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Abstract
Water eutrophication creates unfavorable environmental conditions for submerged 
macrophytes. In these situations, biotic interactions may be particularly important for 
explaining and predicting the submerged macrophytes occurrence. Here, we evaluate 
the roles of biotic interactions in predicting spatial occurrence of submerged macro-
phytes in 1959 and 2009 for Dianshan Lake in eastern China, which became eutrophic 
since the 1980s. For the four common species occurred in 1959 and 2009, null species 
distribution models based on abiotic variables and full models based on both abiotic 
and biotic variables were developed using generalized linear model (GLM) and boosted 
regression trees (BRT) to determine whether the biotic variables improved the model 
performance. Hierarchical Bayesian-based joint species distribution models capable of 
detecting paired biotic interactions were established for each species in both periods 
to evaluate the changes in the biotic interactions. In most of the GLM and BRT models, 
the full models showed better performance than the null models in predicting the spe-
cies presence/absence, and the relative importance of the biotic variables in the full 
models increased from less than 50% in 1959 to more than 50% in 2009 for each spe-
cies. Moreover, co-occurrence correlation of each paired species interaction was 
higher in 2009 than that in 1959. The findings suggest biotic interactions that tend to 
be positive play more important roles in the spatial distribution of multispecies assem-
blages of macrophytes and should be included in prediction models to improve predic-
tion accuracy when forecasting macrophytes’ distribution under eutrophication stress.

K E Y W O R D S

aquatic plants, facilitation, freshwater lakes, species distribution model

1  | INTRODUCTION

Nutrient enrichment in aquatic systems is a widespread environmental 
problem caused by the massive conversion of the earth’s land surface 

to agriculture or urban land as well as global climate change and ni-
trogen deposition (Jeppesen et al., 2010). As a result, regime shifts 
in shallow lake ecosystems have been widely documented in tem-
perate and tropical regions (Mesters, 1995; Sand-Jensen et al., 2008; 
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Scheffer, Hosper, Meijer, Moss, & Jeppesen, 1993; Zhang et al., 2016). 
Within these aquatic ecosystems, submerged macrophytes dominate 
in clear oligotrophic water and phytoplankton dominates in turbid eu-
trophic water. In certain cases, the dominance of floating plants may 
represent as a third state (Mesters, 1995; Scheffer et al., 2003). In 
the case of both phytoplankton dominance and floating plant dom-
inance, phytoplankton blooms or dense mats of free-floating plants 
reduces the depth to which light penetrates and increases anoxic con-
ditions, leading to an unfavorable environment for submerged macro-
phytes (Bornette & Puijalon, 2011). As a result, suitable habitats for 
submerged macrophytes are reduced and only occur near the lake-
shore, even disappear in nutrient-rich situations (Declerck et al., 2005; 
Kosten, Kamarainen, et al., 2009; Scheffer et al., 1993).

In unfavorable environments, the reduction in habitat can lead 
to intense competition among species occupying overlapping niches 
(Hao, Wu, Shi, Liu, & Xing, 2013; Maestre, Callaway, Valladares, & 
Lortie, 2009; Sand-Jensen et al., 2008). In contrast, positive spe-
cies interactions may arise as an important mechanism to maintain 
diversity according to the prediction of the stress-gradient hypoth-
esis (McIntire & Fajardo, 2014). In both cases, biotic interactions, 
including competition and facilitation, play an important role in ex-
plaining species coexistence. Empirical studies have revealed that 
macrophytes affect many key processes that promoted water clarity 
(Kéfi, Holmgren, & Scheffer, 2016; Scheffer et al., 1993). This vegeta-
tion–turbidity interaction ensures a low chlorophyll-a concentration 
and high Secchi depths in eutrophic shallow lakes that are vegetated 
(Kosten, Lacerot, et al., 2009). Therefore, submerged species that 
are adapted to growing in nutrient-rich, turbid water may have pos-
itive effects on species that prefer nutrient-poor, clear water hab-
itats, which is a type of indirect facilitation (Le Bagousse-Pinguet, 
Liancourt, Gross, & Straile, 2012).

