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OBJECTIVEdTo 1) determine if plasma 25-hydroxyvitamin D (25[OH]D) concentrations
differ among obese youth with normal glucose tolerance (NGT) versus prediabetes versus type 2
diabetes and 2) assess the relationships between 25(OH)D and in vivo insulin sensitivity and
b-cell function in this cohort.

RESEARCH DESIGN AND METHODSdPlasma 25(OH)D concentrations were exam-
ined in banked specimens in 9- to 20-year-old obese youth (n = 175; male 42.3%, black 46.3%)
(NGT, n = 105; impaired glucose tolerance [IGT], n = 43; type 2 diabetes, n = 27) who had in vivo
insulin sensitivity and secretion measured by hyperinsulinemic-euglycemic and hyperglycemic
clamp techniques and had an assessment of total body composition and abdominal adiposity.

RESULTSdThe mean age and BMI of the subjects were 14.36 2.1 years and 35.76 5.6 kg/m2,
respectively. BMI, plasma 25(OH)D, and the proportion of vitamin D–deficient and –insufficient
children did not differ across the three groups. Furthermore, there was no association between
25(OH)D and in vivo insulin sensitivity or b-cell function relative to insulin sensitivity (dispo-
sition index) in all groups combined or in each group separately.

CONCLUSIONSdOur data in obese youth show 1) no differences in plasma 25(OH)D
concentrations across the glucose tolerance groups and 2) no relationship between 25(OH)D
and in vivo insulin sensitivity and b-cell function relative to insulin sensitivity in any of the
groups. It remains uncertain if enhancement of the vitamin D status could improve pathophys-
iological mechanisms of prediabetes and type 2 diabetes in obese youth.
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The role of vitamin D in glucose ho-
meostasis remains controversial.
The reported relationships between

vitamin D and glucose homeostasis have
been inconsistent (1–6). Differences in
study populations (glucose tolerant vs.
intolerant; obese vs. nonobese; children
vs. adults), the methodological approaches
to the assessment of insulin sensitivity

and secretion (surrogate indices vs.
clamp studies), and adiposity measures
(BMI vs. direct measures of total and/or
regional adiposity) may explain some of
the inconsistent findings among these
studies. In healthy, glucose-tolerant, non-
obese and obese youth, we found no in-
dependent relationships between plasma
25-hydroxyvitamin D (25[OH]D) and

in vivo insulin sensitivity and b-cell
function relative to insulin sensitivity
(5). However, it remains to be determined
if the vitamin D–glucose homeostasis re-
lationships differ under pathophysiologi-
cal conditions of glucose intolerance.
Therefore, we 1) examined if plasma
25(OH)D concentrations differ among
obese youth with normal glucose toler-
ance (NGT) versus prediabetes versus
type 2 diabetes and 2) assessed the rela-
tionships between 25(OH)D and the
pathophysiological components of type
2 diabetes, in vivo insulin sensitivity,
and b-cell function.

RESEARCH DESIGN AND
METHODS

Subjects
Plasma 25(OH)D concentrations were
analyzed in banked specimens in 175
obese 9- to,20-year-old black and white
youth (NGT, n = 105; impaired glucose
tolerance [IGT], n = 43; type 2 diabetes,
n = 27). Subjects had complete data on
in vivo insulin sensitivity and secretion
measured by the hyperinsulinemic-eugly-
cemic and hyperglycemic clamp. Twenty-
two adolescents with NGT and 26 with
IGT had untreated polycystic ovary syn-
drome (PCOS). Subjects with NGT and
IGT had fasting glucose ,5.6 mmol/L
and 2-h glucose levels of ,7.8 mmol/L
and 7.8–11.0 mmol/L, respectively, dur-
ing an oral glucose tolerance test (OGTT).
They were not on any medications that
affected glucose metabolism. The adoles-
cents with type 2 diabetes were clinically
diagnosed according to American Diabe-
tes Association and World Health Orga-
nization criteria (7), with negative
glutamic acid decarboxylase and insuli-
noma-associated protein 2 (determined
by DK harmonization assay) autoantibod-
ies (8). They were on treatments consist-
ing of lifestyle changes alone (n = 7),
metformin (n = 14), metformin + insulin
(n = 4), or insulin alone (n = 2).Metformin
and long-acting insulin were discontin-
ued 48 h before the clamp studies.
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Participants were enrolled in the Na-
tional Institutes of Health (NIH)–funded
K24 Childhood Insulin Resistance and
R01 Childhood Metabolic Markers of
Adult Morbidity in Blacks studies in
Pittsburgh, PA (latitude, 40.48 north).
Data from some of the participants were
reported previously (5,9,10). In the cur-
rent dataset, 88 of the obese NGT partic-
ipants’ data for 25(OH)D and insulin
sensitivity and secretion were reported
in our previous publication, which, in
addition, included healthy prepubertal
normal-weight youth (5). Vitamin D data
of subjects with dysglycemia (IGT = 43
and type 2 DM = 27) have not been pub-
lished before. The studies were approved
by the institutional review board of the
University of Pittsburgh. Signed parental
informed consent and participant assent
were obtained prior to participation.

