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Abstract: Plant response to salt stress and the mechanism of salt tolerance have received major focus
by plant biology researchers. Biotic stresses cause extensive losses in agricultural production globally,
but abiotic stress causes significant increase in the methylglyoxal (MG) level of Glyoxalase I (Gly I).
Identification of salt-tolerant genes when characterizing their phenotypes will help to identify novel
genes using polymerase chain reaction (PCR) to amplify the DNA coding region for glyoxalase I. This
method is specific, requiring only genomic DNA and two pairs of PCR primers, and involving two
successive PCR reactions. This method was used rapidly and easily identified glyoxalase I sequences
as salt-tolerant genes from Jojoba (Simmondsia chinensis (Link) Schneider). In the present study,
the glyoxalase I gene was isolated, amplified by PCR using gene-specific primers and sequenced from
the jojoba plant, then compared with other glyoxalase I sequences in other plants and glyoxalase I genes
like in Brassica napus, ID: KT720495.1; Brassica juncea ID: Y13239.1, Arachis hypogaea; ID: DQ989209.2;
and Arabidopsis thaliana L, ID: AAL84986. The structural gene of glyoxalase I, when sequenced and
analyzed, revealed that the uninterrupted open reading frame (ORF) of jojoba Gly I (Jojo-Gly I) spans
775 bp, corresponding to 185 amino acid residues, and shares 45.2% amino acid sequence identity to
jojoba (Jojo-Gly I). The cloned ORF, in a multicopy constitutive expression plasmid, complemented
the Jojo-Gly I, confirming that the encoded Jojo-Gly I in jojoba showed some homology with other
known glyoxalase I sequences of plants.

Keywords: abiotic stress; gDNA cloning; glyoxalase I; methylglyoxal; Simmondsia chinensis

1. Introduction

Jojoba (Simmondsia chinensis (Link) Schneider) is characterized as a desert economic, medical, wild,
evergreen and perennial 100–200 year shrub [1]. In addition, the dicotyledonous and dioecious plant
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can bear adverse conditions, such as variation in temperature from −5 ◦C to 54 ◦C [2]. Jojoba is able to
fight many diseases and pests and is characterized by its low water need, like date palms [3]. Therefore,
it is ideal to be cultured on most of the Arabic region’s desert to take advantage of oil production that
can be distinguished as a permeant, cheap fuel source to solve optimally the problem of energy in
some Arabian countries with a lack of carbonic fuel [3]. Jojoba is used in the medical field as it has
an important active constituent, Simmondssine, which is why jojoba’s scientific name is Simmondsia
chinensis (Link) Schneider [4].

Some major tolerance mechanisms, including activities of late embryogenesis abundant proteins,
are factors involved in signaling cascade damage induced by harsh temperatures [5,6]. The importance
of a system in various cellular functions is associated with the metabolism of its physiological substrate
and methylglyoxal. The formation of methylglyoxal in glycolytic biological systems is unavoidable.
Moreover, under stress conditions, upregulation of enzymes involved in glycolysis and the TCA
cycle (Tricarboxylic Acid Cycle) has been shown [5,7] and could lead to an increased production of
methylglyoxal. In order to keep methylglyoxal concentration below a toxic level, an increase synthesis
of glyoxalases is required. The role of glyoxalase enzymes was extensively investigated in various
plant species which indicated their crucial role in salinity and drought, as well as heavy metal stress
tolerance [8]. Therefore, upregulation of Gly I during the early period of plant development improves
stress conditions and protection of plants against environmental stresses by overexpression of Gly
I, resulting in the lowering of methylglyoxal levels. A further importance of the glyoxalase system
is related to its cofactor i.e., glutathione (GSH). In physiological conditions, methylglyoxal rapidly
reacts with GSH to form hemi-thioacetal. Decreasing the protein thiol levels in Methylglyoxal is shown
by [9], as well as the levels of GSH in different types of cell [10,11]. The reduction of GSH levels in
cells would have high repercussions, as it is essential [12]. Moreover, tolerance to xenobiotics and
to biotic and abiotic environmental stresses suggests that enhanced GSH synthesis appears to be an
intrinsic response of plants to stresses [13]. Decrease in the level of GSH could also alter redox sensitive
regulatory proteins, such as thioredoxin and glutaredoxin, that could control the activities of enzymes
with the job of cell differentiation and division of stresses [14]. Moreover, GSH is known to induce
a variety of defense responses in plants [13]. Importance of glutathione in the cellular function was
shown by manipulating the genes involved in regulation of glutathione homeostasis in transgenic
plants, which resulted in increasing tolerance to oxidative stress [15–18].