Abiotic factors are commonly used to predict the spatial distri-
bution of submerged macrophytes: Among which transparency and 
depth, both related to light conditions, are often shown to be most 
important variables, followed by chemical contents, hydrographic pa-
rameters, substrate conditions, and other factors (Lehmann, 1998; 
Schmieder & Lehmann, 2004; Snickars et al., 2014; Wang et al., 2005; 
Zhang et al., 2016). The impacts of vertical interactions such as her-
bivory pressure or algae cover occasionally affect these predictions 
(Snickars et al., 2014; Viana et al., 2016). Few studies have considered 
horizontal interactions (i.e., the relation between submerged macro-
phytes) as explanatory factors. Recent studies have demonstrated that 
the incorporation of horizontal biotic interactions improves the accu-
racy of predictions on both a plot scale (Nylén, Le Roux, & Luoto, 2013; 
le Roux, Lenoir, Pellissier, Wisz, & Luoto, 2013) and a regional scale 
(Latimer, Banerjee, Sang, Mosher, & Silander, 2009) and have indicated 
that the interactions among plants play an important role in the spatial 
distribution of multispecies assemblages (Nylén et al., 2013; le Roux 
et al., 2013).

Here, we evaluated the relative importance of biotic interactions 
in a spatial assemblage of submerged macrophytes and how the bi-
otic interactions between species pairs changed due to regime shifts 
using species distribution models. To this end, we analyzed the spatial 

presence/absence data of four common submerged macrophytes 
during two periods (1959 and 2009) in Dianshan Lake, which became 
eutrophic since the 1980s. We hypothesized that (H1) models with 
both abiotic and biotic variables would more accurately predict spa-
tial distributions than models including only abiotic variables in each 
alternative regime state (Nylén et al., 2013; le Roux et al., 2013), 
and the improvement effects could enhance in eutrophication state. 
Moreover, we expected (H2) that the biotic interactions would be 
more positive (facilitation) due to the regime shift caused by eutro-
phication (Brooker et al., 2008; Le Bagousse-Pinguet et al., 2012; 
McIntire & Fajardo, 2014). By testing the two hypotheses, we would 
provide a field evidence of how the role of biotic interaction changes 
in governing submerged macrophytes community assemblage before 
and after eutrophication.

2  | MATERIALS AND METHODS

2.1 | Study site

The study was carried out in Dianshan Lake (31°04′N–31°12′N and 
120°54′E–121°01′E), which is at the western margin of Shanghai and 
is bounded by Jiangsu and Zhejiang Provinces (Figure 1). Dianshan 
Lake belongs to the Taihu Lake drainage in eastern China and receives 
the upstream water from the Taihu Lake. Downstream, the Huangpu 
River is the largest river flowing through the metropolitan area of 
Shanghai and merges into the Yangtze River just before entering the 
East China Sea. The area of the lake is 63.7 km2, and the mean depth 
is ~2.1 m (Kung & Ying, 1991; Zhang, Zhang, & Zhong, 2011).

Since the early 1980s, in association with rapid economic develop-
ment and urban expansion, the water quality of Dianshan Lake has de-
teriorated, and the lake has experienced cyanobacterial algal blooms 
since the end of the last century (Cheng & Li, 2010). The trophic state 
of Dianshan Lake transitioned from eutrophic to hypereutrophic in 
1999–2000 (Cheng & Li, 2010). As a result, the aquatic ecosystem 
has gradually become degraded and has switched from a macrophyte-
dominated clear water system to a turbid, phytoplankton-dominated 
system (Shi, Liu, & Da, 2011). The aquatic vegetation, which was pres-
ent throughout the entire lake in 1959, covered no more than 30% of 
the lake in 2009 (Shi et al., 2011). Although the overall richness of the 
vascular aquatic plants has changed little, ten native species have dis-
appeared and non-native species have increased from 1959 to 2009 
(Shi et al., 2011). In response, the fish richness has declined markedly, 
particularly for herbivores and piscivores (Hu et al., 2014).

2.2 | Species distribution data

The species distribution data for the two alternative regimes were col-
lected in 1959 and 2009. The data of 1959 were recorded during the 
stage of macrophytes-dominated clear water, and the data from 2009 
were recorded during the stage of phytoplankton-dominated turbid 
water.

In 2009, macrophytes were surveyed during the growing season 
at 163 sampling sites on twenty-two parallel transect lines oriented 
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in the east-west direction. The distance between transect lines was 
600 m, and the distance between sampling sites was 700 m. At each 
sampling site, an area of ~500 m2 was surveyed within a 12.5-m-radius 
circle. Moreover, additional sample sites at the border of the lake 
where macrophytes occurred were surveyed. At each sampling site, 
emergent plants and floating plants were identified, and the mean 
height and Braun-Blanquet cover-abundance scale (Braun-Blanquet, 
1964) of each species were estimated. Submerged macrophytes were 
collected randomly 3–5 times using a grapple (0.4 m × 0.5 m) to ac-
cess plants from a boat.

