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Abstract
Our understanding of early human diets is based on reconstructed biomechanics of hominin

jaws, bone and teeth isotopic data, tooth wear patterns, lithic, taphonomic and zooarchaeo-

logical data, which do not provide information about the relative amounts of different types

of foods that contributed most to early human diets. Faecal biomarkers are proving to be a

valuable tool in identifying relative proportions of plant and animal tissues in Palaeolithic

diets. A limiting factor in the application of the faecal biomarker approach is the striking ab-

sence of data related to the occurrence of faecal biomarkers in non-human primate faeces.

In this study we explored the nature and proportions of sterols and stanols excreted by our

closest living relatives. This investigation reports the first faecal biomarker data for wild

chimpanzee (Pan troglodytes) and mountain gorilla (Gorilla beringei). Our results suggest

that the chemometric analysis of faecal biomarkers is a useful tool for distinguishing be-

tween NHP and human faecal matter, and hence, it could provide information for palaeodie-

tary research and early human diets.

Introduction
The emergence of our genus has been often interpreted as a convergence of different anatomi-
cal, physiological and social changes attributed mainly to our tendency to eat more meat. The
timing and the significance of this critical dietary adaptation and earliest hominin strategies for
meat procurement have been the subject of vigorous debate [1–9].

Although there is a substantial amount of information available on the timing of butchery
[10–14] and about the evolutionary benefits of eating meat [see for example, 15–17, 7], little is
known about the proportions of animal protein intake necessary to influence hominin biology.
In addition, there is potential confusion among the different interpretations of the role of
plants in the crucial period in which the essential features of our physiology were shaped. Inter-
pretations range from the important role of nutrient dense plants, such as nuts and seeds [18],
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and the role of tubers [19–21] to the meat-eating hypotheses that attributed the main role to
the consumption of animal tissues [22–26].

Studies designed to elucidate aspects of predatory behaviour in non-human extant primates
and modern hunter-gatherers have also shed some light into the importance of animal food
consumption for hominoids [27–31]. For instance, some level of meat eating has characterized
mostly all hominoids [18] but vertebrate hunting can be considered a synapomorphy of the sis-
ter taxa of panins (chimpanzees and bonobos] and hominins [3]. Substantial evidence shows
that the ancestral lineage that led to humans had a plant-based diet [32–33]. Thus, an increase
in animal tissue intake may have had significant evolutionary consequences some time after
our divergence from an ape common ancestor. However, can the timing of this crucial dietary
shift be identified more accurately? And, how much meat would make a difference?

So far, there is scarce evidence to suggest that the predatory behaviour of australopithecines
differed from other apes [18]. Their carnivory probably was very similar to chimpanzees, re-
sorting to occasional and opportunistic hunting to obtain a small percentage of their food [18,
34]. Nevertheless, the emergence of Pleistocene hominins encompassed the rise of traits such
as increased body size, reduced gut size, higher brain capacity and extended life spans, all of
which anthropologists have traditionally associated to a shift towards high quality food sources
such as meat. Increased amounts of lipids and proteins are presumably necessary to make
these changes possible.

Animal tissues are rich in proteins, micronutrients and lipids, even if in wild prey muscle
tissues are likely more lean [22]. However, although protein quality if lower in plants, which
are also normaly poor in lipids, apes can obtain substantial amounts of protein from plants;
meeting or exceeding their estimated requirements, [34–43]. Given that lipids in plants are
mostly found in fruits, their intake is dependent on the season [34].

Early human paleodietary reconstructions have undergone considerable advance with the
incorporation of fossil bone isotopic analysis [29, 44–46]. However, carbon isotope analysis
cannot readily distinguish among plant-based, meat based, and omnivorous diets [44–46].
Thus, our current view of early human diets, which is based on the fossil evidence of tooth
wear patterns [47–49], associated tools [50–53], bone cut marks [54, 13] and isotopic bone
data, does not provides information about the relative amounts of different types of food that
contributed most. What were our ancestors’ regular meals? How much meat did they eat?