The maintenance of a normal level of GSH under adverse conditions in the cells is an
important physiological process. A number of enzymes including glutathione synthetase, glutathione
S-transferase, glutathione reductase, glutathione peroxidase and dehydro-ascrobate reductase are
known to be involved. Incidentally, it may be mentioned that identifing a cDNA clone which shows
significant sequence homology with the type III class of GSTs is known to be stress inducible in
nature. In an early attempt, the screening of the Arabidopsis expression library with glyoxalase I
antibodies raised against B. juncea resulted in isolation of the Gst gene. The isolation of the Gst clone
by immunological screening of the library with glyoxalase I antibodies in their study indicated a
presence of common epitopes in both glyoxalase I and glutathione S-transferase proteins [8,19,20].
When the available sequences of Gly I from different organisms were used to generate a dendrogram,
a segregation of glyoxalase I sequences into prokaryotic and eukaryotic types was obvious. Gly I
sequence from Brassica, tomato, human and Saccharomyces cerevisiae seemed more closely related to
each other. The glyoxalase I from Salmonella and Escherichia coli formed a separate group. Surprisingly,
Pseudomonas putida glyoxalase I was dissimilar from the prokaryotic group.

The tomato glyoxalase I gene in the yeast expression system using the pYEX4 vector led to a 20-fold
increase in the specific activity of the glyoxalase I enzyme. However, the sensitivity to methylglyoxal
was similar to that of control cells [20].

Gayathri [21] explained the interrelationship between mangroves and their associated plants at
the molecular level, and the adaptive mechanism of mangroves and associated plants under a saline
condition. The identification of partial genomic DNA sequence coding for the Glyoxalase I gene in the
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white mangrove and its associated plant Ipomea, Macrantha, Roem and Schult indicated its role in the
protection against methylglyoxal (MG) formed under various stresses and its future service for the
development of various stress-tolerant crop plants.

The induced protein also showed cross-reactivity with antibodies raised against purified glyoxalase
I protein from B. juncea. Moreover, the E. coli cells overexpressing Gly I conferred tolerance against
high concentrations of methylglyoxal (20 mM). High specific activity of B. juncea glyoxalase I expressed
in E. coli along with significant tolerance against methylglyoxal suggested that isolated clones indeed
represented a glyoxalase I gene from B. juncea glyoxalase I genes isolated from other organisms that
were also overexpressed in both prokaryotic and eukaryotic expression systems. The expression of the
tomato glyoxalase I gene in the yeast expression system using a pYEX4 vector led to a 20-fold increase
in specific activity of the glyoxalase I enzyme, however, the sensitivity to methylglyoxal-like control
cells decreased [22].

It was surprising that even a 20-fold increase in specific activity of glyoxalase I enzyme in
yeast was not able to protect the cells against methylglyoxal. In contrast to this, and similar to
our results, overexpression of human glyoxalase I gene in E.coli or in the Cos cells resulted in a
110–180-fold increase in the glyoxalase I activity over the control, and these cells were tolerant to 5 mM
of methylglyoxal [23,24]. Similarly, Rhee [25] showed that overexpression of glyoxalase I in E. coli cells
lead to an increase in the specific activity (~150 fold) and this increase was able to impart tolerance
against methylglyoxal. Maximum overexpression of Gly I gene (4000-fold increase in specific activity)
was achieved for P. putida glyoxalase I in E. coli using the pBITac I vector [26]. Although different
workers have achieved different levels of overexpression of glyoxalase I, all the overexpressing cells,
except for yeast cells expressing the tomato glyoxalase I gene, were able to tolerate methylglyoxal.
Therefore, the aim of this study was the sequencing and characterization of a glyoxalase I (Jojo-Gly I)
gene from Jojoba in comparison with other glyoxalase I genes to use it as a salt-tolerant phenomena.