The 1959 data were taken from spatial species distribution maps in 
a historical report (Freshwater Aquaculture Lab, 1960). The historical 
survey aimed to document species distribution across the whole lake. 
The macrophyte data were collected from 55 sampling sites that were 
evenly distributed across the lake, and each sampling site represented 
an area of slightly more than 1 km2. In each site, macrophytes samples 
were randomly taken in 3–10 sampling points using the bottom trawl-
ing method. The presence/absence of macrophytes was recorded at a 
total of 375 sampling points.

Four species—Potamogeton malaianus, Myriophyllum spicatum, 
Vallisneria natans, and Hydrilla verticillata—were chosen to model 
the spatial distribution of submerged macrophytes because they 
were the dominant submerged macrophytes species during the 
both periods, and the other submerged macrophytes were too rare 
for spatial distribution modeling. For each species, the spatial point 
data were transferred to 117 raster cells with 30-s resolution with 
area ~0.75 km2 and the presence/absence was determined for each 
cell (Fig. S1). Given that the different sampling density can cause 
bias in biotic interaction estimation, we compared the sampling 
density in area vegetated by rooted macrophytes in the two pe-
riods. The sampling point density in both periods was around four 

sampling sites per cell unit. Therefore, the cell-based data were 
considered to be comparable between two periods as they had 
similar sampling density for area vegetated by rooted macrophytes 
(Appendix S1).

2.3 | Environmental data

Based on previous studies, water depth (ZM), transparency (ZSD), water 
pH (WpH), dissolved oxygen (DO), total nitrogen (TN)/nitrate concen-
tration (NO3

−-N), and total phosphorus (TP)/phosphate concentration 
(PO4

3−-P) were chosen as abiotic explanatory variables (Table S1). The 
first two variables are commonly used as proxies for light conditions 
and are considered to be the most important abiotic variables for sub-
merged macrophytes (Sand-Jensen et al., 2008; Wang et al., 2005; 
Zhang et al., 2016). The other chemical variables are considered to be 
linked to the physiology, occurrence, life-history traits, and commu-
nity dynamics of submerged macrophytes (Bornette & Puijalon, 2011; 
Snickars et al., 2014).

In 2009, ZM and ZSD were measured at 113 monitoring points. 
WpH, DO, TN, and TP were measured at 30 monitoring points. All 
abiotic variables were measured during the growing season of mac-
rophytes, from May to September. For 1959, ZSD, WpH, DO, NO3

−-N 
and PO4

3−-P data were taken from the historical report (Freshwater 
Aquaculture Lab, 1960); these data were measured at 16 monitoring 
points from May to July. For both periods, the environment data were 
collected for three times. Because the lake was oligotrophic in 1959, 
with few organic and inorganic pollutants, NO3

−-N and PO4
3−-P were 

taken into account as indices of nutrients. ZM was assumed to remain 
the same between the two periods because the mean depth of the 
lake varied little; it was ~2.0 m in both historical documents and in our 
survey results.

F IGURE  1 The location of Dianshan 
Lake, eastern China
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ZM and ZSD were measured with a calibrated stick and a Secchi 
disc, respectively. WpH was measured in the field with a pHep

®5 pH/
Temperature Tester, HI 98128 (Hanna Instruments, Texas, USA) during 
2009 and was determined using a colorimetric method in 1959. DO 
was determined using the iodometric method. NO3

−-N was deter-
mined by a spectrophotometric method using phenol disulfonic acid. 
PO4

3−-P was determined according to an ammonium molybdate spec-
trophotometric method. TP was digested with alkaline K2S2O8 and de-
termined according to the ammonium molybdate spectrophotometric 
method. TN was digested with alkaline K2S2O8 and determined using 
the ultraviolet spectrophotometric method. All the analytical methods 
were following Chinese Water Analysis Methods Standards (Huang 
et al., 1999).

For each abiotic variable, the mean value of three collections was 
calculated for each sampling site. Then, the inverse distance weighting 
and ordinary kriging interpolation methods were applied to estimate 
the predicted values for the cell-based data of species occurrence. 
Because there was a high correlation between the interpolated results 
of the inverse distance weighting method and the ordinary kriging 
method for each abiotic variable (r ranged from 0.942 to 0.988), we 
used only the predicted results from the inverse distance weighting 
method for statistical analysis.

2.4 | Statistical analysis

2.4.1 | Test for hypothesis one (H1)

To test whether the presence of other submerged macrophytes (biotic 
variables) could improve the model predictions of species occurrence, 
two models were run for each species as follows: a model with only 
abiotic variables (null model) and a model with both abiotic and biotic 
variables (full model):

Full model: Occurrence[one species] = abiotic variables + occur-
rence[the other three species]

Null model: Occurrence[one species] = abiotic variables
Principal components analysis was applied to the abiotic variables 

to avoid multicollinearity, which artificially increases the amount of 
variation explained (Legendre & Legendre, 2012).The generated com-
ponent scores were used in the models for abiotic variables. The oc-
currences of the other three species were used as the biotic variables 
for each species.

