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ABSTRACT: Heavy metal ions (HMIs) are very harmful to the
ecosystem when they are present in excess of the recommended
limits. They are carcinogenic in nature and can cause serious health  Supplied]voltage
issues. So, it is important to detect the metal ions quickly and T
accurately. The metal ions arsenic (As**), cadmium (Cd**),
chromium (Cr**), lead (Pb**), and mercury (Hg*") are considered
to be very toxic among other metal ions. Standard analytical
methods like atomic absorption spectroscopy, atomic fluorescence
spectroscopy, and X-ray fluorescence spectroscopy are used to
detect HMIs. But these methods necessitate highly technical
equipment and lengthy procedures with skilled personnel. So,
electrochemical sensing methods are considered to be more advantageous because of their quick analysis with precision and
simplicity to operate. They can detect a wide range of heavy metals providing real-time monitoring and are cost-effective and enable
multiparametric detection. Various sensing applications necessitate severe regulation regarding the modification of electrode
surfaces. Numerous nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles have been extensively explored as
interface materials in electrode modifiers. These nanoparticles offer excellent electrical conductivity, distinctive catalytic properties,
and high surface area resulting in enhanced electrochemical performance. This review examines different HMI detection methods in
an aqueous medium by an electrochemical sensing approach and studies the recent developments in interface materials for altering
the electrodes.
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1. INTRODUCTION posing serious risks to the environment.”* Heavy metals may
cause nausea, diarrhea, vomiting, or adverse reactions for low-
level or short-duration exposure, once they have invaded the
human body through ingestion (drinking or eating), inhalation,
or skin contact.’

When an HMI enters the cell, it changes the biochemical
lifecycle and becomes hazardous due to the metal’s ability to
form bonds with the thiol group of proteins. Several
international organizations, including the World Health
Organization (WHO),"™’ the Joint Food and Agricultural
Organization (FAO), the Centers for Disease Control
(CDC)," and the International Agency for Research on
Cancer (IARC) are investigating the harmful effects of HML
Therefore, it is essential to develop fast and precise techniques
for the analysis of low-concentration HMIs in samples from the

Environmental monitoring is primarily concerned with
identifying and measuring contaminants that are present in
water, soil, and air as chemical, biological, microbiological, and
radioactive containments. Due to the rising global demand for
fresh, clean water, there is an increasing need to precisely
monitor water quality. The quality of water could be
significantly harmed by the emergence of new sources of
pollution. One of the most important environmental issues that
threaten global sustainability is heavy metal jon (HMI)
pollution. HMIs are nonbiodegradable and highly toxic
substances that can cause adverse effects on living organisms.
They are among the most harmful water pollutants.

The majority of heavy metals found in the environment are
caused by human activity, including air emissions from coal-
burning plants, smelters, smokestacks, etc. Even at very low

concentrations, heavy metals like cadmium, lead, arsenic, and Received: January 29, 2024 O
mercury are highly toxic and carcinogenic."” Since these Revised:  May 13, 2024
metals are not biodegradable, they might persist in the Accepted: May 24, 2024

environment for decades or even centuries. They may exist at Published: June 5, 2024

measurable levels in food supplies and can accumulate in the
food chain, contaminating the final consumer, humans, and
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environment, samples from food and medicine, and biological
samples.

To examine heavy metals in food and environmental
samples, standard analytical techniques have been developed.
These include inductively cou4p1ed plasma methods,"' ~"* X-ray
fluorescence spectrometry,'” and atomic absorption and
emission spectroscopies' >~ that can operate in both optical
and mass differentiation. These methods are well established
and provide high accuracy of results when performed in highly
equipped laboratories.'®™>° However, they necessitate highly
technical equipment, skilled personnel, challenging preconcen-
tration steps before measurement, and lengthy procedures. For
HMI detection, different methods such as electrochemical and
optical analyses have acquired popularity due to their superior
sensitivity, selectivity, speed, affordability, and user-friendliness
compared to conventional analytical methods. When compared
to the methods mentioned above, the electrochemical method
is more advantageous because of its quick analysis with greater
precision, economical, simple operation, and easy miniatur-
ization. It is also suitable for in situ analysis, point-of-care
analysis, and in vivo real-time analysis.”' The detection of
HMIs in various samples has received significant attention in
recent times, as shown in Figure 1. In the past decade, there
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Figure 1. Number of publications in the field of electrochemical
detection of heavy metal ions in the last 10 years (www.scopus.com;
keywords: electrochemical detection of heavy metal ion).

has been a considerable increase in the number of scientific
research studies dedicated to electrochemical sensing of HMIs
according to the SCOPUS database. This increase may be
attributable to the numerous benefits that electrochemical
sensing offers in comparison to conventional approaches.
Nanocomposite materials have recently emerged as an
essential class of materials that represent the pioneering
potential for a wide range of technological applications. They
are excellent for detecting a wide variety of targets, including
biomolecules, chemicals, and environmental pollutants,
because their tunable characteristics permit customization of
the sensor’s response to stimuli.”” To enhance the sensitivity
and selectivity of the HMI detection using electrochemical
sensors, electrode modifiers made of nanocomposite materials
are employed.”” Many electrochemical devices make use of
screen printed electrodes (SPEs) which have paved the way for
the transition from conventional laboratory analytical methods
to portable low-cost sensors.”* However, they have their own
limitations of lower sensitivity and detection limits compared
with the traditional analytical methods. In a similar manner,
nanomaterial-based ion-imprinted electrochemical sensors are

emerging as an excellent technology because of their good
selectivity and fast detection speed.”>°

This paper aims to examine different electrochemical sensing
methods to detect HMIs in aqueous medium as well as to
review recent developments in interface materials for altering
the electrodes used in these methods. This Review covers the
publications pertaining to the domain of electrochemical
sensors utilized for HMI detection. Considerable attention was
given toward the articles that detailed fundamental advance-
ments in potentiometric, voltammetric, and amperometric
techniques in addition to the reviews that addressed the
relevant field. The papers that are significant to electrochemical
sensors for HMI detection were identified through keyword
searches in standard databases like SCOPUS, Web of Science,
etc. Only original articles and reviews that were written in
English were considered. Priority was given to the articles that
reported new interfacing materials and sensing methodologies
in the selection of references rather than applications. Nearly
200 articles were screened for this study.