We previously reported [55] a successful approach to the Neanderthal diet using faecal bio-
markers as direct indicators of the proportions of animal and plant intake. The use of biomark-
ers, more specifically faecal sterols (5β-stanols), has been widely employed to distinguish
between different faecal pollution sources [56–60]. These lipids are known to be very stable,
more resistant to degradation than other types of molecules such as DNA, proteins or carbohy-
drates and preserved in low thermal grade sediments through the Cenozoic [61–62]. The pres-
ervation of sterol molecules in Paleozoic sediments [63] suggests that geologic age is not a
constraint for the application of this technique throughout the time span of human evolution.
Moreover, lipids are not soluble in water and their decay is limited once they are incorporated
into a sediment matrix [64].

Among the different types of lipids, we use 5β-stanols as biomarkers because such metabolic
products are uniquely formed through microbial action of cholesterol and phytosterols in the
gut of most higher mammals. The sterols used as dietary biomarkers are ubiquitously found
among other mammals, and what makes them diagnostic is their relative distribution charac-
teristic of their diet [55, 65, 62]. However, in some cases this distribution may be undiagnostic
and the application of ratios [66–73] between stanols and sterols of animal and plant origin
can be used to highlight the differences.
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Coprostanol, a 5β-stanol, is formed through microbial saturation of its precursor Δ5-sterol
cholesterol by specific bacteria present in the gut of higher mammals. Coprostanol results from
converting both ingested and endogenously biosynthesized cholesterol. Humans cannot syn-
thesize these and other stanols and thus they represent direct dietary input of plant sterols [55,
66, 73]. The combination of an animal’s diet, specifically the amount of plant material, the en-
dogenous cholesterol biosynthesis and the efficiency of the gut microbial action, provide a dis-
tinct chemical signature that allows us the identification of the faecal origin and the dietary
habits [56]. Thus, identification and quantification of 5β-stanols, particularly coprostanol, is an
effective analytical strategy to approach the composition of human diets.

Conversion of cholesterol to coprostanol in humans is bimodal with a small percentage of
people that are low to non-converters (less than one-third of coprostanol into the total faecal
sterol content) and a majority of efficient converters. [74–75]. This microbial conversion starts
in humans at the end of the first year and its efficiency is determined by the abundance of cho-
lesterol-reducing bacteria [76–77]. An efficient conversion would decrease the risk of cardio-
vascular disease through the elimination of excess cholesterol from the body [78–79].

The first substantial meat eaters were presumably not prepared for a transition to a high fat
and high cholesterol diet, even if intake of oily seeds and nuts prior to this dietary change
would probably have favoured a better lipid digestion [29]. The shift from an herbivorous ape
diet to a more omnivorous Pleistocene hominin diet required a fat and cholesterol-related ad-
aptation that some studies have attributed to the acquisition of genes enabling high meat intake
without risk of hypercholesterolemia [80–81]. Cholesterol increase from meat intake in early
hominins should be indicated by an abrupt enrichment in coprostanol and an associated re-
duction in 5β-stigmastanol (a plant stanol) in their faeces. Based on our positive results with
ca. 50 ka old Neanderthal samples and the preservation potential of sterols in ancient sedimen-
tary environments, we suggest that this hypothesis is testable in Pleistocene hominin sites.

But first, due to the lack of faecal biomarker studies of wild NHPs it is necessary to under-
take a preliminary analysis of the nature and proportions of sterols and stanols excreted by our
closest living relatives. Until now, all available data on neutral lipid analysis of NHP faeces
have been obtained from captive specimens [82–83], mainly Rhesus monkeys [84–85] and ba-
boons [86], none of them hominines.

Vascular disease such as hypercholesterolemia is common among captive chimpanzees and
gorillas when fed with commercial chow. Their nutrition in captivity often includes dairy prod-
ucts and animal fat as much as 5 to 10%, which notably deviates from the 2.5% fat intake in a
wild ape diet [81]. To date, there is a lack of information about the prevalence of this pathology
among wild communities.