To account for potential differences related to statistic methodol-
ogies, generalized linear models (GLMs) and boosted regression trees 
(BRTs) were used to model variation in the occurrence of the four mac-
rophytes (Elith, Leathwick, & Hastie, 2008; Franklin, 2009). For the 
GLMs, species occurrence was fitted with a binomial family and logit 
link function. To limit model complexity, statistical interaction terms 
were not included in the GLMs due to a lack of a priori knowledge of 
contingencies among the predictor variables. The relative importance 
of each predictor variable was calculated using the change in deviance 
after the exclusion of that variable from a GLM model containing all 
variables and then scaling it to 100, with higher values indicating a 
stronger influence on the response variable (le Roux et al., 2013).

BRTs are a machine learning method that combines the strengths 
of two algorithms—regression trees and boosting—with the advan-
tages of handling different types of predictor variables with no need 
for a priori specification of a data model (Elith et al., 2008; Schibalski, 
Lehtonen, & Schröder, 2014). BRTs automatically incorporate interac-
tions between predictors and are capable of fitting complex nonlinear 
relationships, which can cover the shortcomings that the GLM models 
were without interaction terms. The measure of variable importance 
in this method is based on both the frequency with which a variable 
is selected and the improvement resulting from the inclusion of the 
variable, with higher values (ranging from 0-100) indicating a stronger 
influence (Elith et al., 2008; le Roux et al., 2013). All BRT models were 
fitted assuming a Bernoulli distribution and setting the tree complex-
ity to 5, the learning rate to 0.005 (reduced to 0.001 for species for 
which the calculated trees were inadequate) and the bagging fraction 
to 0.75.

To quantify model performance, repeated fourfold cross-validation 
was used with 999 repeats due to our small data set. For each repeat, 
fourfold data partitioning with random assignment was used to divide 
the data into a training group and a testing group for model validation. 
The pairwise distance sampling method was then used to remove any 
spatial sorting bias (Hijmans, 2012). The area under the receiver oper-
ating characteristic curve (AUC) (Fielding & Bell, 1997) was calculated 
for each model. The predicted occurrence probabilities were then con-
verted to binary presence/absence predictions using a threshold that 
maximized the sensitivity and specificity of the model during cross-
validation, from which the true skill statistic (TSS) and kappa were 
calculated (Allouche, Tsoar, & Kadmon, 2006). The differences in the 
predictive power between null models and full models were tested 
using a Mann–Whitney test (Nylén et al., 2013; le Roux et al., 2013).

Because AUC values can be affected by spatial autocorrelation 
(Segurado, Araújo, & Kunin, 2006), all model residuals were checked 
for spatial autocorrelation by computing spline correlograms (Dormann 
et al., 2007; Schibalski, Lehtonen, & Schröder, 2014). Except slight 
spatial autocorrelation occurred in the BRT models of Hydrilla verticil-
lata in 2009 and of Myriophyllum spicatum in 1959, no residual spatial 
autocorrelation was found.

2.4.2 | Test for hypothesis two (H2)

To test whether a positive shift (facilitation) of biotic interactions 
could arise among submerged macrophytes due to eutrophication, 
the co-occurrence pattern of the four submerged macrophyte spe-
cies was fitted using joint species distribution models for both periods 
(1959 and 2009) (Pollock et al., 2014). This method is distinct from 
the species distribution model, which only includes the unidirectional 
influence of one or a few species; using error matrices (i.e., Σ in eqn1) 
in hierarchical multivariate probit regression models allows species 
interactions involving multiple species to be modeled explicitly using 
spatial co-occurrence data (Kissling et al., 2012). In addition, this joint 
modeling method has ability to decompose the species coexistence 
into shared environments caused coexistence and biotic interaction 
caused coexistence (Pollock et al., 2014).



     |  7723SONG et al.

In each model, the response is the species occurrence matrix (with 
element Yij) arranged as n sites by m species. The probability of occur-
rence was defined as the probability density of a latent variable (Zij) 
greater than zero (eqn. 1). The row vectors of the latent variable ma-
trix, Zi, follow an m-dimensional multivariate normal distribution with a 
mean vector μi and an m × m variance/covariance matrix Σ.