2. HMI DETECTION METHODS

Metals are necessary for carrying out biological processes, but
their concentration range has a significant effect on human
health. It is considered safe if the concentration range of the
metals is below the hazardous limit. If it exceeds the allowable
limits, then it has a number of cytological and physiological
impacts. Various metals with their regulatory limit for drinking
water and industrial effluents defined by the Central Pollution
Control Board (CPCB), India, are shown in Table 1.

So, it is necessary to have proper detection methods to
determine the presence of heavy metal ions and estimate their
concentration quantitatively. To achieve this, time- and cost-
efficient detection procedures should be developed. Addition-
ally, the detection methods need to be accurate so that they
can find even traces of metal ions. Many techniques are
available for the detection of HMIs, but there is no specific
method that is applicable to all of the ions.

2.1. Analytical Sensing Methods of HMIs. Analytical
sensing methods include atomic absorption and emission
spectroscopy, atomic fluorescence spectrometry, X-ray fluo-
rescence spectrometry, etc. These methods are accurate but
expensive and require pretreatment procedures in the lab.
These methods can simultaneously determine the concen-
trations of HMISs for a wide variety of elements. Though these
methods have a low detection limit, they are very expensive
and demand skilled personnel to operate the complicated
equipment. Some analytical methods include atomic absorp-
tion spectrometry (AAS), atomic fluorescence spectrometry
(AFS), X-ray fluorescence spectrometry (XFS), etc.

2.1.1. Atomic Absorption Spectrometry. In AAS, the
isolated atoms are stimulated to an excited state from the
ground state using a specific wavelength, and the energy
absorbed during this process is quantified. The amount of
energy absorbed is proportional to the concentration of
metallic elements in a given sample. Figure 2 shows a block
diagram of the general atomic absorption spectrometer. The
basic parts of AAS are light source, atomizer, monochromator,
detector, and electronic read out. Here, the light source is used
for exciting ions of a specific element. To determine elements
in the sample using AAS, it is necessary that individual atoms
or ions in the sample are well isolated from one another. Here
an atomizer is used to create the analytes from the sample.
Flame emission can be used to identify the elements with low
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Figure 2. Block diagram of an atomic absorption spectrometer.

excitation energy and atomic absorption spectroscopy can be
used to identify elements with high excitation energy. A
monochromator is used to separate a specific wavelength
before passing to the detector. The concentration of the
analyte in solution can be determined by adopting any
calibration technique in the readout device.

2.1.2. Atomic Fluorescence Spectrometry. This method
makes use of the fluorescence spectra of each individual metal.
In this method, the samples are pretreated to remove
unwanted impurities. Then the elements of the sample are
atomized by the same method adopted in AAS. The
illumination of atoms by a radioactive light source causes
atomic excitation, which results in emission of fluorescence
signals. These signals are detected by the detector. The block
diagram of AFS is shown in Figure 3. The construction and
working principle of AFS are the same as those of AAS, but the
main difference is AAS detects the light absorbed whereas AFS
detects the emitted light.

Radiation Atom Wavelength
Source Reservoir Selector

Detector /"VIL‘

Read-out device

Sample analyte

Figure 3. Block diagram of an atomic fluorescence spectrometer.

2.1.3. X-ray Fluorescence Spectrometry. By using XFS, the
analytes of the sample are determined by measuring the
emitted secondary X-rays from the sample when it is
stimulated by the primary X-ray source. The secondary X-
rays produced by the samples are unique for specific elements.
So, XFS is considered an excellent technique for quantitative
and qualitative analysis of analytes. Figure 4 shows the process
carried out in the XFS analysis. Some of the HMI detections by
analytical methods reported in literature are summarized in
Table 2

2.2. Electrochemical Sensing Methods of HMis.
Electrochemical techniques are not only cost-effective but
also user-friendly and reliable, and they incorporate basic

processes for monitoring contaminated samples. Another
advantage afforded by electrochemical methods is the very
small amount of time required for analysis in comparison to
the time required by other spectroscopic techniques. In this
technique, one electrode is chemically altered in order to vary
its surface properties. Compared with the reference and
counter electrodes, this chemically modified electrode operates
as the working electrode. Based on the unique electrical signals
produced by the presence of HMIs, electrochemical methods
for detecting heavy metal ions in an aqueous solution are
categorized. Several electrical properties, including current,
voltage, electrochemical impedance, charge, and electro-
luminescence, can be altered by the presence of HMIs.>’ >
Based on different electrical signals, electrochemical techniques
are categorized as potentiostatic techniques, galvanostatic
techniques, impedance measurement techniques, and electro-
chemiluminescence techniques. In the majority of these
methods, either the current or the potential is modified to
measure the variation in the other parameter.

2.2.1. Potentiostatic Techniques. During potentiostatic
procedures, a potentiostat is used to regulate the potential
between its reference and counter electrodes, thus keeping the
potential difference between the reference and working
electrodes constant. The resulting current is monitored and
recorded to predict the analyte concentration. The general
experimental setup of potentiostatic technique is shown in
Figure S.