Since the mechanism leading to these pathologies in great apes are also likely to have operat-
ed among early humans, wild NHP studies should be of value in understanding the mecha-
nisms that regulated high fat and cholesterol intake in the earliest stages of human evolution.
This paper reports differences in the faecal excretion of cholesterol and phytosterols as well as
their degradation products in chimpanzee (Pan troglodytes) and mountain gorilla (Gorilla
beringei) faeces.

Materials and Methods

Sample collection
10 fresh faecal samples of chimpanzees (Pan troglodytes) were collected from the Kanyawara
community of Kibale National Park in Uganda in 2001. Faeces from known individuals were
stored in individual vials with enough silica gel to keep them dry and then stored at room tem-
perature. The Kanyawara chimpanzee community inhabits the north-western edge of Kibale
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National Park at around 1400 m amsl. The territory of the Kanyawara chimpanzees is a mix of
mostly primary unlogged mid-altitude forest, with areas of partly logged forest, papyrus
swamps and former pine plantations [87–88]. During a period of fifteen years, the community
occupied 41 km2 with an annual median home range of 16.4 km2 [89]. Seven samples were
from adult males; three (CH7, LR; CH1, AL; CH4, OT) were from adult females.

Additionally, 4 fresh faecal samples were collected from Mountain gorillas (Gorilla beringei)
(2 silverbacks, 2 females) living in Bwindi Impenetrable National Park (BINP) in Uganda. The
sampling was conducted in the Ruhija site of BINP during August 2002 to July 2003 in a group
of gorillas that have been monitored daily since the mid-1990s. After being collected, all sam-
ples were air dried, milled to 1mm, transferred into individual vials and stored at room temper-
ature [42].

Ethics Statement
This work was in compliance with the laws of Uganda. The Uganda Wildlife Authority and
The Uganda National Council for Science and Technology approved this research. Ethical
clearance for this study was granted by the Harvard University’s IACUC with the protocol
number 96–03 for non-invasive faecal collection. The Cornell University IACUC reviewed this
work and decided that no protocol was necessary for non-invasive faecal collection. Research-
ers did not interact with primates at any point of this study.

Sample preparation and solvent extraction
Subsamples of 0.5 to 1 g were collected for extraction. The samples were extracted ultrasonical-
ly 3 times, 30 minutes each with 3:1 v/v CH2Cl2 (DCM): MeOH (methanol) to obtain the total
lipid extract (TLE). Solvent was removed from the TLEs under a constant low-velocity stream
of N2 gas using a TurboVAP, and dried samples were stored under nitrogen in glass vials with
Teflon-lined caps. The TLEs were saponified by the addition of 5 mL of 2 N sodium hydroxide
in 90% methanol to the TLE by heating at 100°C for 1 hour. After being cooled to room tem-
perature, sterols were extracted in hexane, and the solvent was evaporated to dryness under a
gentle stream of nitrogen at 60°C. After extraction of sterols, 10 mL of distilled water was
added to the aqueous solution, which was then acidified to pH 3–4 with 2 N HCl, and the acid
fraction was recovered in ethyl acetate. The solvent was removed under a gentle stream of ni-
trogen at 60°C. Both residues were derivatized by addition of 50 μg of pyridine and 50 μg of
BSTFA containing 1% of TMS and heated to 60°C for 30 minutes. Samples were then diluted
with an appropriate volume of hexane prior to GC-MS analysis.