2. Materials and Methods

This experiment was carried out at Laboratories of Plant Biotechnology Department, National
Research Centre in Egypt and Agricultural Biotechnology Department, Faculty of Agricultural and
Food Sciences, King Faisal University, Al-Ahssa, Saudi Arabia.

Preparation of plant material as single node cutting (2 cm) explants were excised from a 5-year-old
shrub from the Egyptian Natural Oil Company. Then explants were sterile to initiate cultures. Then the
sterilization and primary cultivation of the excised explants (nodal segments and buds) were carried
out as indicated in our previous research [27–29].

The plantlets under study were obtained through the callus resulting from the culture of the jojoba
explants on the callus medium and then transferred to the shoot proliferation medium [30]

Initiation of aseptic cultures and culture establishment was carried out following the procedure of
Solliman [28]. All explants were transferred on callus medium, then on-shoot proliferation medium
was used, as followed by [30]. The basic Murashige–Skoog (MS) [31] medium concentration 4.4 g/L
was supplemented by mg/L: 0.1 Myo-Inisitol, 160 AdSO4, 3 BAP, 1.5 Kin and 7000 Agar.

After adjusting the pH 5.7 ± 0.1, 40 mL of medium was dispensed into each 250 × 25 mm borosil
rimless glass tube. The culture jars were wrapped and autoclaved at 1.05 kg cm2 and in 121 ◦C for
20 min., then the pH of the media at 5.7 was adjusted by the addition of 1 M NaOH. Cultures were
incubated at 27 ± 2 ◦C under light provided by white fluorescent tubes, giving the intensity of about
2000 lux for 16 h/day. The explants were sub-cultured with the same media every three weeks.

2.1. Salt Concentration

This study was conducted in order to determine the effect of NaCl (200 mM NaCl to 1000 mM
NaCl) for induction of salt stress. The control was treated with distilled water: (a) 0 mM NaCl
(b) 200 mM NaCl; (c) 400 mM NaCl; (d) 600 mM NaCl; (e) 800 mM NaCl and (f) 1000 mM NaCl.
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The solution of salt stress was prepared in levels in the water of tissue culture media. The suitable
amounts of NaCl were mixed with distilled water and then detected by a portable Electrical Conductivity
(EC) meter instrument. All jars were maintained under aseptic conditions. Foliar application was
performed with the 1000 mM NaCl after 2 months of being used as the surfactant.

After that, seeds were germinated in culture media Murashige–Skoog (MS) which was
supplemented with different hormones and NaCl.

2.2. Culture Condition

In all studied experiments, the cultured jars were incubated at 27 ± 1 ◦C. All the cultures
treated were transferred to a growth room for 35 days. All the cultures were transferred to a growth
room for 25 days, after that the culture was transferred and other physical and chemical properties
were calculated.

2.3. DNA Cloning and Manipulation

DNA manipulations and purifications were performed according to [29] protocols. Putative jojoba
glyoxalase I gene (Jojo-Gly I) from jojoba were cloned into the expression vector using Xba I and BamH I
restriction endonuclease enzymes. Construction of Jojo-Gly I gene was done in pSC-A (StrataClone PCR
Cloning kits, 11011 North Torrey Pines Road, La Jolla, CA, USA). The Jojo-Gly I gene was PCR-amplified
by using the Glo1f primer–5′ (5′-CCGAGATCTAAAGCTTTTTCAATGGGGATC-3′) and the Glo1r
primer–3′ (5′-TGTGAGATCTAAGCTTGAACGCAT-3′) primers. The product (~775 bp) was cloned
into the pSC-A (StrataClone PCR Cloning kit, Stratagene) vector and sent for sequencing.