There are many subcategories available in potentiostatic
techniques based on the voltage signal used and resulting
current waveforms, which include amperometry, voltammetry
(like linear sweep, normal pulse, staircase, reverse pulse,
differential pulse, square wave, anodic stripping, cathodic
stripping, cyclic voltammetry), and chronocoulometry. Amper-
ometry uses a non-mercury working electrode to measure very
small currents at a fixed voltage. This method uses a potential
step signal between the reference and working electrodes in the
electrochemical cell. In amperometric experiments, the current
is measured and recorded as a function of time. The
chronocoulometry method measures the amount of charge
passed after applying a regulated potential that is computed
from the integral of current versus time or voltage. Most of the
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Table 2. HMI Detection by Analytical Methods

analytical
sample taken technique analytes ref
tube wells of AAS lead, antimony, aluminum, arsenic =~ 27
different depths
Kulufo River AAS manganese, lead, chromium, 28
cadmium
Chinese tea AAS lead, cadmium, chromium, copper, 29
nickel
Chinese tablets AAS calcium, magnesium, iron, copper, 30
zinc
rocks AAS platinum 31
wine AAS Cadmium 32
muscle samples of AAS mercury 33
fish
natural and AAS iron 34
mineral waters
brown rice AFS cadmium 35
water samples AFS lead 36
mining polluted AFS arsenic 37
soils
acid mine drainage AFS arsenic(IIT), arsenic(V) 38
seafood AFS arsenic(IIT) 39
cow milk AFS selenium 40
sesame seeds AFS selenium 41
marine algae AFS antimony(11I), antimony(V) 42
water AFS mercury 43
aqueous solution XFS copper, lead 44
coastal seawaters XFES iron, nickel, manganese, copper, 45
zinc, lead
soil XFS arsenic, chromium, copper, nickel, 46
lead, vanadium, zinc
soils XFS arsenic, cadmium, chromium, 47
copper, nickel, zinc, lead
fish tissues XFS chromium, nickel, copper, zinc, 48
mercury, lead
wastewater XES mercury 49
samples

time, these techniques are used to do exhaustive electrolysis for
quantitative analysis, but they give very little information about
the type of the analyte. In complicated environmental matrices,
voltammetric methods are most commonly utilized to measure
heavy metal ions. In contrast to the amperometric method,
which uses a single potential point to measure current, these
methods measure current at different potential points along a

Current/Voltage Source

Potentistat

Controlled Voltage

Reference|Electrode
Vref Vs VWE

Working Electrode
Counter Electrode

i(t)

Measured Current

Figure S. Experimental setup of potentiostatic techniques.

current—voltage curve. Voltammetry is often used to
determine the type of trace metal, because it is accurate and
sensitive.

2.2.2. Galvanostatic Techniques. In galvanostatic techni-
ques, a current source is used to regulate the electric current
between the working electrode and the counter electrode, and
the resulting potential is then measured between the working
and reference electrodes, as shown in Figure 6. In contrast to
potentiostatic techniques, galvanostatic techniques require less
complex instrumentation due to the absence of feedback from
the reference electrode. However, these methods have
significant drawbacks due to the huge double-layer charging
effects that occur during the experiment.

2.2.3. Impedance Measurement Techniques. Electro-
chemical impedance spectroscopy (EIS) and AC voltammetry
are two of the most popular impedance measurement
techniques for estimating the concentration of analytes in
aqueous solution. Between these two methods, EIS is more
commonly used for metal ion speciation from a wide variety of
biological and other environmental samples. The EIS method
is frequently used to investigate the interfacial characteristics of
changed electrodes, in particular, for multilayer films. It was
also demonstrated to be an effective technique for identifying
relevant interface characteristics that can be used in
biosensing.””> EIS uses electrically equivalent circuits to
describe the products of an electrochemical process in an
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Figure 6. Experimental setup of galvanostatic techniques.

electrolytic cell. As charge moves through an electrified
interface as a result of an electrochemical reaction, both
Faradaic and non-Faradaic components are produced. The
metal ion concentration in an electrolytic solution can be
predicted by determining this impedance parameter of the
electric equivalent circuits. The block diagram representation
of EIS is shown in Figure 7.

2.2.4. Electrochemiluminescence Techniques. The phe-
nomenon of chemiluminescence is produced by certain
homogeneous electron transfer mechanisms in radical-ion-
containing chemical solutions. These techniques are often used
to find specific metal ions in a solution. They are based on
fluorescence detection, which is simple, cheap, and very
sensitive (parts per billion or trillion).

3. STUDIES ON HMI DETECTION USING
ELECTROCHEMICAL SENSING

Electrochemical sensing evaluates the analyte concentration by
chemical reactions. The electrochemical sensors transform
chemical reaction data into measurable current, conductivity,
and voltage or potential. These sensors use a chemically
selective layer to recognize electrocatalyzed chemical reactions
and an electrochemical transducer to translate chemical
changes into electrical signals as shown in Figure 8.

Electrochemical sensing methods have been shown to be a
good replacement for traditional methods of both qualitative
and quantitative analysis. The advantages of electrochemical
sensing systems are simple instrumentation, fast response,
selectivity, ease of use, compact size, minimal sample
pretreatment, short analysis time, and portability. A significant
number of studies have been carried out in making portable
electrochemical sensors for HMI detection. Among several
heavy metals, arsenic (As), cadmium (Cd), chromium (Cr),
lead (Pb), and mercury (Hg) are the most likely candidates for
the majority of heavy-metal-related diseases.

3.1. Research on Electrochemical Sensing of Arsenic.
Arsenic is usually considered one of the most hazardous
elements found in nature. Arsenic is predominantly found in
inorganic forms, called arsenite and arsenate. As per the studies
done, arsenite is more highly toxic than arsenate.’ The
recommended level of arsenic in drinking water is below 10
ppb.>> ™7 Nanomaterials are increasingly being employed for
the modification of electrodes to enhance performance by
electrochemical sensing methods.”®™** By utilizing different
nanoparticles like carbon nanoparticles, noble metal nano-
particle, bimetallic nanoparticle, and metal oxide nanoparticle
modified electrodes, there is excellent performance in detecting
arsenic in terms of sensitivity, the limit of detection, and anti-
interference.