GC-MS Analyses
The analyses were carried out using full scan mode, with the following parameters: 5 μL in-
jected via automatic liquid sampler; the oven was temperature programmed with an initial iso-
thermal of 2 min at 40°C followed by an increase to 350°C at 10°C per minute followed by a
final isothermal at this temperature of 15 min. Helium was used as carrier gas and held at a
constant flow at 2.0 ml per minute throughout the analysis. Identification was performed using
a Hewlett Packard 6890 series gas chromatograph–mass spectrometer equipped with a 5% phe-
nyl methyl siloxane column (HP-5, 60m, 0.25mm i.d., film thickness 0.25 μm) Compound
identification was achieved by interpretation of characteristic mass spectra fragmentation
patterns, gas chromatographic relative retention times, and by comparison with literature.
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Statistical analysis
Statistical analysis was carried out using the SPSS software version 19 and the R freeware
(www.r-project.org). All data were assessed for normality and transformed as appropriate. We
have made a cluster analysis followed by a discriminant analysis with the raw data to show
major trends and groups. The cluster analysis was made using the average linkage clustering
method (UPGMA). We also conducted bivariated correlation analysis using Microsoft excel
2010. Additional calculations were performed using standard analyses programmed in the
SPSS software. A Multivariate Analysis of Variance (MANOVA) analysis was made using R,
using the "Hotelling-Lawley" test, to compare the joint variance difference of the three groups
(chimpanzees, gorillas and neanderthals) regarding the different sterol compounds. When sig-
nificant differences were documented, a pairwise comparison was carried out combining an R
"manova" function which enabled the creation of subsets of pair groups and the "summary.aov"
function which tested their significance. Significant differences (with alpha values under 0.05)
showed that the lipid composition of the paired group compared was different.

Results

Non-human primate faecal biomarker analysis
The results of faecal sterol composition in gorillas and chimpanzees are shown in Table 1 and
Figs 1 and 2. Although their sterol excretion patterns seem very similar, some differences exist.
In both species, plant sterols represent the major portion of the neutral steroids present in the
faeces. However, the main differences are observable in the amount of animal source sterols
(coprostanol, epicoprostanol, cholesterol and cholestanol) (Table 1). Coprostanol content is
significantly higher in gorilla females (samples 12 and 13) and in chimpanzee sample 10. Inter-
estingly, sample 10 (KK-CH3) was collected after the subject (adult male Kakama) had been 3
days outside the observation area. The same subject was sampled (KK-CH5) a few days later,
inside the observed area. This second sample yielded a sterol pattern similar to the rest of the
chimpanzee samples: predominant occurrence of 5β-stigmastanol with significant amounts of
phytosterols and a very low animal sterol content.

When applying the ratio (Table 2) proposed by Bull and co-workers [65] to differentiate be-
tween herbivore and human/pig faecal matter, we observe that except for sample 10, all the fae-
cal samples collected from chimpanzees are in agreement with values expected for a mammal
whose diet is composed predominantly by plant food.

Preliminary results from mountain gorilla faeces show two different patterns related to
coprostanol content (Fig 2). Silverbacks (sample 7 and 11) present a sterol profile dominated
by 5β-stigmastanol with a low occurrence of coprostanol and sterols of animal origin. In fe-
males (samples 12 and 13), although 5β-stigmastanol is also dominant, there is a significant
amount of coprostanol, in levels that far exceed those expected for a complete herbivore.

A MANOVA test yielded significant differences in lipid composition among the three
groups (chimpanzees, gorillas and neanderthals): Wilks (p = 2.2e-16) and Hotelling-Lawley
(p = 2.2e-16) tests yielded the same significant result. The pairwise comparison showed that
the differences were between the neanderthal sample and the gorilla (p = 0.004) and chimpan-
zee (p = 0.010) samples. Gorillas and chimpanzees were very similar when comparing all lipid
types together (p = 0.91). Significant differences in 5β-stigmastanol (p = 0.008), epi5β-stigmas-
tanol (p = 0.04), sitosterol (p = 0.025) and stigmastanol (p = 0.023) were found when compar-
ing the three groups.