2.4. DNA Cloning and DNA Sequencing

DNA cloning and plasmid constructions were done as described by Sambrook [32]. DNA was
sequenced by the chain termination method at Macrogen, 0F, 254, Beotkkot-ro, Geumcheon-gu, Seoul,
Korea. For the sequencing of the Jojo-Gly I gene, vector primers, cloning primers, and different
sequencing primers were used.

2.5. Ligation of the PCR Product with the pSC-A Vector

Many copies of the Jojo-Gly I gene, the glyoxalase I salt tolerance gene from Jojoba, were made
before they were inserted into plasmids using PCR followed by the ligation of these PCR products with
a pSC-A vector. This vector has 3′T overhangs that will bond with the 5′A overhangs that get added
to the ends by thermostable polymerases. This ligation product was transformed into competent E.
coli DH5α, then plated on selective media. Positive clones were confirmed by restriction analysis and
sequencing. Jojoba glyoxalase I gene (Jojo-Gly I) sequence was analyzed.

Preparation of Competent Cells and Transformation

Competent E. coli DH5α cells were made according to protocols of Hanahan [33]. Verification by
restriction digestion was performed on the abovementioned eluted E. coli to check for the presence of
the correct plasmid.

2.6. Purification of DNA Fragment from Agarose Gel

After overnight digestion at 37 ◦C, the digested product was electrophoresed on an Agarose
gel, and 1 µL loading buffer was added to 5 µL digest and loaded on a 0.7% (w/v) agarose gel in the
Tris-acetate-EDTA (TAE) buffer. The gel was run for 180 min at 85 V. By using a standard molecular wt.
marker (1 Kb ladder), the desired fragment was identified, cut, and purified by the following methods.
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2.7. Qiaquick Gel Extraction Protocol (from Qiagen)

To the cut pieces of agarose gel containing DNA fragments, 3 volumes of buffer (as supplied
with Qiaquik gel extraction kits, QIAGEN, 40474 Düsseldorf, Germany) were added and dissolved
by heating to 50 ◦C for 10 min. The mixture was loaded onto Qiaquick spin column and spun briefly.
The flow-through was discarded and the column was washed twice with a PE buffer. The purified
DNA fragment was eluted with 50 µL (10 mM) Tris-HCl pH 8.0, then purified fragments were ligated
with digested plasmids using T4 ligase O/N.

2.8. Homology and Structural Comparison of Jojo-Gly I Gene from Jojoba

Most of the sequence (protein and DNA) analyses were performed using CLC vector program
(Software company headquartered in Aarhus, Denmark, and with offices in Cambridge, Massachusetts,
Tokyo, Taipei and Delhi) and Genbank database. Homology searches were done using FASTA
(NIH, USA) and multiple sequence alignment was done using CLUSTALW (NIH, USA).

Isolation of plasmid DNA: This method was adopted from Sambrook et al. [32].

2.9. DNA Sequence Analysis

Genomic and cDNA clones were subcloned into pSC-A (StrataClone PCR Cloning kit,
Stratagene). Clones for sequencing were generated by either exonuclease III-Henikoff [33] or
restriction-enzyme-generated deletions. Single- and double-stranded DNA sequencing was conducted
by the dideoxynucleotide chain termination method [34] using the Sequenase system. All regions were
sequenced on both strands. Analysis of DNA sequences was conducted using DNASTAR (Aarhus,
Denmark).

Intron/exon boundaries were identified by comparing genomic and cDNA sequences. To identify
glyoxalase I sequences, BLAST searches were conducted on the GenBank. Glyoxalase I protein sequences
were aligned using the Clustal method, which is contained in the DNASTAR package.

Sequence alignments and percent identities were computed using CLC Main Workbench (version
8.1.2) (http://www.qiagenbioinformatics.com).

The data was statistically analyzed by analysis of variance (ANOVA) for the completely randomized
design. The treatment means were compared using Least Significant Difference (LSD) at a 5% level
of probability [35]. All computations and statistical analysis were performed using the computer
and SAS software package (SAS, based in Cary, NC, USA) (2005). Analysis of variance related to CR
experiments was conducted as described by [36].

