; Research Support,
Non-U.S. Gov’t]. doi:10.3727/000000002783992406

Hu, J., Lai, Y., Huang, H., Ramakrishnan, S., Pan, Y., Ma, V., et al. (2022).
TCOF1 upregulation in triple-negative breast cancer promotes stemness and
tumour growth and correlates with poor prognosis. Br. J. Cancer 126 (1), 57–71.
Br. J. Cancer; Research Support, Non-U.S. Gov’t]. doi:10.1038/s41416-021-01596-3

Huang, A., Yang, X. R., Chung, W. Y., Dennison, A. R., and Zhou, J. (2020).
Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target Ther. 5 (1),
146. [Journal Article; Research Support, Non-U.S. Gov’t; Review]. doi:10.1038/
s41392-020-00264-x

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build and
interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26 (8), 1364–1370.
doi:10.1200/JCO.2007.12.9791

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, B., et al.
(2017). Annual report to the nation on the status of cancer, 1975-2014, featuring
survival. J. Natl. Cancer Inst. 109 (9). doi:10.1093/jnci/djx030

Langfelder, P., and Horvath, S. (2008). Wgcna: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-
9-559

Lee, T. K., Guan, X. Y., and Ma, S. (2022). Cancer stem cells in hepatocellular
carcinoma - from origin to clinical implications. [Journal Article; Research Support,
Non-U.S. Gov’t; Review]. Nat Rev Gastroenterol Hepatol. 19 (1), 26–44.

Liang, Y., Su, Q., and Wu, X. (2020). Identification and validation of a novel six-
gene prognostic signature of stem cell characteristic in colon cancer. Front. Oncol.
10, 571655. doi:10.3389/fonc.2020.571655

Lu, C., Rong, D., Zhang, B., Zheng, W., Wang, X., Chen, Z., et al. (2019). Current
perspectives on the immunosuppressive tumor microenvironment in hepatocellular
carcinoma: Challenges and opportunities. Mol. Cancer. 18 (1), 130. Mol. Cancer;
Research Support, Non-U.S. Gov’t; Review]. doi:10.1186/s12943-019-1047-6

Luo, G., Hu, N., Xia, X., Zhou, J., and Ye, C. (2017). RPN11 deubiquitinase
promotes proliferation and migration of breast cancer cells. Mol. Med. Rep. 16 (1),
331–338. doi:10.3892/mmr.2017.6587

Lv, J., Zhang, S., Wu, H., Lu, J., Lu, Y., Wang, F., et al. (2020). Deubiquitinase
PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing
GRB2. Cancer Lett. 469, 22–34. [Journal Article; Research Support, Non-U.S.
Gov’t]. doi:10.1016/j.canlet.2019.10.025

Pereira-Leal, J. B., and Seabra, M. C. (2000). The mammalian rab family of small
GTPases: Definition of family and subfamily sequence motifs suggests a mechanism
for functional specificity in the ras superfamily. J. Mol. Biol. 301 (4), 1077–1087.
doi:10.1006/jmbi.2000.4010

Qiu, J., Zhang, S., Wang, P., Wang, H., Sha, B., Peng, H., et al. (2020). BUB1B
promotes hepatocellular carcinoma progression via activation of the
mTORC1 signaling pathway. Cancer Med. 9 (21), 8159–8172. Cancer Med.;
Research Support, Non-U.S. Gov’t]. doi:10.1002/cam4.3411

Rumgay, H., Ferlay, J., de Martel, C., Georges, D., Ibrahim, A. S., Zheng, R., et al.
(2022). Global, regional and national burden of primary liver cancer by subtype.
Eur. J. Cancer 161, 108–118. doi:10.1016/j.ejca.2021.11.023

Song, Y., Li, S., Ray, A., Das, D. S., Qi, J., Samur, M. K., et al. (2017). Blockade of
deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and
overcomes bortezomib resistance. Oncogene 36 (40), 5631–5638. [Journal Article;
Research Support, N.I.H., Extramural]. doi:10.1038/onc.2017.172

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Tsui, Y. M., Chan, L. K., and Ng, I. O. (2020). Cancer stemness in hepatocellular
carcinoma: Mechanisms and translational potential. Br. J. Cancer 122 (10),
1428–1440. Br. J. Cancer; Research Support, Non-U.S. Gov’t; Review]. doi:10.
1038/s41416-020-0823-9

Valdez, B. C., Henning, D., So, R. B., Dixon, J., and Dixon, M. J. (2004). The
Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA
gene transcription by interacting with upstream binding factor. Proc. Natl. Acad.
Sci. U. S. A. 101 (29), 10709–10714. [Journal Article; Research Support, Non-U.S.
Gov’t; Research Support, U.S. Gov’t, P.H.S.]. doi:10.1073/pnas.0402492101

Vickers, A. J., and Elkin, E. B. (2006). Decision curve analysis: A novel method for
evaluating prediction models. Med. Decis. Mak. 26 (6), 565–574. Med. Decis.
Making; Research Support, N.I.H., Extramural]. doi:10.1177/0272989X06295361

Wang, B., Ma, A., Zhang, L., Jin, W. L., Qian, Y., Xu, G., et al. (2015).
POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat.
Commun. 6, 8704. [Journal Article; Research Support, Non-U.S. Gov’t]. doi:10.
1038/ncomms9704

Wang, W., Jia, W. D., Hu, B., and Pan, Y. Y. (2017). RAB10 overexpression
promotes tumor growth and indicates poor prognosis of hepatocellular carcinoma.
Oncotarget 8 (16), 26434–26447. doi:10.18632/oncotarget.15507