μi is predicted with an environmental data matrix (X) with the dimen-
sions n sites by K predictors, which included one column of intercept 
terms set as one and K − 1 columns of principal components of biotic 
variables that were centered on zero and scaled by their standard de-
viations. β is the m×K matrix of regression coefficients, which were 
drawn from the normal distribution with mean μk and standard devia-
tion σk for each column.

The inverse Wishart distribution was used as the prior for the vari-
ance/covariance matrix Σ. After model fits, the covariance terms were 
divided by the standard deviations of the variance/covariance matrix 
(Σ) to generate a correlation matrix in which all standard deviations 
were equal to one. The element in the rescaled variance/covariance 
matrix presents pairwise correlation coefficient between two species, 
an indicator of biotic interaction (Pollock et al., 2014).

To fit the models, sampling from the posterior distribution of all pa-
rameters was performed using the Markov chain Monte Carlo method. 
For each model, 1,000,000 iterations of three independent Markov 
chains were run, in which a total of 1,000 values were sampled with 
980 iteration intervals after a burn-in of 20,000 iterations. The priors 
for all model parameters used the same settings as used by Pollock 
et al. (2014). Gelman and Rubin diagnostics (Gelman, Carlin, Stern, 
& Rubin, 2003) were used to check the convergence of the Markov 
chains for each parameter, and if the Gelman-Rubin statistic (potential 
scale reduction factor) was smaller than 1.1, the chains were consid-
ered to have converged.

The positive or negative interaction for each species pair was 
considered significant if the 95% interval of the distribution of the 
corresponding coefficient in the rescaled variance/covariance ma-
trix did not include zero. We then employed a Mann–Whitney test 
to determine whether there was a significant shift in biotic interac-
tions between two periods for each pair of species. For each species 
pair, when the coefficient in 2009 was significantly bigger than that in 
1959, it was considered that a positive shift occurred after eutrophi-
cation. In addition, the species similarity based on seven plant traits 
was calculated (Pan, Zhang, Song, & Da, 2017; see Appendix S2 for 
details) and was compared between two groups of species pairs (see 
results for details).

Moreover, to determine whether biotic variables within trophic 
levels affected the coefficient of biotic interaction, chlorophyll-a 
content (as a proxy of algal abundance), richness of emergent macro-
phytes, and richness of free-floating macrophytes were included in a 

new hierarchical model for 2009. By comparing the results of two hi-
erarchical models for 2009, the coefficient biotic interaction had little 
change by adding those biotic factors into hierarchical model (Fig. S2).

All analyses were conducted in R.3.2.2 (R Core Team, 2015); we 
used “gstat” package (version 1.1-3) to interpolate environmental 
variables, and “gbm” package (version 2.1.1) and “dismo” package (ver-
sion 1.0-12) for BRT models fit, and “ncf” package (version 1.1-5) to 
compute spline correlograms. JAGS (version 3.4.0) was run through 
package “R2jags” (version 0.05-01) to fit the joint species distribution 
models using the code of Pollock et al. (2014).

3  | RESULTS

In most cases, the full models with both abiotic and biotic variables 
performed better than the null models only with abiotic variables 
(Table 1) in predicting species presence/absence for the four sub-
merged macrophytes, no matter whether the GLM or BRT method 
was used. For Hydrilla verticillata and Vallisneria natans, the perfor-
mances of the full models were similar to those of null models for 
1959 but were clearly better than those of the null models for 2009. 
Moreover, for each species, both the GLM and BRT models for 2009 
performed better than those for 1959.

For each species, the relative importance of abiotic variables in the 
full models was greater than 50% for 1959 and decreased in the full 
models for 2009 for both GLM and BRT approaches (Figure 2). In con-
trast, the biotic variables increased their relative importance to more 
than 50% (except Potamogeton malaianus, with a relative importance 
of 47.5%) in the full models for 2009 compared with the full models 
for 1959.

In the joint species distribution models, rescaled variance/cova-
riance matrix (rescaled Σ) showed the residual correlation between 
species after controlling environmental correlation (species correla-
tion due to their shared environmental responses). The shift of biotic 
interaction after eutrophication can be inferred by comparing the 
pairwise species residual correlation in 1959 and 2009 (Figure 3). 
Among the six species pairs, Hydrilla verticillata versus Potamogeton 
malaianus, Hydrilla verticillata vs. Vallisneria natans, and Myriophyllum 
spicatum versus Vallisneria natans showed neutral interaction in 1959 
as the 95% confidence intervals of their coefficients in rescaled Σ in-
clude zero. In 2009, the interaction of the three species pairs became 
positive as theirs coefficients in rescales Σ were significantly bigger 
than zero at 95% confidence level and thus performed a positive shift 
pattern from a neutral interaction to a positive interaction after eu-
trophication. For the other three species pairs, the positive interac-
tion became more intense significantly. In summary, all of the biotic 
interactions among species showed significant positive shifts from 
1959 to 2009 (Figure 3). Furthermore, the three species pairs that 
showed a shift from neutral interaction to positive interaction had a 
significantly higher trait dissimilarity than the other three species pairs 
(one-way ANOVA, df = 5, p < 0.05) (Appendix S2). Adding biotic vari-
ables within trophic levels, such as chlorophyll-a content (as a proxy 
of algal abundance), richness of emergent macrophytes, and richness 