Study design
Research procedures were completed at
the Children’s Hospital of Pittsburgh
NIH-funded Pediatric Clinical and Trans-
lational Research Center (PCTRC). Sub-
jects underwent medical assessment by
history and physical examination includ-
ing pubertal staging according to Tanner
criteria and routine hematological and
biochemical testing. Weight and height
were measured to the nearest 0.1 kg and
0.1 cm, respectively, using a weighing
balance and wall-mounted stadiometer.
Age- and sex-based BMI cutoffs were
used for categorizing children as obese
($95th percentile).

Body composition and visceral fat
distribution
Body composition (fat mass and percent
of body fat) was assessed in 166 subjects
by dual-energy X-ray absorptiometry
(DEXA) as described previously (11). Ab-
dominal subcutaneous adipose tissue
(SAT) and visceral adipose tissue (VAT)
were measured in 140 subjects by a 10-
mm single axial computed tomography
(CT) scan at the L4–5 intervertebral space
as previously reported (11,12), and in 26
subjects with magnetic resonance imag-
ing (MRI) (13). Data are not available for
subjects who exceeded the weight limit
for DEXA scan, CT scan, or MRI (n = 9).

Clamp studies
A 3-h hyperinsulinemic-euglycemic
clamp (14,15) and a 2-h hyperglycemic
clamp (15,16) were performed in a ran-
dom sequence within a 1–4-week period
at the PCTRC in all participants (n = 175)

after 10–12 h of overnight fasting as de-
scribed previously. Each participant
underwent a 2-h OGTT (1.75 g/kg of
glucola [max 75 g]) the day before the
first clamp to assess glucose tolerance
status.

In vivo insulin sensitivity
A 3-h hyperinsulinemic-euglycemic
clamp with crystalline insulin (Humulin;
Eli Lilly, Indianapolis, IN) was infused at a
constant rate of 80 mU/m2/min to sup-
press hepatic glucose production as de-
scribed previously (14–17). Plasma
glucose was clamped at 5.6 mmol/L
with a variable rate infusion of 20% dex-
trose based on arterialized plasma glucose
determinations every 5 min.

In vivo insulin secretion
First- and second-phase insulin secretion
were measured during a 2-h hyperglyce-
mic clamp (15). Plasma glucose was rap-
idly raised to 12.5 mmol/L by a bolus
infusion of dextrose and maintained at
that level by a variable rate infusion of
20% dextrose for 2 h (15).

Biochemical measurements
Plasma glucose was measured using a
glucose analyzer (YSI, Yellow Springs,
OH), and insulin concentrations were
measured by radioimmunoassay (17).
Hemoglobin A1c (HbA1c) was measured
by high-performance liquid chromatog-
raphy (Tosoh Medics, Inc.). Plasma
25(OH)D was measured in M.F.H.’s lab-
oratory at Boston University using a non-
commercial 25(OH)D competitive protein
binding assay as described previously
(18). The 25(OH)D competitive protein
binding assay recognizes both 25(OH)D2

and 25(OH)D3 equally well and has
been validated by liquid chromatography
tandem mass spectrophotometry, which
measures the contributions of serum
25(OH)D2 and 25(OH)D3 (19). The in-
tra-assay and interassay coefficients of var-
iation of the 25(OH)D assay were 8 and
10%, respectively. The lower limit of de-
tection was 10 nmol/L.