Fig 3 shows a two correlation plot comparing the ratio between 5β-stanols with 27 carbons
(animal origin) and 5β-stanols with 27 carbons + 29 carbons (plant origin) in the y axis; and
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the ratio between sterols composed by 27 carbons (animal origin) and 29 carbons (plant origin)
in the x axis. In the first plot, we observe a lack of correlation in NHP samples, which are more
or less grouped together except for sample 10. It must be noted that it is not possible to distin-
guish between chimpanzee and gorilla samples. However, when we include the values obtained
in our previous study with Neanderthal samples, there is a clear separation of the NHPs on the
one hand, clustered, and the Neanderthals on the other, which show a significant inter-individ-
ual variation.

Discriminant Analysis
A canonical plot of the cases based on discriminant analysis was performed on the percentage
relative abundances of Neanderthal faecal sterol profiles [55], Mountain gorilla and chimpan-
zee. We decide to include data from samples analyzed in our previous work on Neanderthals
[55] to explore the possibility of overlapping between humans and our closest relatives.

The canonical separation of cases is presented in Fig 4, showing two clear groups. One cor-
responds to Neanderthals, and the other is composed by chimpanzees and gorillas.

Fig 1. Sterol fraction histogram from the chimpanzee samples. Relative concentrations are expressed as % of the largest peak compared to TIC (total
ion chromatogram) in the chromatogram.

doi:10.1371/journal.pone.0128931.g001
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Fig 2. Sterol fraction histogram from the gorilla samples. Relative concentrations are expressed as % of the largest peak compared to TIC in
the chromatogram.

doi:10.1371/journal.pone.0128931.g002
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Cluster analysis
Cluster analysis was used to assess the links between human species, gorillas and chimpanzees.
We decided to include the data from a living human and a horse case reported in the work con-
ducted by Leeming and colleagues [56]. We also tried to include dog and duck data from the
same work but the orders of magnitude difference were too high to assess any interpretation.
The dendrogram obtained when clustering samples is presented in Fig 5. The intragroup’s
method of linkage provided a clear interpretation of the dendrogram, while other methods did
not generate clear groups. This analysis allowed the establishment of two main groups with 4
orders of magnitude difference. This figure shows two clusters composed of 1 living human
sample [56] and 5 Neanderthal samples [55] arranged in the first cluster; followed by a second
cluster that includes gorilla and chimpanzee samples and one horse [56]; and a third cluster
with an outliner chimpanzee, sample 4, separated by 5 orders of magnitude.

Discussion
Taken together, our preliminary results show that the chemometric approach is a useful tool in
the distinction between NHP and human faecal matter, and hence it could provide a new
source of information for the study of the early human diet.

Table 2. Stanol and sterol ratios.

Sample number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ratio stanol C27/
C29

0,45 0,34 0,54 0,29 0,25 0,3 0,57 0,59 0,43 1,2 0,57 0,71 0,74 0,27 96,42 16,42 1,78

ratio sterol C27/
C29

0,39 0,93 0,75 0,21 0,38 0,69 0,16 0,14 0 0,49 0,39 0,4 0,34 0,17 4,21 1,09 0,92 6,82 2,47

Table 2 shows the values obtained when applying the ratio proposed by Bull and co-workers [65]. Values below 1 have been used as diagnostic for an

herbivore diet, whereas values higher than 1 are characteristic of humans. The second ratio is related to sterols of animal origin (C27) and plant origin

(C29).

doi:10.1371/journal.pone.0128931.t002

Fig 3. Correlation plot. Two correlation plots are presented. The first shows the correlation between the 5β-stanol ratio C27/(C27+C29) (Y axis) and the
sterol ratio C27/C29 (X axis) in the NHP samples. Given that C29 stanols were not present in some samples we have applied the 5β-stanol ratio C27/(C27
+C29) instead of the ratio stanol C27/C29 [65]. Gorillas are shown as white circles. The second plot shows the same correlation but including Neanderthal
samples (triangles).

doi:10.1371/journal.pone.0128931.g003
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Faecal biomarkers have been demonstrated to be very useful in the characterization of the
origin of the archaeological faecal deposits [e.g. 55,65,76,90–91]. Our approach enables us to
accurately differentiate between human and non-human primates, while in some cases, such as
chimpanzee sample 10, when applying the C27 stanol/C29 stanol ratio [65] this divergence was
unidentifiable. It is also noteworthy that gorillas and chimpanzees, which are primates species
with dissimilar types of diet, cannot be clearly differentiated neither using the ratio, nor
through SDA.