(1)

Pr
(

Yij=1
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Zij>0
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(

μk,σk
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of free-floating macrophytes, in the hierarchical model of 2009, did 
not change the high positive biotic interactions among the four sub-
merged macrophytes (Fig. S2).

4  | DISCUSSION

Changes in biotic interactions have been widely recorded during 
global changes, particularly biological interactions in response to cli-
matic change (Brooker et al., 2008; Tylianakis, Didham, Bascompte, & 
Wardle, 2008). In addition to global warming’s impacts on aquatic veg-
etation (Alahuhta, Heino, & Luoto, 2011; Kosten, Kamarainen, et al., 
2009; Netten, Van Zuidam, Kosten, & Peeters, 2011), eutrophication 

is another, and perhaps more serious, global problem for inland wa-
ters (Davidson et al., 2015). Although there are a few controlled ex-
periments demonstrating changes in the biotic interactions of aquatic 
plants in response to different levels of eutrophication (Hao et al., 
2013; Le Bagousse-Pinguet et al., 2012), to our knowledge there are 
few field reports describing how the interactions among aquatic veg-
etation respond to the freshwater ecosystem regime shift caused by 
eutrophication. In this study, using the species distribution models, 
we demonstrated that biotic interactions improved model perfor-
mance and showed relative dominant roles in explanation of spe-
cies occurrence comparing to abiotic factors after eutrophication. 
Moreover, biotic interactions showed a positive shift from a stage 
of oligotrophic clear water to a stage of eutrophic turbid water. This 

F IGURE  2 Change in relative 
importance of biotic variables and abiotic 
variables in full models between 1959 
and 2009 for generalized linear models 
and boosted regression trees. Hydrvert: 
Hydrilla verticillata; Myrispic: Myriophyllum 
spicatum; Potamala: Potamogeton 
malaianus; Vallnata: Vallisneria natans

TABLE  1 Comparison of model performance for the null model (only with abiotic variables) and the full model (with both abiotic and biotic 
variables) for generalized linear models and boosted regression trees, respectively. Area under the receiver operating characteristic curve 
(AUC), true skill statistic (TSS), and kappa were used to measure model performance. The significant differences in model performance between 
null models and full models (Full-Null) were tested by a Mann–Whitney test and are shown in bold type. Hydrvert: Hydrilla verticillata; Myrispic: 
Myriophyllum spicatum; Potamala: Potamogeton malaianus; Vallnata: Vallisneria natans

Model

Generalized linear models Boosted regression trees

1959 2009 1959 2009

Null Full Full-Null Null Full Full-Null Null Full Full-Null Null Full Full-Null

Hydrvert

AUC 0.69 0.69 0.00 0.75 0.82 0.06 0.64 0.65 0.00 0.78 0.84 0.06

TSS 0.63 0.61 −0.01 0.78 0.96 0.18 0.69 0.60 −0.09 0.84 0.89 0.06

kappa 0.49 0.49 0.00 0.60 0.72 0.12 0.45 0.45 0.00 0.65 0.73 0.08

Myrispic

AUC 0.66 0.76 0.09 0.80 0.86 0.06 0.62 0.70 0.08 0.77 0.84 0.08

TSS 0.65 0.57 −0.08 0.77 0.94 0.17 0.60 0.58 −0.01 0.86 0.89 0.03

kappa 0.44 0.57 0.13 0.66 0.76 0.10 0.39 0.48 0.09 0.61 0.73 0.11

Potamala

AUC 0.65 0.73 0.08 0.76 0.86 0.10 0.62 0.64 0.02 0.76 0.85 0.09

TSS 0.59 0.72 0.13 0.64 0.67 0.02 0.53 0.62 0.09 0.63 0.68 0.05

kappa 0.47 0.55 0.08 0.58 0.73 0.15 0.42 0.45 0.03 0.61 0.70 0.10

Vallnata

AUC 0.54 0.55 0.01 0.70 0.84 0.14 0.58 0.58 0.00 0.70 0.83 0.13

TSS 0.67 0.69 0.02 0.69 0.89 0.20 0.44 0.45 0.01 0.73 0.90 0.17

kappa 0.30 0.32 0.02 0.55 0.72 0.16 0.33 0.33 0.00 0.56 0.70 0.14
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result confirmed that the positive interactions recorded under eu-
trophication in control experiments could also occur in the field for 
submerged macrophytes, in support of the stress-gradient hypothesis 
(Maestre et al., 2009).