Calculations
Insulin-stimulated glucose disposal was
calculated using the average exogenous
glucose infusion rate during the final 30
minof the 3-hhyperinsulinemic-euglycemic
clamp as previously described (17). Insu-
lin sensitivity was calculated by dividing
the insulin-stimulated glucose disposal
rate by steady-state plasma insulin con-
centrations, during the last 30 min of the

clamp multiplied by 100 (16,17). The
first-phase insulin concentration was cal-
culated as the mean of five determinations
from 2.5 to 12.5 min, and second-phase
insulin concentration was calculated as
the mean of eight determinations from
15 to 120 min of the 2-h hyperglycemic
clamp (16). Disposition index (DI) was
calculated as the product of insulin sensi-
tivity from the euglycemic clamp and first-
phase insulin concentration (15).

Statistical analysis
Differences in clinical characteristics,
body composition, and metabolic param-
eters among the glucose tolerance groups
(NGT, IGT, and type 2 diabetes) were
examined by ANOVA with Bonferroni
post hoc correction or Kruskal-Wallis
test for quantitative variables depending
on data distribution and x2 test or Fisher
exact test for categorical variables. Pearson
or Spearman correlation, depending on
data distribution, was used to assess bi-
variate relationships between 25(OH)D
and clamp-derived measures (insulin sen-
sitivity, first-phase insulin, and DI). The
independent effect of plasma 25(OH)D
on insulin sensitivity, first-phase insulin,
and DI was examined through multiple
regression analysis adjusting for age,
race, Tanner stage, season of assessment,
sex, and any one of the adiposity meas-
ures (BMI, fat mass, VAT, or SAT). In
the model examining the independent ef-
fect of plasma 25(OH)D on insulin secre-
tion, further adjustments were also made
for insulin sensitivity. All statistical as-
sumptions were met. Continuous varia-
bles are expressed as mean 6 SD or
median and interquartile range (IQR) de-
pending on data distribution. Statistical
significance was set at P, 0.05. The sta-
tistical analysis was performed using
PASW Statistics (version 18; SPSS Inc.,
Chicago, IL).

RESULTSdA total of 175 black (n = 81
[46.3%]) and white (n = 94 [53.7%]) 9- to
,20-year-old obese youth were studied
during winter/spring (n = 84 [48%]) or
summer/fall (n = 91 [52%]). The study
cohort included 42% males and had a
mean age (6SD) of 14.3 6 2.1 years.
The glucose tolerance status was as fol-
lows: NGT, n = 105 (60%); IGT, n = 43
(25%); and type 2 diabetes, n = 27 (15%).
The mean (6SD) plasma 25(OH)D con-
centration was 43.5 6 19.0 nmol/L; vita-
min D status was classified as follows:
deficient (,50 nmol/L), n = 121
(69.1%); insufficient (50 to ,75 nmol/L),
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n= 40 (22.9%); and sufficient ($75nmol/L),
n = 14 (8.0%) (20).

Clinical characteristics, body
composition, and metabolic profile
across the spectrum of glucose
tolerance
There were no differences among the
groups in age, race, or season of assess-
ment. Participants with dysglycemia
(IGT or type 2 diabetes) had a higher
proportion of subjects with advanced
pubertal status. All participants were
obese, with no significant differences in
adiposity measures (BMI, BMI percen-
tile, fat mass, percent body fat, VAT, and
SAT) among the three groups. There were
no significant differences in circulating

25(OH)D concentrations among NGT
versus IGT versus type 2 diabetes or
vitamin D status among the three groups
(Table 1).

Glucose homeostasis parameters
in vitamin D–deficient and
–nondeficient subjects
When comparing vitamin D–deficient
(,50 nmol/L) versus –nondeficient
($50 nmol/L) participants, there were
no differences in in vivo insulin sensitivity
(mmol/kg/min per pmol/L) (median 1.8
[IQR 1.6] vs. 1.6 [1.1], P = 0.759], first-
phase insulin (pmol/L) (926.4 [984] vs.
765.3 [904.6], P = 0.213), or DI (mmol/
kg/min) (1,641.3 [1,629.1] vs. 1,387.5
[1,789.1], P = 0.423). Further, there

were no differences in OGTT glucose
area under the curve (mmol/L) (median
937.1 [IQR 388.8] vs. 918.1 [368.1],
P = 0.540) and insulin area under the curve
(pmol/L) (116,401.5 [125,956.5] vs.
123,102.0 [130,179.0], P = 0.417) between
vitamin D–deficient and –nondeficient
subjects. The results for clamp-derived
and OGTT-derived analyses were similar
when the comparisonswereperformed sep-
arately in each glucose tolerance group
(data not shown).