3. Results and Discussion

The present work was undertaken to study the role of glyoxalase I gene (Gly I) in plants. Our
strategies included isolation of glyoxalase I gene from jojoba plant (Jojo-Gly I), regulation of glyoxalase
I during development and environmental stress conditions, and upregulation or downregulation
of glyoxalase I gene expression in jojoba plants following isolated glyoxalase I clone in the sense of
direction, respectively.

3.1. Effect of Abiotic Stress Induced by NaCl on Growth of Jojoba Plant Tissue Culture

Jojoba cultures were determined and related to response as a result of adding to different
concentrations of NaCl which were supplemented to media as follows: 0, 200, 400, 600, 800 and
1000 mM on some physical properties such as fresh weight, dry weight, leaf number, plant length,
and shoot numbers. Comparison of our studies with many reports in plant tissue culture in vitro
have been done to explain or evaluate the salt tolerance on jojoba plants in response to different
concentrations of NaCl. Under the tissue culture conditions, few studies of the factors affecting jojoba,
such as media structure, light period, and other salt stress, have been conducted [37]. As well, growth
regulators have always had an effect on the morphogenic jojoba cultures.

http://www.qiagenbioinformatics.com
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Some of the morphogenesis characteristic response seems to be dependent on plant growth
regulators, which were added to the nutrient medium; another reason is the plant cultivar. In this
study, the abovementioned data from Figure 1 indicate that the effects of adding different levels from
NaCl to MS medium varied from one concentration to another. This is clear that growth of jojoba has
the lowest value of NaCl (control) and had no effect on jojoba growth in MS mediums with different
levels of NaCl, but increasing the levels of NaCl from 200 mM up to 1000 mM was effective on jojoba
growth. It could be concluded from the results that highest value of NaCl is very effective on jojoba
growth. The higher values of fresh weight were obtained with low level of concentration of NaCl
compared with other treatments. Control treatments were recorded (as shown in Table 1), although the
lowest value was recorded with the 1000 mM of NaCl.

Figure 1. Treated jojoba plants growing on Murashige–Skoog (MS) medium with different levels of
NaCl (0, 200, 400, 600, 800 and 1000 mM of NaCl) completed with double distal water.

Table 1. Treated jojoba plants growing on MS medium with different levels of NaCl (NaCl from 400,
600, 800 and 1000 mM of NaCl). Shoot number, leaf number, and plant length were determined in the
table and in general.

Treatments
NaCl (mM)

Number of
Jars

Shoots per
Culture

Number of
Shoots

Length of
Shoots (cm)

Stem Diameter
(mL)

No. of
Leaves

Control 3 5 39.33a 2.40ab 2.00b 58.33a
200 2 5 24.00b 2.50ab 2.00b 32.00b
400 3 5 23.67b 2.93a 2.00b 31.67b
600 2 4 10.33d 1.85c 1.50c 18.67c
800 2 4 19.00c 2.30ab 3.00a 29.00b

1000 3 3 17.33c 2.77a 3.00a 26.67b

a, b, c and d (evaluation of results in descending order).
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Salt significantly influenced plant height, branch and leaf numbers per plant, and color of jojoba
plant. The stress done via salinity with Na salts not only reduces Ca availability, it also reduces the
move of Ca and its mobility for growing parts in the plant. This action reverts to the plant in the quality
and vegetative organs [20,38]. Spinach tomato affected with high concentrations of NaCl induced
K defiance [39,40]. Moreover, high salinity induced N insufficiency in tomato, cabbage, and lettuce.
Averaged data showed that the shortest plants were those subjected to salt stress treatments (Figure 1).

From the above results, we started looking for the genes involved in salt tolerance in the jojoba
plant. The next part was focused on determining which genes are involved in the molecular mechanisms
of tolerance in jojoba.