Wang, B., Xu, X., Yang, Z., Zhang, L., Liu, Y., Ma, A., et al. (2019).
POH1 contributes to hyperactivation of TGF-β signaling and facilitates
hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors
and caveolin-1. EBioMedicine 41, 320–332. doi:10.1016/j.ebiom.2019.01.058

Wu, C., Xia, D., Wang, D., Wang, S., Sun, Z., Xu, B., et al. (2022).
TCOF1 coordinates oncogenic activation and rRNA production and promotes
tumorigenesis in HCC. Cancer Sci. 113 (2), 553–564. doi:10.1111/cas.15242

Yamashita, T., and Wang, X. W. (2013). Cancer stem cells in the development of
liver cancer. J. Clin. Invest. 123 (5), 1911–1918. doi:10.1172/JCI66024

Yang, X. R., Xu, Y., Yu, B., Zhou, J., Qiu, S. J., Shi, G. M., et al. (2010). High
expression levels of putative hepatic stem/progenitor cell biomarkers related to
tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59 (7),
953–962. [Journal Article; Research Support, Non-U.S. Gov’t]. doi:10.1136/gut.
2008.176271

Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., and Roberts, L. R.
(2019a). A global view of hepatocellular carcinoma: Trends, risk, prevention and
management. Nat. Rev. Gastroenterol. Hepatol. 16 (10), 589–604. N.I.H., Extramural;
Research Support, Non-U.S. Gov’t; Review]. doi:10.1038/s41575-019-0186-y

Yang, W. X., Pan, Y. Y., and You, C. G. (2019b). CDK1, CCNB1, CDC20, BUB1,
MAD2L1, MCM3, BUB1B, MCM2, and RFC4 may Be potential therapeutic targets
for hepatocellular carcinoma using integrated bioinformatic analysis. Biomed. Res.
Int. 2019, 1245072. doi:10.1155/2019/1245072

Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., et al. (2019). Landscape
and dynamics of single immune cells in hepatocellular carcinoma. Cell. 179 (4),
829–845. doi:10.1016/j.cell.2019.10.003

Zhou, S. L., Zhou, Z. J., Hu, Z. Q., Huang, X. W., Wang, Z., Chen, E. B., et al.
(2016). Tumor-associated neutrophils recruit macrophages and T-regulatory cells
to promote progression of hepatocellular carcinoma and resistance to sorafenib.
Gastroenterology 150 (7), 1646–1658. doi:10.1053/j.gastro.2016.02.040

Zhou, Z., Li, Y., Hao, H., Wang, Y., Zhou, Z., Wang, Z., et al. (2019). Screening
hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics
analysis. Cell. Transpl. 28, 76S–86S. doi:10.1177/0963689719893950

Zhuang, L., Yang, Z., and Meng, Z. (2018). Upregulation of BUB1B, CCNB1,
CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and
Disease-Free survival in hepatocellular carcinoma patients. Biomed. Res. Int. 2018,
7897346. doi:10.1155/2018/7897346

Frontiers in Genetics frontiersin.org15

Liang et al. 10.3389/fgene.2022.888601

https://doi.org/10.1002/jcp.26503
https://doi.org/10.7150/thno.54648
https://doi.org/10.7150/thno.54648
https://doi.org/10.3390/ijms17030320
https://doi.org/10.1053/j.gastro.2011.12.061
https://doi.org/10.1053/j.gastro.2007.03.102
https://doi.org/10.7717/peerj.10943
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.3727/000000002783992406
https://doi.org/10.1038/s41416-021-01596-3
https://doi.org/10.1038/s41392-020-00264-x
https://doi.org/10.1038/s41392-020-00264-x
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1093/jnci/djx030
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fonc.2020.571655
https://doi.org/10.1186/s12943-019-1047-6
https://doi.org/10.3892/mmr.2017.6587
https://doi.org/10.1016/j.canlet.2019.10.025
https://doi.org/10.1006/jmbi.2000.4010
https://doi.org/10.1002/cam4.3411
https://doi.org/10.1016/j.ejca.2021.11.023
https://doi.org/10.1038/onc.2017.172
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41416-020-0823-9
https://doi.org/10.1038/s41416-020-0823-9
https://doi.org/10.1073/pnas.0402492101
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1038/ncomms9704
https://doi.org/10.1038/ncomms9704
https://doi.org/10.18632/oncotarget.15507
https://doi.org/10.1016/j.ebiom.2019.01.058
https://doi.org/10.1111/cas.15242
https://doi.org/10.1172/JCI66024
https://doi.org/10.1136/gut.2008.176271
https://doi.org/10.1136/gut.2008.176271
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1155/2019/1245072
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1053/j.gastro.2016.02.040
https://doi.org/10.1177/0963689719893950
https://doi.org/10.1155/2018/7897346
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.888601

	A cancer stem cell associated gene signature for predicting overall survival of hepatocellular carcinoma
	Introduction
	Materials and methods
	Data collection
	Construction and validation of a prognostic CSC-related gene signature
	Independence of the 3-CSC-related genes signature from clinical features of other TCGA-LIHC patients
	Immune infiltration analysis
	Gene set variation analysis (GSVA)
	Weighted gene correlation network analysis (WGCNA)
	Establishment and evaluation of a predictive nomogram
	Cell culture
	CRISPR-Cas9-mediated SGO2 knockdown
	Cell proliferation and colony formation
	Quantitative real-time PCR
	Statistical analyses

	Results
	Identification of prognostic cancer stem cell (CSC)-related DEGs in TCGA cohort
	Construction and evaluation of a CSC-related prognostic signature in the TCGA cohort
	Validation of the prognostic model in the ICGC cohort
	Independent prognostic value of the 3-CSC-related genes signature
	The correlation between immune status and risk score
	Identification of biological functions associated with the risk score
	Hub genes associated with high-risk in HCC patients
	Establishment and validation of the predictive nomogram

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