Association between 25(OH)D
and in vivo insulin sensitivity,
first-phase insulin, and DI
Circulating 25(OH)D did not correlate
with in vivo insulin sensitivity, first-phase

Table 1dClinical characteristics, body composition, metabolic profile, and plasma 25(OH)D in obese adolescents with NGT, IGT,
and type 2 diabetes

NGT IGT Type 2 diabetes P NGT-IGT
NGT-type 2
diabetes

IGT-type 2
diabetes

n 105 43 27
Age (years) 14.2 6 2.0 14.3 6 2.4 15.1 6 1.7 0.104
Puberty Tanner II and III 38 (36.2%) 6 (14%) 3 (11.1%) 0.003*
Tanner IV and V 67 (63.8%) 37 (86%) 24 (88.9%)
Sex
Male 51 (48.6%) 11 (25.6%) 12 (44.4%) 0.036*
Female 54 (51.4%) 32 (74.4%) 15 (55.6%)

Race
White 54 (51.4%) 26 (60.5%) 14 (51.9%) 0.758
Black 51 (48.6%) 17 (39.5%) 13 (48.1%)

Season
WS 45 (42.9%) 26 (60.5%) 13 (48.1%) 0.150
SF 60 (57.1%) 17 (39.5%) 14 (51.9%)

Body composition
BMI (kg/m2) 35.2 6 5.3 36.6 6 6.5 36.8 6 5.5 0.224
BMI percentile 99.0 (1.0) 99.0 (1.2) 99.0 (0.5) 0.723
Fat mass (kg) 40.0 6 9.7 42.0 6 11.2 40.1 6 9.9 0.540
Percent body fat (%) 44.1 (7.1) 44.6 (6.7) 43.4 (7.3) 0.331
VAT (cm2) 72.5 6 35.6 80.1 6 34.2 89.0 6 39.8 0.098
SAT (cm2) 517.6 6 155.7 539.5 6 159.3 535.9 6 138.9 0.697

Metabolic profile
Fasting glucose (mmol/L) 5.3 6 0.4 5.4 6 0.5 6.7 6 1.3 ,0.001* 1.000 ,0.001* ,0.001*
Fasting insulin (pmol/L) 213.8 6 109.4 294.0 6 170.2 244.8 6 131.4 ,0.001* 0.004* 0.880 0.431
IS (mmol/kg/min per pmol/L) 2.1 (1.4) 1.2 (1.6) 1.0 (1.1) ,0.001* 0.002* 0.002* 1.000
First-phase insulin (pmol/L) 1,157 (967) 1,308 (874) 445 (312) ,0.001* 1.000 ,0.001* ,0.001*
Second-phase insulin (pmol/L) 1,420 (905) 1,783 (1,235) 550 (713) ,0.001* 0.073 ,0.001* ,0.001*
DI (mmol/kg/min) 2,230 (2,202) 1,578 (1,481) 504 (463) ,0.001* 0.001* ,0.001* 0.004*
HbA1c (%) 5.3 6 0.5 5.5 6 0.4 6.7 6 0.8 ,0.001* 0.288 ,0.001* ,0.001*

Vitamin D
25(OH)D (nmol/L) 44.8 6 20.3 39.5 6 18.3 44.8 6 13.5 0.289
25(OH)D status
Deficient 70 (66.7%) 35 (81.4%) 16 (59.3%) 0.277
Insufficient 25 (23.8%) 6 (14.0%) 9 (33.3%)
Sufficient 10 (9.5%) 2 (4.6%) 2 (7.4%)

Continuous variables are expressed as mean 6 SD or median (IQR) depending on data distribution. IS, insulin sensitivity; SF, summer/fall; WS, winter/spring.
Vitamin D deficient, 25(OH)D ,50 nmol/L; insufficient, 25(OH)D 50 to ,75 nmol/L; sufficient, 25(OH)D $75 nmol/L. *P , 0.05.
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insulin, or DI in all participants combined
or within each glucose tolerance group
separately (Supplementary Fig. 1). The
results did not differ when analyzing
males and females separately (data not
shown). Plasma 25(OH)D was not associ-
ated with in vivo insulin sensitivity, first-
phase insulin, or DI after adjusting for
age, race, Tanner stage, sex, season of as-
sessment, and adiposity (and insulin sen-
sitivity in themodels for insulin secretion)
in all participants together or in each
group separately (NGT, IGT, and type 2
diabetes) (Table 2). The results did not
change after excluding the PCOS subjects
(Supplementary Table 1).