Carbon nanoparticle modified electrodes in electrochemical
sensors provide a rapid response with minimum detection
limits. It has been observed that Au electrodes modified with
thiolated multiwalled carbon nanotubes are effective for the
measurement of Arsenic. Kato et al.”® described the synthesis
of uniformly dispersed Au nanoparticles on a carbon film
electrode using unbalanced magnetron cosputtering. The
resulting particles had an average size of S nm. The mechanical
stability of the Au nanoparticles was enhanced, and the high
catalytic activity was preserved. The effect of Au nanoparticles
with various crystal facets on arsenic(IIl) was studied, and the
obtained results show that the highest electrochemical
performance was obtained with the Au(III) facet.”*

The adsorption capability of an electrode surface is
significant in electrochemical behavior. Ferrite nanoparticles
have received a lot of attention due to their excellent
adsorption capacity and supermagnetism. This property is
utilized to detect arsenic in water using monodispersed ferrite
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Figure 7. Diagrammatic representation of electrochemical impedance spectroscopy.
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linear calibration plot of peak current against arsenic concentrations from 0.1 to 10 ppb Insets in (a) and (b) are the enlarged views that correspond
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nanoparticles.65 A manganese oxide (MnO,)/Au nanoparticle
modified glassy carbon electrode (GCE) for the detection of
arsenic in alkaline media was studied, and this procedure is free
from interference produced by other metal ions present in the
water.°® A nanocomposite electrochemical sensor based on Au
nanoparticles/MnO, was reported by Dong et al®’ for the
detection of arsenic(IlI). A GCE was modified to resemble
nanorods during fabrication of the sensor and was utilized to
measure As(III) in extremely alkaline solutions. The developed
sensor was reported to be effective and interference-free, and
its alkaline medium detection capability was similar to that of a
realistic water environment.

Because of improved properties like higher conductivity and
catalytic activity compared to their monometallic counterparts,
bimetallic nanoparticles have recently been the subject of
substantial research for sensing applications. An efficient
hydrothermal technique was proposed by Yang et al.%® for
preparing bimetallic nanoparticles of varying Au and copper
(Cu) composition. The electrochemical performance was
investigated by square wave anodic stripping voltammetry
(SWASV) for the detection of arsenic, and it was found that
the bimetallic nanoparticles show better performance than Au
nanoparticles and conventional Au electrodes and parts per
billion level while retaining the low detection limits. Assessing
the sensing capabilities of electrodes with bimetallic gold
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nanostructures was aided by computational studies using Au—
Cu and Au—Pd clusters for the adsorption of trivalent arsenic.

Recently, noble metal nanoparticles have attracted extensive
interest for heavy metal detection due to their excellent
electrical conductivity, high surface area, and catalytic
activities. Electrodeposition of noble metal nanoparticles can
be easily done, and it has been demonstrated as a potential
technique for heavy metal detection. Silver (Ag) nanoparticles
have been used to create an integrated chitosan-modified GCE
for sensing arsenic by differential pulse anodic stripping
voltammetry (DPASV).%” This method exhibits high sensitivity
with a limit of detection of 1.2 ppb, which is found to be much
lower than the recommended level of WHO. The specified
electrode tolerated copper and significant concentrations of
surfacants and chemical substances. This approach can also be
used to determine arsenic(V) concentration after chemical
treatments.

Dumbbell-like Au/Fe;O, nanoparticles modified with a
screen-printed carbon electrode (SPCE) can be used as an
effective sensing method for arsenic.”’ It has been reported
that the developed electrochemical sensor shows a 9.43 uA/
ppb sensitivity and a detection limit of 0.0215 ppb. Figure 9
shows typical SWASV responses and linear calibration plots of
peak current against arsenic concentrations at an Au/Fe;O,
SPCE in various concentration ranges from 0.1 to 10 ppb.
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Table 3 presents a quick overview of reports of electro-

chemical sensing of arsenic that have been published in recent

years.

Table 3. Electrochemical Sensing of Arsenic

technique

linear sweep anodic
stripping voltam-
metry (LSASV)

SWASV
SWASV

SWASV

LSASV
LSASV
SWASV
SWASV
DPASV
SWASV

SWASV
SWASV
DPASV
Ccv

cv
SWASV

LSASV
SWASV

SWASV
SWASV
ASV

ASV

electrochemical
platform

Au-reduced graphene
oxide modified
GCE

Reduced graphene
oxide-MnO,/GCE

exfoliated graphite-
gold nanoparticles

reduced graphene
oxide-Fe;0, /GCE
CB-AuNPs-SPE
Au-PtNPs/GCE
FePt Nanoparticles
Au-IrM
nanogold-SCPE

AuNP-carbon film
electrode

NP-Au/GCE
Fe,0,/SPCE
ThO, NPs/CPE

F-doped cadmium
oxide film

ZrO,-Nafion/Au
electrode

SnO, nanosheet gold
electrode

MnOx-AuNPs/GCE

Au@Fe;0,-RTIL/
SPCE

MnFe,0,--AuNPs/
GCE

gold nanoparticles/a-
MnO, /GCE

chitosan-Fe(OH),/
GCE

thiacrown 1,4,7-tri-
thiacyclononane-
AuNP-graphene-
PE

limit of
detection detection
(ppb)  range (ppb)  ref
0.1 0.3-20 71
0.05 1-10 72
0.58 1-50 73
0.12 0.1-20 74
0.4 2-30 75
0.28 0.375-225 76
0.8 1-15 77
0.038 0.75-3.75 78
8.14 4—1498 79
0.55 1-100 80
0.137 0.5-15 81
0.00185 2—-14 82
0.1 0—-180 83
0.00455 56.25—450 84
S 5—60 85
S 5—-300 86
0.057 0.5—-80 87
0.0022 0.1-1 88
3.37 10—-110 89
0.828 1-10 90
0.072 2—-100 91
0.0006 0.0019-2.55 92

3.2. Research on Electrochemical Sensing of Cadmi-
um. The use of cadmium (Cd) in industrial applications, such
as nickel cadmium rechargeable batteries, resistance to
corrosion in electroplating, photoconductive surfaces in
television picture tubes, solar modules, fluorescent probes in
fluorescence microscopy, etc.,, is increasing signiﬁcantly,
despite cadmium’s hazardous effects to the environment. It
has been reported that excessive Cd exposure causes kidney
problems, lung cancer, demineralization of the bones, breast
cancer, etc. In addition, prolonged Cd inhalation can cause
fever, hypertension, and even death. The recommended level
of cadmium in drinking water is below 3 ppb. Thus, simple and
effective approaches for the detection and monitoring of
harmful metal ions in water are crucial. It has been observed
that the development of electrochemical cadmium ion sensors
relies heavily on nanocomposite materials.