3.2. PCR Amplification of Jojoba Glyoxalase I (Jojo-Gly I) Gene

In this study, we can understand the physiological significance of the glyoxalase system in
certain plants, as the gene for glyoxalase I was isolated and characterized from the Jojoba plant. PCR
amplification of targeted PCR glyoxalase I gene fragments from jojoba genomic DNA with glyoxalase I
(Jojo-Gly I) of the gene confer tolerance in plants under stress from jojoba (Figures 2 and 3); a photo
showing some difference in the DNA size also shows the sequencing in Figures 4–7. A glyoxalase I
gene DNA from jojoba was constructed in a pSC-A vector from DNA isolated from leaves of jojoba
which were stressed with NaCl (Figure 8a,b). Using a highly specific glyoxalase I primer, which was
created from the Genbank data for glyoxalase I of Brassica juncea, we were able to isolate a full length of
glyoxalase I clone, which showed very high homology with the other reported glyoxalase I gene from the
other plants and mammalian, as well as microbial systems. This genomic glyoxalase I gene was found
to code for a protein of 195 amino acids with a calculated as mol per mass of 22.782 and pI of 5.87.
The fragment was cloned into the pSC-A easy vector with site-specific recombination. Recombinant
plasmid pSC-A was confirmed by digestion of Xba I and BamH I Figure 9 and by sequencing.
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Figure 2. Agarose gel electrophoresis showing the PCR products of glyoxalase I gene region of jojoba
using the PCR system as shown in lanes (1, 2 and 3). PCR products of correct size (775 bp) were
respectively amplified using Jojo-gly1f and Jojo-gly1R primers.
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Figure 3. PCR amplification of targeted PCR fragments in Lane (1) from jojoba (Jojo-Gly I) with glyoxalase
I (Gly I) of the gene confer tolerance in plants under stress compared with Lane (2) from Brassica juncea
(Accession number: embY13239.1). The “100 bp ladder” was used as a size marker.

Figure 4. Gene sequencing of the glyoxalase I, a salt tolerance gene from Jojoba (Jo-Glo1), by forward
primer sequence.



Plants 2020, 9, 1285 9 of 17

Figure 5. Gene sequencing of the glyoxalase I, a salt tolerance gene from Jojoba (Jo-Glo1), by reverse
primer sequence.
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Figure 6. Nucleotide sequence of Jo-glo1 from jojoba with gly-1 (glyoxalase I) of the coding region of the
gene confers tolerance in plants under stress; glyoxalase I gene from Brassica juncea (Accession number:
embY13239.1, glyoxalase I Length = 775). The underlined regions correspond to the primers used for
PCR amplification.

Figure 7. Cont.
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Figure 7. Sequence analysis of jojoba glyoxalase I gene. (A) Comparison of the predicted amino acid
sequences of glyoxalase I from jojoba (Jojo-Gly I), with glyoxalase I gene conferring tolerance to plants
under stress, glyoxalase I gene from Brassica juncea (Accession number: emb CAA73691.1). The deduced
amino acid sequence of the glyoxalase I gene product is shown and the amino acids that differ from the
glyoxalase I gene product are indicated. (B) Multiple sequence alignment of jojoba glyoxalase I (Jojo-Gly
I) was carried out using Blast. Comparison of the nucleotide sequences of Jojo-Gly I from jojoba with
glyoxalase I sequence of Arabidopsis thaliana lactoylglutathione lyase family protein/glyoxalase I family
protein (AT1G08110), Mrna. Sequence ID: NM_001035918.2 Length: 1021 Number of Matches: 2,
calculates the statistical significance.
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Figure 8. Agarose gel electrophoresis showing the PCR products after cloning into pSC-A vector using
PCR system. PCR was performed on a recombinant Jojo-Gly I clone to verify the presence of Jojo-Gly
I gene insert in a pSC-A vector. (A) Lanes (2, 3 and 5) show the expected size of the amplified PCR
product using M13 universal primers, and (B) Lanes (1, 2, 4 and 6) show the expected size of the
amplified PCR with specific primers by M13 and gly1r.