CONCLUSIONSdThe present inves-
tigation of obese youth showed 1) no dif-
ferences in circulating 25(OH)D among
NGT versus IGT versus type 2 diabetes,
and 2) no relationship between 25(OH)D
concentrations and pathophysiological
components of type 2 diabetes, in vivo
insulin sensitivity, andb-cell function rel-
ative to insulin sensitivity.

Contrary to our findings, Chiu et al.
(21) reported an independent positive as-
sociation between serum 25(OH)D and
the insulin sensitivity index (ISI), derived
from the hyperglycemic clamp, in glucose-
tolerant, multiethnic young adults, after
adjusting for confounders. However,
plasma 25(OH)D was not independently
associated with the first- or second-phase
insulin response. In a follow-up study of
this cohort with inclusion of additional
subjects and reexamining the plasma
25(OH)D concentration with the liquid
chromatography tandem mass spectro-
photometry assay, Karnchanasorn et al.
(22) reported a favorable association be-
tween plasma 25(OH)D and b-cell func-
tion contrary to their prior findings.
Plasma 25(OH)D concentrations were
positively associated with b-cell function
adjusted for the ISI, and these associa-
tions remained significant after adjust-
ment for confounders. The discordance
in the findings between our study and
the latter two studies could be due to
the differences in mean age (14 vs. 26
years), BMI (35 vs. 25 kg/m2), and the
measure of adiposity. Whereas we used
total body adiposity measured by DEXA
and/or abdominal visceral or subcutane-
ous adiposity, they only had BMI as a
measure of adiposity. In our previous
study (5) of healthy glucose-tolerant
youth, the unadjusted positive associa-
tion between 25(OH)D and in vivo insu-
lin sensitivity was nullified when adjusted
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for fat mass, VAT, or SAT, in agreement
with other studies (23,24). Furthermore,
BMI does not necessarily robustly reflect
total or abdominal adiposity, especially in
different ethnic groups (25), thus poten-
tially explaining the contrast in the find-
ings.

On the other hand, and consistent
with our findings, Lamendola et al. (26),
using the insulin suppression test, found
no difference in plasma 25(OH)D con-
centrations between insulin-sensitive
and insulin-resistant obese adults matched
for BMI. Furthermore, similar to our data,
in a cohort of nondiabetic obese adults,
the positive association between 25(OH)D
and insulin sensitivity, measured by the
hyperinsulinemic-euglycemic clamp, was
confounded by BMI and negated when
controlled for BMI (24). In a nested case-
control study of glucose-tolerant adults,
comparing the 25(OH)D and hyperglyce-
mic clamp–derived ISI revealed that vita-
min D–sufficient subjects had a higher ISI
than vitamin D–deficient subjects, but ad-
justment for physical activity negated this
difference (18). Most importantly, how-
ever, the authors reported, in a random-
ized placebo-controlled trial, that 20,000
IU of vitamin D3 twice weekly for 6
months in vitamin D–deficient adults
failed to improve insulin sensitivity or se-
cretion (23).

The majority of the data reporting a
favorable 25(OH)D-glucose homeostasis
relationship in children used surrogate
indices of insulin sensitivity and con-
trolled for the influence of adiposity by
using BMI instead of direct measures of
total and/or regional adiposity (1,6). The
association between adiposity and vita-
min D is well established (10,27), and in-
creasing evidence suggests that the
observed relationship between 25(OH)D
and glucose homeostasis is mediated
through adiposity (5,24). In a cross-
sectional study of 1,882 nondiabetic sub-
jects, the significant inverse association
between 25(OH)D and insulin resistance
indices (fasting glucose, serum insulin,
and homeostasis model assessment of in-
sulin resistance) present with the adjust-
ment for BMI attenuated after adjustment
for SAT and disappeared after adjustment
for VAT (27). These findings highlight the
important mediating effect of abdominal
adiposity in the relationship between vi-
tamin D status and glucose homeostasis.
Our participant characteristics explain
the absence of an association between ad-
iposity and 25(OH)D. All subjects were
markedly obese (mean BMI 35.7 6 5.6