While the primary aim of the study was to confirm the usefulness of our approach to the
study of early hominin diet, the opportunity was also taken to record new data about the me-
tabolism of fats and cholesterol in our closest relatives. We observed that sterol conversion
seems to be high in both primates, Kibale chimpanzees and Bwindi gorillas. However, samples
7, 8 and 10 show a higher presence of sterol precursors (in this case, sitosterol and stigmasta-
nol), indicating a low conversion sterol to 5β-stanol, whereas gorilla conversion seems to be
much more efficient than chimpanzee’s. This could be explained by the colonic microbiome
and long food-fermentation times that could enhance bacterial conversion in gorillas.

The group of NHPs displayed a wide inter-individual variability, but in all of the cases (ex-
cept for sample 10) 5β-stigmastanol was the major sterol in their faeces and the phytosterols
contributed more than 55% of the total sterols, which is consistent with previous findings

Fig 4. Discriminant analysis. The canonical discriminant analysis plot shows NHP and Neanderthal samples. Group 1 corresponds to the chimpanzee
samples, the second to gorillas and the third to Neanderthals.

doi:10.1371/journal.pone.0128931.g004
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[82–86]. By reviewing the data for the NHPs, it is clear that there is an evident pattern in the
sterol profile (except for sample 10) corresponding to a folivorous and frugivorous diet. The
main differences among subjects are related to the cholesterol and metabolites content in
their faeces.

Chimpanzees showed the widest distribution covering the ranges of coprostanol and choles-
terol content characterized by humans, being remarkable in sample 10. When compared with
sample 3 (Fig 6) (same subject different sampling time) sample 10 shows a striking increase in
the cholesterol group, which occurred when this chimpanzee was not observed for three days.
Given the levels of coprostanol observed, this was probably due to the ingestion of animal tis-
sue. Meat intake in common chimpanzees has been estimated around 5% [30] and up to 10%
in some individuals.

Given the levels of coprostanol observed, we suggest that this was due to the ingestion of an-
imal tissue. Meat intake in common chimpanzees has been estimated to be around 5% of the
diet in some populations and up to 10% in some individuals [30]. However the Kanyawara
chimpanzees are not frequent hunters. Their diet includes ~75% ripe fruits and ~20% leaves
and piths, all of which supply energy in the form of carbohydrates and protein rather than lip-
ids [36,85, 91–92]. Most of the remaining ~5% of the diet is equally lipid-free (e.g. bark, wood,
flowers). Insect-eating by Kanyawara chimpanzees is extremely rare (mostly small nests of

Fig 5. Cluster analysis. The dendrogram generated using the intragroup’s method of linkage. It shows groups formed when clustering the NHP samples
with 5 neanderthal samples55 and 1 reference for modern human56.

doi:10.1371/journal.pone.0128931.g005
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wasps eaten a few times per year). The average chimpanzee in Kanyawara probably eats meat
only about once per month, given that Wrangham and colleagues [92] found remains of verte-
brates in 2.95 of chimpanzee faeces. However when they eat meat they consume enough to be
consistent with the levels of coprostanol and cholesterol observed in sample 10.

Our data in Bwindi gorillas show a sex difference in coprostanol content (Fig 7) even if
coprostanol and cholesterol amounts are higher in all the samples than those expected for a
supposed complete herbivore. Mountain gorillas from BINP have a diet low in lipids [39] com-
posed almost entirely of plant tissues that can include rarely ants or other insects [42]. Insects
contain approximately 0,1% cholesterol (1mg/g tissue) like other animals, depending on spe-
cies and diet [93–94]. It is possible that the accidental consumption of insects with vegetation
affected these results.