The limited light conditions associated with decreased transpar-
ency were probably the major driver of the positive shift in species 
interactions. The average of transparency (Secchi depth) in Dianshan 
Lake during the growing season was ~0.5 m in 2009 and decreased 
at a rate of ~0.05 m per year after 2000 (Cheng & Li, 2010). Based 
on an empirical study, the maximum depth should be <1.8 times the 
Secchi depth to ensure a net biomass accumulation during the growth 
season in Yangtze lakes (Wang et al., 2005). That value translates to 
0.9 m, which is much shallower than the mean depth (2.1 m) of this 
lake. As a result, the stress of low light intensity caused the submerged 
macrophytes to squeeze together in the shallow water along lake-
shore. In this situation, it has been suggested that indirect facilitation 
by submerged macrophytes, which maintain clear water conditions by 
competing with phytoplankton for light and nutrients, is the underly-
ing mechanism promoting species coexistence (Le Bagousse-Pinguet 
et al., 2012). This is supported by the evidence that the mean value 
of transparency was significantly higher in macrophytes beds (0.55 m) 
than outside beds (0.46 m) in 2009 (t test, p < 0.001). Under indirect 
facilitation, an increased richness of submerged macrophytes could 
lead to higher macrophytes biomass and greater chance of including 
high-periphyton-production macrophytes and then increase the bio-
mass of periphyton and retain greater quantities of polluting nutrients 
such as phosphorus (Engelhardt & Ritchie, 2001), which in turn further 
ameliorate eutrophic stress.

Based on empirical documentation of different plant traits among 
benefactor and beneficiary species (Beltrán, Valiente-Banuet, & Verdú, 
2012), submerged macrophytes with greater trait divergence may ex-
hibit more intensive facilitation. Reduced niche overlap might alleviate 
competition in a crowded space and increase the probability of coexis-
tence, which in turn may enhance the indirect facilitation. This pattern 

was confirmed by two lines of evidence in this study. The first one is 
the concordance between the increase in positive interactions from 
1959 to 2009 and trait divergence among the four submerged mac-
rophytes (Appendix S2). The second line of evidence is that Hydrilla 
verticillata and Vallisneria natans, with greater trait differences com-
pared with the other species, showed significantly improved model 
performance when biotic variables were added (Table 1). Our findings 
are consistent with the suggestion that trait divergence can switch the 
competition-facilitation balance (Beltrán et al., 2012) and conversely 
imply that facilitation increases trait dispersion at the community level 
(McIntire & Fajardo, 2014).

Many studies have concluded that biotic interactions have an 
important role in improving species distribution predictions (Araújo 
& Luoto, 2007; Kissling et al., 2012; Nylén et al., 2013; le Roux 
et al., 2013); our results support this conclusion for macrophytes, 
particularly in the case of eutrophication that increased indirect fa-
cilitation among macrophytes. This finding suggests that the biotic 
interaction among macrophytes could be critical in predicting their 
occurrence. Moreover, our study also suggests that integrating bi-
otic interactions into species distribution models can promote the 
prediction accuracy even beyond the community scale. In contrast 
to experiments at a fine grain of no more than several square me-
ters (Hao et al., 2013; Le Bagousse-Pinguet et al., 2012), our results 
were based on a relatively larger grain of approximately 0.75 km2. 
Both of simulation study (Araújo & Rozenfeld, 2014) and empirical 
analysis (Belmaker et al., 2015) indicated that positive interactions 
may decrease with increase in grains but can remain important even 
at coarse grains.