The cadmium ion can be detected using a GCE with high
adsorption capabilities modified with Fe;0,/Bi,0;/C;N,.””
The linear response sensor displayed remarkable levels of
sensitivity of 0.01—3 pmol/L with a less than 3 X 10~ mol/L
detection limit. By utilizing ethyl green and multiwalled carbon
nanotubes, a DNA-based electrochemical sensor for detecting
cadmium ion was developed and this approach showed that
ion detection has a linear detection range with a sensitivity of
approximately 5 nA/nM and a minimum detection level of 2
nM.”* Qin et al.”® proposed an electrochemical sensor for
detecting cadmium by utilizing f-cyclodextrin functionalized
with Au nanoparticles. Because of the strong cadmium
adsorption properties of B-cyclodextrin and the presence of
Au nanoparticles, the nanocomposites described in this work
have excellent electrical properties. Under optimal stripping
circumstances, the peak currents for cadmium in the interface
are linearly proportional to these elements’ concentrations over
the range of 40—1200 g/L.

Cadmium ions can be detected by anodic stripping
voltammetry using nanostructured magnesium—aluminum
layered double hydroxides that are highly selective and
sensitive.”® This double hydroxide has the benefit of requiring
minimal modification, and its surface has specific hydroxyl
functional groups that can react with metal ions via chemical
binding to produce inner-sphere complexes. Figure 10a
demonstrates the SWASV responses of nanostructured
magnesium—aluminum layered double hydroxide/Nafion to
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Figure 10. SWASV response and corresponding calibration plot (inset) of magnesium—aluminum double layered hydroxide/Nafion glass carbon
electrode toward cadmium over the concentration range of (a) 0.1—1.9 M by depositing for 120 s and (b) 20—60 nm by depositing for 30 min.
Reprinted with permission from ref 96. Copyright 2018 Royal Society of Chemistry.
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Table 4. Electrochemical Sensing of Cadmium

technique

SWASV
SWASV
SWASV
SWASV

SWASV
SWASV
ASV
SWASV
SWASV
SSCP
SWASV
SWASV
DPASV
SWASV
conductometry
SWASV
SWASV
SWASV
ASV
SWASV
SWASV
EIS

galvanostatic stripping chronopotentiometry
(Gscp)

SIA-ASV
SWASV
SWASV

electrochemical platform

antimony film CPE
Bi—C nanocomposite
Au nanoparticles-carbon nanofibers

silicon nanowires-SH/GCE

Chemically modified CPE

Nafion/ionic liquid/graphene/SPCE

GCE

NH;-pn-MWCNT's

MgSiO; modified GCEs

mercury Film SPE

mercury Film SPE

B-doped diamond-like carbon film
boron-doped diamond films

complexing polymer films

alkaline phosphatase

multiwalled carbon nanotube tower based GCE
graphene NS

cucumber like hydroxyapatite

RGO/bismuth nanocomposite

porous manganese oxide nanoflowers
SnO,/reduced graphene oxide nanocomposite
polyethylene terephthalate-SPE

latent mercury film type D-LMF (Istran) based
carbon electrode

screen-printed carbon nanotube electrodes
bismuth nanoparticles

bismuth nanopowder

limit of detection

0.8 and 02 ug L™*
0.65 and 0.81 pug L™!
0.1 uM

0.04 mA/nM and 0.074
HA/nM

03mL™"
0.06 ng m L™!
32 ug L™
0.0272 nM
0.186 nM
2.2 nM
1.78 nM
4.83 nM
3.29 nM
500 nM
10-20 M
25 nM
107 M
0.027 nM
28 ug L™
81 pM

0.1 nM

1 nM

0.02 pug L™

0.8 ug L™
Sug L™
2.54 ug L'

detection range ref
4.0—150.0 ug L™ 98
1-100 ppb 99
0.1-1.0 uM 100
5-250 nM 101

1.5-1000 ngm L™ 102

0.1-100.0 ng L™ 103
50-250 pug L! 104
0.0025-0.0225 M 108
0.1-1.0 M 106

107
0.2-20 pug L™! 108
2-25 pyg L™ 109
up to 35 nM 110
10777107° 111

112
2-8 uM 113

114
0.01-10 nM 118
20-120 mg L™! 116
40—140 nM 117
0-1.3 uM 118
0-50 uM 119
0.07 ug L™! 120
2-100 pg L™ 121

122

123

cadmium in the concentration range of 0.1-1.9 mM in 0.1 M
PBS. As demonstrated in the calibration curve of cadmium
(inset in Figure 10a), peak currents increased linearly in
relation to cadmium concentrations, with a sensitivity of 13.86
HA/uUM. SWASV responses were also tested in the low
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concentration range of 20—60 nM by increasing the deposition
duration to 30 min (Figure 10b). The experiment yielded a
sensitivity of 240 pA/uM and a lowest detectable concen-
tration of 20 nM.
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Figure 12. DPV of graphite paste electrode/silver nanoparticles biphenol biphenoquinone nanoribbons in 0.1 M PBS containing various
concentrations of chromium. Insets represent the plots of anodic peak current Vs concentrations of chromium. The error bars represents the
standard deviation of three parallel test Reprinted with permission from ref 131. Copyright 2018 Elsevier.

In order to detect cadmium in drinking water and sewage
samples, a simple and effective synthesis process has been
developed which combines a conductive polymer, poly(3,4-
ethylenedioxythiophene) polystyrene sulfate (PEDOT), with
Prussian blue (PB) and laser-scribed graphene (LSG) and the
electrocatalytic performance was studied by cyclic voltammetry
(CV) and differential pulse voltammetry (DPV).”” Under
optimal conditions, cadmium was directly and easily detected
over a wide linear range (1 nM—10 M) with low detection
limits (0.85 nM) as depicted in Figure 11.

Table 4 presents a quick overview of the reports on the
electrochemical sensing of cadmium that have been published
in recent years.