Figure 9. Restriction digestion products for the clone of Jojo-Gly I after cloning the Jojo-Gly I in pSC-A
vector and digestion by Xba I and BamH I.
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3.3. Cloning the 5’ End of the Jojo-Gly I

The 5’ end of the Jo-Go1 gene was isolated using the gene-specific primer gly-f-jojoba
(5’-AGGATCAACGACTCCAAC-3’ as the forward primer with the gene-specific primer gly-r-jojoba
5’-GAGAGATATTGCGCGTAGATAG-3’ as a reverse primer. PCR amplification used jojo-gly1 primers
and the primer resulted in a 775 bp fragment that was cloned into pSC-A (StrataClone PCR Cloning
kit, Stratagene) and verified by sequence analysis.

The 5’ end of glyoxalase I from jojoba plants was analyzed by conducting 5’ RACE, and then
the amplification products were cloned into pSC-A (StrataClone PCR Cloning kit, Stratagene) and
verified by sequence analysis. Besides, screening of glyoxalase I of jojoba and Brassica also resulted in
identification of partial genomic and glyoxalase I clone which showed significant homology with the
type III class of GSTs. This class of GSTs are known to be regulated by various stresses. Both the genes
have been submitted in Genbank with the accession no. Y13239 (for cDNA coding for glyoxalase I)
and Y13829 (for cDNA coding for GST). We also attempted to isolate glyoxalase I gene from tobacco.
However, screening of Jojoba glyoxalase I led to the isolation of a DNA clone which showed 95%
homology with a gene cloned from Arabidopsis, which has been suggested to code for GST.

3.4. BLAST Search for Identical Protein Sequences

It was concluded that protein levels showed more homology with Gly1 from the Brassica juncea
region at the nucleotide level due to degeneracy of the genetic code. Thus, pairwise comparison at the
amino acid level is more reliable than nucleotide–nucleotide comparison for establishing the identity
of any Gly1 gene.

The nucleotide sequences were translated into polypeptides using the ExPASy translate tool
and an identity search was made using the BLASTP algorithm. Two Jojo-Gly I gene analogs showed
high similarity with Brassica juncea deposited in the GenBank (Accession number: embCAA73691.1,
Figures 6 and 7).

The ubiquitous glyoxalase system was involved in the detoxification of methylglyoxal, a cytotoxic
compound produced non-enzymatically as well as enzymatically from the triose phosphates as a
byproduct of Embden-Meyerhof and polyol pathways, and during metabolism of amino acids and
acetone [41,42]. Studies on the role of the glyoxalase gene in animal and microbial systems have been
implicated to reveal cellular functions including cell division/proliferation, microtubular assembly,
vesicle mobilization, tumor growth, and clinical complications associated with diabetes mellitus and
various diseases [41]. Studies on the plant glyoxalases have also related the presence and modulation
of glyoxalase activities to cell division/proliferation, and its regulation in response to certain external
factors including light, hormone, and environmental stresses [22,43–45]. Most of these studies are
rather preliminary and hence a definite role of this system in plants is not yet assigned to this system.

To understand the physiological role of glyoxalase system in plants, we have cloned and
characterized a glyoxalase I gene from B. juncea. We found that the expression of glyoxalase I
gene increased significantly in response to abiotic environmental stresses such as salt, heavy metal,
and overexpression of Gly I gene led to the protection of plants against salt and heavy metal stresses.
The present study favors an essential role of a ubiquitously expressed protein like glyoxalase I under
stress conditions.

3.5. Phylogenetic and Glyoxalase I Analyses Show the Origin of Glyoxalase I Plant Genes Derived from Jojoba
and Other Plants

Phylogenetics of glyoxalase I gene from plants: An analysis of nucleotide sequences from the
glyoxalase I gene from jojoba with the other sources. Phylogenetic analyses of complete glyoxalase I
gene sequences provide much-improved confidence in the relationships among major lineages of the
jojoba glyoxalase I gene to plant glyoxalase I gene and provide a framework for other glyoxalase I genes
like in Brassica napus, ID: KT720495.1; Brassica juncea ID: Y13239.1, Arachis hypogaea ID: DQ989209.2;
and A. thaliana L, ID: AAL84986.
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3.6. Multiple-Sequence Alignment and Phylogenetic Analysis

Phylogenetic analysis of Jojo-Gly I from jojoba and Gly I genes were performed separately using
all reported members from Arabidopsis, Brassica napus, and Arachis hypogaea as shown in Figure 10.
The tree was constructed using full-length amino acid sequences based on a neighbor-joining method
with 100 bootstrap value.