In this study, the application of joint species distribution models is 
novel to aquatic system, which provides a feasible way to explore how 
environment changes (i.e., eutrophication) affect biotic interactions 
for aquatic plants besides controlled experiment. However, modeling 
results must be carefully explained due to common limitations. First, 
the missing environmental covariates could affect biotic interactions 

F IGURE  3 The difference in pairwise 
species interactions between 1959 
and 2009 was determined by using the 
posterior distribution of coefficients in 
the rescaled variance/covariance matrix. 
Interaction coefficients are shown as the 
median (open circle) with 95% confidence 
intervals. The result was considered a 
significant positive or negative interaction 
if the 95% confidence interval did not 
include zero (dotted line). For each pair, 
there was a significant increase in the 
interaction coefficient from 1959 to 2009 
at the 0.001 level, as tested by a Mann–
Whitney test. Hydrvert: Hydrilla verticillata; 
Myrispic: Myriophyllum spicatum; Potamala: 
Potamogeton malaianus; Vallnata: Vallisneria 
natans
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inference (Kissling et al., 2012; Pollock et al., 2014). Although major 
environmental factors for submerged macrophytes in the shallow 
water of eastern China has been covered in the models (Wang et al., 
2005; Zhang et al., 2016), other important abiotic factors, such as sed-
iment characteristics and hydrometeorology variables, could change 
the distribution of macrophytes. And the different nutrients indices 
used in two periods could also bring bias. Second, biotic interaction 
among trophic levels, that is, herbivory stress(Hu et al., 2014), may 
also alter species interaction, in spite of the fact that other biotic fac-
tors, that is, algae, emergent macrophytes, free-floating macrophytes, 
had few effects on inference of interaction coefficients (Fig. S2). 
Thirdly, we only used one growth season data in each period nearly 
50 years apart, which might ignore the effort of historical accidental 
events, such as human disturbances (Shi et al., 2011), and did not con-
sider seasonal variation of macrophytes composition and environment 
factors. Therefore, this modeling method should be applied widely to 
different aquatic ecosystem with long-term observation data to fur-
ther verify its performance.

Additionally, there are two key questions that must be addressed 
to improve the modeling of biotic interactions in multispecies assem-
blages of macrophytes. First, as with many joint species distribution 
models (Leach, Montgomery, & Reid, 2016; Pollock et al., 2014; Wisz 
et al., 2013), the pairwise interactions were assumed to have the same 
interaction type and strength in our study due to little prior knowledge. 
However, interactions may be different in nature and asymmetric in 
strength between two submerged macrophytes. For example, Hao 
et al. (2013) noted that the presence of Potamogeton macckianus facili-
tated the growth of Myriophyllum spicatum under eutrophication (total 
nitrogen 4.0 mg/L and total phosphorous 1.0 mg/L), whereas the pres-
ence of M. spicatum inhibited the growth of P. macckianus. Moreover, 
the strength of the interaction may be dependent on the species’ rel-
ative abundances. In the same control experiment (Hao et al., 2013), 
the facilitation effect was stronger when the ratio of biomass density 
between M. spicatum and P. macckianus was 1:3, rather than 2:2 or 3:1. 
Second, changes in the strength and type of biotic interactions among 
macrophytes in different alterative ecosystem states highlight the risk 
of including biotic interaction factors in the prediction of species dis-
tribution. This challenge confirms that problems in the transferability 
of species distribution models may not only be caused by environmen-
tal heterogeneity (Schibalski, Lehtonen, & Schröder, 2014) but also by 
variable biotic interactions over space and time (Kissling et al., 2012; 
Tylianakis et al., 2008; Wisz et al., 2013).

To untangle these Gordian knots, we must move toward a greater 
integration of observed natural environmental gradients and multifac-
torial controlled experiments to learn how biotic interactions among 
macrophytes respond to eutrophication and its interaction with cli-
mate change (Jeppesen et al., 2010) and to integrate the findings into 
species distribution models with spatially explicit abundance data 
(Wisz et al., 2013). To avoid the complexity of pairwise interactions, 
this prior knowledge learning process should pay particular atten-
tion to communities composed of a small number of species inter-
acting strongly (Gilman et al., 2010), which can be inferred based on 
plant trait similarities. As we have shown, species with greater trait 

divergence exhibit a greater change in the type and strength of biotic 
interactions and can be considered as community module worthy of 
further study.

5  | CONCLUSION

The study demonstrated, including biotic interactions in modeling 
species distributions, can increase the prediction accuracy of mac-
rophytes multispecies assemblages, and the role of biotic interac-
tions in determining species distribution can be even more important 
than abiotic factors for macrophytes, in the case of eutrophication. 
Species association between macrophytes in stressful environmen-
tal, that is, low light condition in eutrophic water, become more 
tightly and probably tend to be positive, which has large contribu-
tions on predicting distribution of multispecies assemblages. We sug-
gest the approaches that join horizontal biotic factors into species 
distribution model can be applied to a wide range of aquatic eco-
system from community scale to regional scale, which is helpful for 
restoration and management of eutrophic water. However, the join 
species distribution models built on different alterative ecosystem 
states cannot simply be used for each other, without extrapolating 
the distribution of all potentially interacting species and the variation 
of their interactions.
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