3.3. Research on Electrochemical Sensing of Chro-
mium. Although it is one of the most frequent environmental
contaminants, chromium is highly toxic when concentrations
exceed safe levels, causing severe harm to humans and aquatic
life. The recommended level of chromium in drinking water is
below 0.05 ppb. Due to its widespread use in electroplating,
leather tanning, wood polishing and preservation, and artificial
gem and jewel fabrication, chromium in the environment is
associated with the increasing industrialization of towns and
metropolitan regions. The wastewater from these metal plating
industries adds to the rise in chromium levels in biosystems.
Due to the potential health risks of ingestion and different
exposure limits imposed by different countries, monitoring
chromium concentrations in natural waters is crucial.'**

Chromium is often detected electrochemically through a
reduction at the electrode’s surface. Nanomaterial-modified
electrodes show a lot of benefits, such as a higher ratio of
surface area to volume, low cost, high porosity, and easy
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modification. Carbon nanotubes were used to print on
different electrodes, such as fluorine-doped tin oxide glass, a
flexible paper electrode, and a screen-printed electrode for the
fabrication of an amperometric sensor for chromium ion
measurement.'>> With the help of carbon nanotubes, the
current response can be made stronger, which makes it
possible to measure the heavy metal ion even at trace levels at
concentrations as low as S ug/L. The same method was used
by Rosolina et al.'* to investigate the effect of carboxylated,
single-walled carbon nanotubes on glassy carbon electrodes, as
well as pyridinium-functionalized sol—gel thin films on the
detection of chromium ions by square wave voltammetry.

In addition to carbon nanotubes, graphene nanomaterial can
also be used to detect chromium ions in aqueous medium. The
glassy carbon electrode was successfully modified with
graphene for chromium detection by the method of electro-
static interaction in an acidic solution.'”” Graphene enhances
the electron transmission and reduces the transfer resistance by
9 times when compared to the glassy carbon electrode, thereby
detecting chromium at 7.8 ug/L. Chen et al."*® developed an
electrochemiluminescence sensor by quenching the cathodic
signal of chromium ion on peroxodisulfate and graphene
quantum dots. Graphene quantum dot concentration has been
shown to decrease the relative standard deviation of the
intensity of electrochemiluminescence as the signal-to-noise
ratio increases. The sensor was useful for accurately detecting
chromium ion concentrations as low as 1.04 ug/L.

For chromium detection, different metallic nanoparticles
have been reported in the literature. An electrochemical sensor
for chromium detection at a concentration of 0.05 yg/L using
a bismuth film on a mesoporous carbon electrode was
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Table 5. Electrochemical Sensing of Chromium

limit of
technique electrochemical platform detection detection range ref
ion-selective electrodes (ISEa) platinum electrode material modified with iodine 2 uM 0.006—2 mM 132
cv platinum electrode modified with Poly (4-vinylpyridine) 10 nM 0.01-1 uM 133
DPASV mercury drop electrode modified with diethylenetriamine pentaacetate 20 ng/L 20-2000 ng/L 134
complex
polarography mercury drop electrode modified with NaClO, 200 nM 0.2—60 uM 135
polarography platinum 0.02 ppm 0.05—17.2 ppm 136
polarography mercury film electrodes 0.3 ppm 1-10 ppb 137
linear sweep voltammetry (LSV) platinum electrode modified with poly-3-methylthiophene 100 ppb NA 138
polarography mercury drop electrode modified with sodium pentamethylene 0.01 ppm NA 139
dithiocarbamates
LSV mercury drop electrode modified with 5-Br-diethylamino phenol complex 0.9 nM 3-90 nM 140
an(odic ;tripping voltammetry mercury drop electrode modified with diphenylcarbazide complex 0.02 pug/L 0—10 nM 141
ASV
LSV diphenylcarbazide 13 nM 0.013—100 uM 142
Csv mercury drop electrode modified with bipyridine complex 20 pM 0.02—50 nM 143
ASV mercury drop electrode modified with pyrocatechol violet complex 3 oM 15—-100 nM 144
Csv diethylenetriamine pentaacetate complex 0.28 nM 9.62—170 nM 145
DPASV diethylenetriamine pentaacetate complex 30 pM 0.1-10 nM 146
DPASV ethylenediamine triacetic acid, pyrocatechol violet complexes 30 nM 4.85—105 nM 147
SWASV mercury film 32.3 nM 0.01-0.6 uM 148
DPV natural or synthetic diamond 10712 1071°-107% 149
Amp blank phosphate buffers/glucose oxidase electrodes 0.49 ug/L 0.49-95.73 ug/L 150
Amp polypyrrole/tyrosinase 0.5 uM 0.5—-100 uM 151
DPV bentonite/diphenyl carbazide 17 ug/L 0.03—-0.5 mg/L 152
Amp gold nanoparticles 0.1 uM 0.5-50 uM 153
Amp silicate/nanoAuNPs 0.1 ppb 0.2—-3 ppb 154
SWASV bismuth film 5.27 ppb 1070 ppb 155
Amp Prussian blue 0.15 ppb 0.5-200 ppb 156
Csv trioctylamine 3.4 nM 500 nM to 1 mM 157
Amp L-dihydroxyphenylalanine 6.01 ug/L 10—125 ug/L 158
DPV polycarbonate/IrO, nanotubes 0.2 uM 1-10 uM 159
Amp silver nanoparticles 0.65 ppb 2-370 ppb 160
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Figure 13. SWASYV for different concentrations of lead ions from acarbon paste electrode modified with polydiaminonaphthalene and bismuth film.
(inset) Calibration curve of lead ions. Reproduced from open access article ref 162 distributed under the terms and conditions of the Creative
Commons Attribution license http://creativecommons.org/licenses/by/4.0/..