Figure 10. Phylogenetic relationships between the Jojo-GlyI gene using the gene structure predictions
and conversed protein motifs. Phylogenetic analysis of glyoxalase I gene in jojoba, Arabidopsis, Brassica
napus, Arachis hypogaea.

The presence of the multi-stress responsive Gly I gene indicates its role in the protection against
MG; this study also reveals the interrelationship between jojoba plants at the molecular level and
adaptive mechanisms of jojoba plants under saline conditions. Previously, genome-wide analysis of
glyoxalase genes has been conducted in model plants Arabidopsis, rice and legume species, but no such
study was performed in the jojoba plant. In addition to sequence comparison, we confirmed that the
B. juncea cDNA that we have isolated is coding for glyoxalase I. Functional analysis of the isolated
Gly I clone was done by overexpressing the coding region in the isopropyl-D-thiogalactopyranoside
(IPTG)—inducible E. coli expression system using a pRSETA-Gly I vector. The expression of protein
showed high glyoxalase I activity (1200-fold increase when compared to control).

In conclusion, axillary shoot proliferation from the nodal explants of jojoba varied considerably at
different growth regulator concentrations in the medium, and MS basal medium with the levels of
NaCl (NaCl from 800) showed bud-break in 20% (1.0 nodes/shoot) of the cultures compared to 5%
(1.0 nodes/shoot) cultures at levels of NaCl (NaCl from 600). Most of the nodal explants turned brown
at MS concentration with all levels of NaCl after five weeks of incubation; hence, for establishing
nodal segment cultures, the MS medium was used initially. Glyoxalase I was a part of the glyoxalase
system present in the cytosol of cells. Moreover, under stress conditions, the upregulation of enzymes
was involved in glycolysis and led to increased production of methylglyoxal. To keep methylglyoxal
concentration below the toxic level, an increased synthesis of glyoxalases is required. Therefore,
Gly I’s upregulation during the early period of plant development and during stress conditions and
protection of plants against environmental stresses by overexpression of Gly I results in the lowering
of methylglyoxal levels. Further importance of the glyoxalase system is related to its cofactor, i.e.,
GSH. In physiological conditions, methylglyoxal rapidly reacts with GSH to form hemithioacetal.
Methylglyoxal has been shown to decrease the protein thiol levels [46]. The methylglyoxal is a major
physiological substrate for glyoxalase I, and its accumulation increased markedly when glyoxalase I
was inhibited in situ by cell-permeable glyoxalase I inhibitors and by depletion of GSH [41,47–49]. On
the other hand, Glyoxalase I activity prevents the accumulation of these reactive α-oxoaldehydes and
thereby suppresses α-oxoaldehyde-mediated glycation reactions. The mechanism of GSH production
is a central role in various anti-oxidative processes and xenobiotic detoxification [50].
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These results might have a potential in agriculture productivity and expanding agricultural land
to secure food globally. This increase was able to impart tolerance against methylglyoxal. Maximum
overexpression of the Gly I gene (4000-fold increase in a specific activity) was achieved for P. putida
glyoxalase I in E. coli using a pBITac I vector. Although different workers have achieved different levels
of overexpression of glyoxalase I, all the overexpressing cells, except the yeast cells expressing tomato
Gly I, tolerate methylglyoxal. Moreover, the tolerance level to methylglyoxal depended on the level
of glyoxalase I [20]. Further experiments will be needed to understand the relationship between gene
identification with plant metabolism and physiology by determining some metabolites.
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