On the one hand, due to the nutritional cost of reproduction and growth in gorillas, growing
juveniles and adult females eat more food and thus more protein and fat per kg of metabolic
body mass than silverbacks [42] in the form of a plant-based diet, and generally dietary fat rep-
resents a very small portion of the intake of gorillas [39]. Thus, it can be argued that this sexual

Fig 6. Chimpanzee stanol partial chromatogram.Comparison of the m/z 215 ion chromatograms for the neutral lipid fraction from sample 3 (CH5) and 10
(CH3) collected from the same chimpanzee in different moments.

doi:10.1371/journal.pone.0128931.g006
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difference in coprostanol excretion might be due to a difference in feeding behaviour. However,
this is currently speculative and further analyses on a larger sample set are needed. Additional
information about the cholesterol intake of healthy primate populations in the wild, however,
is still lacking and should be addressed in the future.

BINP mountain gorillas are herbivorous and the greater content in coprostanol and choles-
terol in their faeces is not consistent with a folivorous-frugivorous diet and may not be diet in-
duced. Gorillas have large bodies, large colons, but proportionally short small intestines [95–
96]. Ponz de Leon and colleagues [97] suggested that the transit time of small intestine might
be a key factor in cholesterol absorption, accelerating cholesterol transit through the duode-
num and jejunum where the bulk of the absorption takes place. A hypothesis for this greater
concentration can be related to the higher content of phytosterols competing into the choles-
terol pool, which may have interfered with cholesterol absorption, therefore increasing the ex-
cretion in their faeces. Gomez Zapata pointed out that microbiome may also have played an
essential role in the increasing capacity for energy harvest and enhanced lipid metabolism in
the energetic budget of Gorillas [98], which in turn might be also related to the coprostanol

Fig 7. Gorilla stanol partial chromatogram.Comparison of the m/z 215 ion chromatograms for the neutral lipid fraction from sample 13 (Gorilla female) and
11 (Gorilla silverback).

doi:10.1371/journal.pone.0128931.g007
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values observed in our samples. His results show differences in gorillas on a leaf-based diet and
those that eat more fruit. The latter seem to have an increased cholesterol metabolism. This
could be the case of our female mountain gorillas with an increased dietary breadth.

Neutral lipids excretion studied in cow faeces have shown a similar pattern not consistent
with a complete herbivorous diet [56]. Unlike cholesterol, phytosterols are not subject to
significant metabolic action and they are poorly absorbed [99]. Still they can compete with cho-
lesterol for entry into micelles during digestion therefore reducing cholesterol absorption [84,
100–102].

A diet low in fat and cholesterol, yet accompanied by high coprostanol output, has also been
reported in Taharumara Indians and interpreted as reflecting maximum cholesterol synthesis,
stimulated by life-long low cholesterol, low fat diets [102–103]. The reason for this is not
known, and the lesser amount of exogenous cholesterol entering to the body did not appear to
entail a parallel marked shift in the amounts of cholesterol and metabolites in their faeces, indi-
cating that cholesterol synthesis remains responsive to changes in dietary intake [103].

Several studies have documented hypercholesterolemia as a common pathology among cap-
tive gorillas [104–105] and chimpanzees [106–108]. Finch and Stanford [81] suggested that
chimpanzees and gorillas, relative to other Old World primates, might be more sensitive to in-
duced cholesterolemia, being five-fold more sensitive to dietary cholesterol than humans [109].
Although there is not much information about vascular diseases such as hypercholesterolemia
in wild populations, this evident sensitivity to fat and cholesterol intake, if shared in a common
ancestor, required adaptations that allowed the first persistent meat eaters around 2,5 ma to
have a diet rich in fatty acids and cholesterol [80–81]. The health and life span of the earliest
persistent meat eaters were probably affected by the negative effects of cholesterol intake.