developed by Xu et al,'” and this method enhanced the in recent years for its use as a sensing material, which was used
sensing ability of the developed sensor with minimal to determine chromium through its catalytic function. In situ
interference. Silver has also attracted considerable attention electroplating of a glassy carbon electrode with a silver layer
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Table 6. Electrochemical Sensing of Lead Ions

technique electrochemical platform limit of detection detection range ref
SWASV antimony film carbon paste electrode 0.8 and 0.2 ug L™* 4.0-150.0 ug L™ 98
SWASV Bi—C nanocomposite 0.65 and 0.81 ug L™ 1-100 ppb 99
SWASV Au nanoparticles-carbon nano fibers 0.1 uM 0.1-1.0 uM 100
SWASV silicon nanowires-SH/GCE 0.04 mA/nM and 0.074 yA/nM  5-250 nM 101
SWASV Gr and the OPFP IL modified CPE 4.50 X 107'° mol L™ 0.1-30.0 ng mL—1 168
SWASV Nafion/ionic liquid/graphene/SPCE 0.08 ngm L™ 0.1 to 100.0 ng L™ 103
ASV GCE 19 ug L' 5—200 pg L™ 104
SWASV MgSiO; modified GCEs 0.247 nM 0.1-1.0 M 106
DPASV hydroxyquinoline mercury drop electrode  0.03 nM 1.7-32 nM 169
SWASV B-doped diamond-like carbon film 8.9 nM 2-25 ug L™ 109
SWASV Boron doped diamond films 19.3 nM 20 ppb —100 ppb 170
DPASV boron doped diamond films 26.5 nM up to 48 nM 110
SWASV thiol functionalized clay modified CPE 60 nM 3X 107 to 107° M 171
LSASV TETRAM-modified graphite felt electrode 25 nM 172
SWASV complexing polymer films 0.5 nM 107%-107¢ 111
CA GC/PEDOT:PSS 0.19 nM 2 nmol L™ to 0.1 ymol L' 173
SWASV MWCNT tower based GCE 12 nM 2—-8 uM 113
SWASV Graphene NS 107" M 114
SWASV Cucumber like HAP 0.00423 nM 0.01-10 nM 115
DPV Nanostructured MIP 0.6 nM 10X 10 to 81 x 107 M 174
ASV RGO/Bi nanocomposite 0.55 ug L™! 20—120 mg L™ 116
SWASV porous MGO nanoflowers 2.1 pM 3.3-22 nM 117
SWASV AuNP-CNT 0.546 ug L™ —22.29 ppb 175
SWASV SnO,/RGO nanocomposite 0.18 nM, 0 to 1.3 uM 118
SWASV CdS QD modified ssDNA 7.8 pM 0.01 nM to 3.31 1.0 uM 176
EIS PET-SPE 1 nM 50 uM to 1 mM 119
GSCP D-LMF based carbon electrode 0.02 ug L' 0.06—0.36 ug L™ 120
sequential injection analysis (SIA)-ASV ~ SPCNTE 02 ug L™ 2-100 pg L™ 121
SWASV BiNPs 2 ug L7 122
SWASV Nano-Bi 197 ug L™ 123
has been reported in the literature to create a sensor for al.'®> proposed an electrochemical sensor for lead ion

chromium detection at the ug/L level by DPASV."** When
silver electroplating was used, chromium was detected at 5.2
pug/L concentration, 4 times higher than that of bare
electrodes. In a similar manner, the decorated silver nano-
particles on biphenol biphenoquinone nanoribbons were used
to modify a graphite paste electrode for chromium
detection.””" The silver nanoparticles improved the current
density and reversibility of the developed sensor as shown in
Figure 12.

Table 5 presents a quick overview of reports of electro-
chemical sensing of chromium that have been published in
recent years.

3.4. Research on Electrochemical Sensing of Lead.
Lead ions, which are produced through lead-based paints and
contaminated water, soils, and foodstuffs, are a significant
contaminant due to their potential bioaccumulation and toxic
effects. Lead poisoning is linked to cognitive impairment,
anemia, paralysis of the skeletal muscles, and hypertension in
humans. The recommended level of lead in drinking water is
below 15 ppb.

A conducting-polymer-coated nanostructured porous gold
electrode and peptide probe have been used to create a novel
electrochemical sensor for lead ions."®" The reduced peak of
the porous gold electrode had an increased electrode surface
area due to the porous nanostructure. The sensor can detect 1
nM lead ions in low-pH conditions with a large linear dynamic
detection range between 1 nM and 10 mM. This sensor
exclusively detects lead ions without cross-reactivity. Salih et

detection, which was made from a carbon paste electrode
modified with polydiaminonaphthalene and bismuth film. The
prepared sensor was characterized and tested with cyclic
voltammetry. Results showed that the sensor had an
electroactivity that detected lead in an acidic medium, and
under the best conditions a linear range was found for
concentrations from 0.5 to 50 pug/L with a detection limit of
0.3 pug/L as shown in Figure 13.

Liu et al.'"®® used 8-17 DNAzyme as a recognition element
for the fabrication of lead ion sensors by including the TdTase-
mediated base extension principle. This electrochemical sensor
shows great sensitivity with a low detection limit of 0.043
nmol/L. In a similar manner, an electrochemical sensor for
lead ion detection based on a carboxy-functionalized graphene
modified electrode was proposed.'®* In this work 8-17
DNAzzyme was used as the recognition element and H,O,
catalyzed by an iron-doped metal—organic framework as a
signal probe. This developed sensor showed high selectivity to
lead ions due to the advantages of graphene and excellent
catalytic capability with a wide linear range of 107>~10~" mol/
L and a minimum detection level of 1.7 X 107 mol/L.
Moreover, 8-17 DNAzyme and GR-5 DNAzyme were
combined in a study into one amplification system to create
a sensitive and selective lead ion sensor.'® The detection limit
was 0.048 pmol/L using dual lead ion-DNAzyme assisted
feedback amplification.

The electrochemical detection of lead ion was also
investigated with a silica modified glassy carbon electrode.'*®
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Figure 14. (a) DPV curve of zinc oxide/reduced graphene oxide/polypyrrole for different mercury ion concentrations. (b) Corresponding
calibration curve of mercury ion concentrations. Reprinted with permission from ref 182. Copyright 2018 Elsevier.