kg/m2) and mostly vitamin D deficient
(69%) or insufficient (23%). However,
in our prior work, which included normal-
weight and obese children, we demon-
strated an important inverse relationship
between adiposity and 25(OH)D concentra-
tions, particularly between abdominal adi-
posity and 25(OH)D (10).

In the current study, 48 girls with
untreated PCOS (22 with NGT and 26
with IGT) were included. Some authors
have postulated a role for vitamin D in the
pathogenesis of insulin resistance associ-
ated with PCOS (28). The only study
addressing this with clamp-derived glu-
cose homeostasis parameters and direct
measures of adiposity concluded that
25(OH)D deficiency in PCOS does not
directly affect the development of insulin
resistance but rather results from the
presence of obesity, independent of
PCOS (29). Nevertheless, excluding the
PCOS subjects in our study did not
change the results.

The strengths of our study are the
accurate assessment of total and regional
adiposity and state-of-the-art measures of
insulin sensitivity and b-cell function.
Furthermore, the homogeneous nature
of our three groups in terms of adiposity
and BMI across the spectrum of glucose
tolerance enhances the possibility of find-
ing an independent association between
25(OH)D and glucose homeostasis. How-
ever, it is possible that an overall overrep-
resentation of vitamin D–deficient and
–insufficient subjects in our cohort may
have resulted in a lack of a relationship
between 25(OH)D and glucose homeo-
stasis parameters. The overrepresentation
of recognized risk factors for vitamin D
deficiency in our sample (obesity, 100%;
puberty, 100%; black race, 46%) may ex-
plain the low percentage of vitamin D–
sufficient youth in our study. However,
our study cohort reflects the clinical pic-
ture of youth with dysglycemia, as adoles-
cents with IGT or type 2 diabetes are
typically pubertal, obese, and overrepre-
sented by blacks. The relatively small
numbers of youth with IGT and type 2
diabetes and the resultant unequal glu-
cose tolerance group sizes could also
be a limiting factor. However, this is un-
likely because there were no statistical
trends for differences in 25(OH)D con-
centrations among the three groups or
for any relationships between 25(OH)D
and glucose homeostasis parameters.
Moreover, power analysis shows that in
the most unfavorable case (n = 27 partic-
ipants in each group), the power would

be 0.9999. Furthermore, irrespective of
group size, the proportion of children
classified as deficient, insufficient, or suf-
ficient were similar across the three glu-
cose tolerance groups.

Our study has several limitations, in-
cluding the cross-sectional study design,
lack of information regarding participant
dietary intake of vitamin D and calcium,
sunlight exposure, skin pigmentation,
physical activity and dietary caloric intake,
and concentrations of parathyroid hor-
mone, 1,25-dihydroxyvitamin D, and vita-
min D–binding protein. Prospective long-
term studies in adults have shown an in-
verse association between hypovitaminosis
D and subsequent risk of fasting hypergly-
cemia and insulin resistance (homeostasis
model assessment of insulin resistance) af-
ter 5 (30) and 10 years (3) of follow-up.
Our cross-sectional study design precludes
us from inferring the potential time-
dependent effects of vitamin D deficiency
on glucose homeostasis, as it is possible
that vitamin D deficiency, when long
standing, can be detrimental to glucose ho-
meostasis. Also, the vitaminD deficiency in
our study population may not have been
severe or long standing enough to impact
insulin secretion or sensitivity.

In conclusion, our data show no
differences in plasma 25(OH)D concen-
trations among obese youth across the
glucose tolerance categories, and no re-
lationship to in vivo insulin sensitivity
and b-cell function relative to insulin sen-
sitivity. Future randomized, controlled
trials in obese vitamin D–deficient youth,
with or without dysglycemia, should ex-
amine if vitamin D replenishment could
improve insulin sensitivity and b-cell
function and lessen the metabolic risk
for type 2 diabetes.
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