Besides the impact of meat eating in cholesterol blood levels, animal tissues contain levels of
nitrogen that are toxic for the foregut bacterial colonies when consumed in quantities as ob-
served in humans [23, 110] and volumes of fibre that are too low to prevent colonic twisting in
hindgut fermenters like gorillas or chimpanzees [29].

How then, did the hominin digestive system overcome the negative effects of meat-eating?
A primitive gut with large colonic bacterial colonies would not have tolerated a shift from regu-
lar fruit and leaf eating to regular fat and meat eating [29]. Small increases in nuts and seeds
first, and then animal tissues, probably allowed lipid digestion in the small intestine and a re-
duction in the size of the colon [29]. There might also have been a genetic mutation. Some
studies have pointed to de acquisition of genes (ApoE alleles) allowing fat consumption with-
out hypercholesterolemia [80–81]. This would have favoured the intake of PUFAs (polyunsatu-
rated fatty acids), the necessary substrate for the formation of brain tissue [111 –112].

Access to preformed PUFAs omega 3 (with 6 double bonds) and omega 6 (with 4 double
bonds) are exclusive to animal tissue-eaters since these fatty acids (FA) are not present or pres-
ent in small amounts in plants [23, 79]. More specifically, animal fat provides a source of pre-
formed long chain PUFAs, including arachidonic acid AA (22.4 n6) docosopentanoic acid
DTA (22.5 n6) and docosohexanoic acid DHA (22.6 n3) which make up over the 90% of the
long chain PUFAs found in brain grey matter of all mammals [113].

These FA have been considered a prerequisite for encephalization [23, 26, 114–116] and es-
sential for prenatal and postnatal brain development [116–118] and retinal function [119–
120]. However, Carlson and Kingston [121] argued that while conversion to DHA from alpha
linoleic acid (ALA) remains insufficient in adult males (0 to 4%), conversion in women of re-
productive age could reach 9%, increasing during the sixth week of gestation, hence providing
enough DHA for normal foetal brain development.

Nevertheless, the disproportionately large human brain suggests a considerable intake of the
nutrients required for a sustained trend of increasing encephalization [118]. These nutrients
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probably needed to be supplied in larger amounts than those provided by the mother for nor-
mal prenatal and postnatal brain development. Taking into account the energetically costly ex-
pansion of human brains [15] and the pumping role that these brain selective nutrients
probably played in our evolution, we assume that food sources meeting both requirements (in-
creased dietary quality and long chain PUFAs) were present in the original baseline diet prior
to encephalization and following brain expansion of Pleistocene hominins.

Taking a look into the food sources available to early humans, no single food simultaneously
fulfils both requirements [23]. The richest dietary source of preformed AA and DHA regularly
available to hominins through hunting or scavenging was possibly ruminant brain that com-
plemented with bone marrow possibly satisfied both requirements [23]. Evidence for fish con-
sumption in early humans sites [122–126] suggests that, fish became a food source rich in
brain selective nutrients around 2 Ma [119, 123]. Aquatic food sources as well as ruminant
brain would supply amounts of DHA that far exceed the daily intake recommended (100mg)
for a normal brain development in modern humans [23].

Indirect evidence of brain tissue consumption reflected in the remains of fresh broken skulls
has been identified in early human sites [24, 127–128]. Ruminant brain and marrow contains
around 2037mg /100 g [129] and 119-6mg/ 100g [130] cholesterol respectively. We believe,
that such amounts would entail a significant increase in cholesterol and metabolites in early
human sterol output, reflecting dietary changes.

The identification of the direct sources of these faecal sterols are still a challenge to over-
come and we recognize the great complexity of determining exactly how each of these hetero-
geneous sources fits into the final pattern of steroid faecal excretion of early humans. In light of
this, we believe that this study sets the stage for a future incorporation of faecal biomarkers into
a holistic palaeodietary approach.
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