Table 7. Electrochemical Sensing of Mercury Ions

technique electrochemical platform
SWASV chemically modified CPE
Amperometry nanoCB SPE
SWASV Gr and OPFP IL modified CPE
SI-ASV BDD-TFE
SWASV NH;-pn-MWCNT's
SWASV MgSiO; modified GCEs
SWASV B-doped DLC
DPASV BDD
EIS f-ketoimine calix'*” arene on ITO
SWASV complexing polymer films
conductometry invertase, mutarotase, glucose oxidase
amperometry invertase, mutarotase, glucose oxidase
DrV AuNP amplified DNA-Gold electrode
SWASV SnO,/reduced graphene oxide nanocomposite
DPV DNA duplexes containing multiple T—Hg**—T base pairs

limit of detection detection range ref
0.05ngmL™! 1.5-1000 ng m L™! 102
S nM 0.05—14.77 ppm 185
3.86 X 107" mol L™ 1.25 X 10—9—2.00 X 10—7 mol L' 168
0.04 ng m Lt 0.1-30.0 and 5.0—60.0 ng mL™! 186
0.1439 nM 0.02—-0.6 M 105
0.375 nM 0.8—2.0 M 106
4.99 nM 2-25 ug/L 109
11.5 nM up to S nM 110
0.1 nM 187
100 nM 5X 108 to 5 X 107 111
25 nM 0.1-100 uM 188
10 nM 189
0.5 nM 1-100 nM 190
0.28 nM 0—-1.3 uM 118
0.2 nM 0—80 nM 191

The SWASV method was used for the characterization of the
modified electrodes. The results show that lead ions exhibit
good oxidation peaks and a high peak current in 0.1 M acetate
buffer. Similarly, a silver—gold alloy nanoparticle aptamer
modified glassy carbon electrode for sensing lead was
developed and these alloy nanoparticles were electrodeposited
by a double pulse method on electrodes. The results showed
that the proposed electrochemical sensor detected over a linear
range of 0.01—10 ug/L with a detection limit of 0.03 X 107>
ug/L7

Table 6 presents a quick overview of reports of electro-
chemical sensing of lead ions that have been published in
recent years.

3.5. Research on Electrochemical Sensing of Mercury.
Mercury is one of the most dangerous contaminants to the
environment, which originates from natural resources like
geothermal or volcanic eruptions or with human activities.
Mercury ions are very toxic in any form and can potentially
damage the normal functioning of the immune system, brain
nervous system, etc. Even though mercury in its metal form is
rather safe, it produces adverse effects in its chemical form.
The recommended level of mercury ions in drinking water is
below 2 ppb.

The electrochemical sensing of mercury ions in aqueous
solution was investigated using gold nanoparticle modified
glassy carbon and indium—tin oxide electrodes.'”” This
modification was carried out in two methods: electrochemical

reduction of hydrontetrachlorogold and electric adsorption of
gold nanoparticles that are stabilized by citrate. This sensing
method was evaluated in terms of stripping potential, and
results show that this method achieves a detection limit of 1
pum/L of mercury.

Gold nanoparticle modified screen-printed electrodes have
also been utilized extensively for mercury detection in
groundwater.'”® They can detect sub-ppb mercury levels in
various water samples via microextraction with ionic
liquids."””'® Gupta et al'®' developed a nanostructured
hexagon of bismuth by electrochemical deposition on indium—
tin oxide for electrochemical sensing of mercury ions. The
characterization was done by using square wave anodic
stripping voltammetry, and the results show that the
nanostructured electrodes are very sensitive to mercury ions
at 0.74 ppb.

An electrochemical sensor for detecting mercury ions was
investigated using a zinc oxide/reduced graphene oxide
Schottky barrier as a recognition element and polypyrrole as
an adsorption factor."®” In this work, DPV was used to do
characterization and showed a linear range of 2—18 nM for
mercury ion concentration as shown in Figure 14.

In a study, a carbon paste electrode was modified with
ethylenediamine tetraacetic acid for detecting mercury ion in
aqueous medium.'*” Square wave voltammetry was used to do
the characterization, and the results showed a linear range of
(5—35) x 107" mol/L for mercury ion with a detection limit of

https://doi.org/10.1021/acsomega.4c00933
ACS Omega 2024, 9, 25493—-25512


https://pubs.acs.org/doi/10.1021/acsomega.4c00933?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00933?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00933?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00933?fig=fig14&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00933?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

EVE

16.6 X 107 mol/L. For the electrochemical detection of
mercury ion, a platinum incorporated dealuminated modenite
decorated modified glassy carbon electrode was used in a
study.'®* In this work, cyclic voltammetry and differential pulse
voltammetry were used to do the characterization, and the
mesostructured properties of the modified electrode were
utilized. The proposed modified electrode showed a greater
peak current response for the detection of mercury ion with a
low detection limit of 3.4 nM and a great sensitivity of 11.25
pA uM™" cm™* with a wide linear range of 0.1—220 uM.

Table 7 presents a quick overview of reports of the
electrochemical sensing of mercury ions that have been
published in recent years.

4. CONCLUSION

One of the greatest threats to the environment is the pollution
of heavy metal ions. The toxicity of HMIs has been linked to a
wide range of adverse health effects in a variety of organisms.
This led researchers to investigate and develop methods for
detecting ions from an aqueous medium. Electrochemical
sensing methods are considered to be more advantageous
when compared with an analytical approach because of their
accuracy, faster response, and operating principle. Electro-
chemical approaches have been classified based on the signals
used for electrical measurements like potentiostatic, galvano-
static, impedance measurement, and electrochemiluminescence
techniques. Many types of materials like carbon-based
materials, polymers, metal oxides, and nanomaterials have
been used for developing sensing platforms; especially
nanomaterials have been extensively used because of their
unique properties. Due to their large surface area to volume
ratio, high catalytic activity, and strong adsorption ability,
nanomaterials can be coupled with electrochemical techniques
for high sensitivity, fast response time, and sensing of multiple
analytes with low detection limits. This review explored how
different interface materials have been used to modify the
conventional type electrodes like screen-printed, graphite, and
glassy carbon electrodes for the detection of metal ions of
arsenic, cadmium, chromium, lead, and mercury. However, it
remains challenging to simplify the design and techniques of
electrochemical measurements for HMI detection and the
miniaturization of the involved electrochemical sensors. Future
research should focus on developing portable, high-throughput
devices like multichannel paper chips, universal probes for
simultaneous detection of multiple heavy metal ions, and more
nanosensors that can remove and analyze heavy metal ions.
Large numbers of nanosensors for heavy metal ion detection
are expected as the technology advances, offering applications
in environmental monitoring, food security, and disease
diagnosis.
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