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Abstract
In this work, boron nitride nanosheets (BNNS) were produced through chemical exfoliation of bulk boron nitride (BN). 
Furthermore, hydrothermal technique was used to incorporate various concentrations (2.5, 5, 7.5, and 10 wt%) of zirconium 
(Zr) as a dopant. The prepared undoped and doped BN samples were evaluated for its antimicrobial activity against E. coli 
and S. aureus. Structural analysis was undertaken using x-ray diffraction which identified the presence of hexagonal BN. 
FTIR and Raman spectroscopy were utilized to outline IR fingerprint and electronic properties of the synthesized material. 
Morphological information was obtained through micrographs extracted using field emission scanning electron spectroscope 
(FESEM) and high resolution transmission electron microscope (HRTEM), while d-spacing was also calculated through 
HRTEM analysis. Optical properties and emission spectra were examined by applying UV–vis and photoluminescence spec-
troscope (PL); whereas, band gap analysis was carried out via Tauc plot. Zr-doped BN nanosheets at increasing concentrations 
(0.5, 1.0 mg/50 μl) revealed enhanced antibacterial activity against E. coli compared to S. aureus (p < 0.05).
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Introduction

In the recent years, studies focused on protection from infec-
tion through pathogenic micro-organisms have received 
considerable attention. Such research plays an important 
role in ensuring the provision of a healthy, reliable, and 
comfortable living environment. Among these pathogens, 

severe acute respiratory syndrome (SARS) and influenza 
virus  (H1N1) produce terrible effects on human life (Fu et al. 
2011). Mukaddas et al. reported that ~ 50 to 70% of deaths 
result from infection caused by micro-organisms. Similarly, 
bovine udder glandular tissue inflammation (mastitis) is a 
major economic threat to dairy industry around the globe. 
Its potential to transmit zoonotic infections i.e., streptococ-
cal sore throat, leptospirosis, tuberculosis, and brucellosis to 
humans is a major concern. Bovine mastitis is characterized M. Ikram and I. Jahan are equally contributed.
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by chemical and microbiological changes in milk as well as 
pathological changes in glandular tissues of bovine udder. 
Infectious etiological agents, especially bacteria, viruses, 
and fungi, are divided into two categories. Major category 
consists of Staphylococcus aureas (S. aureus), Strepto-
cocci, Coliform, and Corynebacterium pyogenes, whereas 
minor group includes pathogens such as Corynebacterium 
bovis and coagulase-negative Staphylococci. These patho-
gens cause harmful diseases that can severely affect human 
and animal health (Gnanamani et al. 2003; Haider et al. 
2019). On the other hand, antimicrobial resistance depicted 
by Gram-positive bacterial pathogens such as S. aureus 
(MRSA) has been increasing at an alarming rate. In view 
of the above, studies related to antimicrobial, antivirus, and 
antifungal behavior have received growing attention since 
2003 (Naidu et al. 2005; Grassberger et al. 1984).

Research on nanomaterials has inspired scientists to 
work towards solutions that achieve biocompatibility with 
no accompanying cytotoxicity (Kıvanç et al. 2018). During 
recent years, various bio-applications of nanomaterials and 
their biocompatibility have been investigated (Majewski 
and Thierry 2007; Yang et al. 2014). Graphene is the most 
interesting two-dimensional layered material (2D-mats) 
that exhibits distinctive properties resulting in several 
applications, especially in biomedical science. Encour-
aged by the results extracted from graphene, researchers 
turned their attention to graphene-analogous 2D-mats such 
as molebdinum-disulphide  (MoS2), boron nitride (BN), and 
tungsten disulphide  (WS2). Owing to its specific crystal-
line and chemical structure, these 2D-mats exhibit distinct 
properties compared to not only host graphene but also 
relative to each other (Xu et al. 2013; Zhang et al. 2016; 
Mahmoudi et al. 2018; Ikram et al. 2020a). Various prop-
erties of 2D-mats render them attractive for biomedical 
applications. 2D graphene and its analogous materials have 
been recommended for use in bioimaging, photothermal 
therapy, biosensors, and biomedical implants, particularly 
in antimicrobial applications (Liu et al. 2012,2009; Yang 
et al. 2010).

Nanomaterials, such as nanosheets, may be formulated for 
use in environmental applications. As an example, nanoma-
terials can be used to protect the environment during conven-
tional machining and manufacturing processes that generate 
pollution due to the use of toxic and corrosive slurries. This 
is undertaken by employing nanomaterials to develop novel 
environmental-friendly chemical and mechanical polishing 
slurries (Zhang et al. 2012a, b, 2013, 2015a, b, 2018, 2019, 
2020a; Wang et al. 2018). The use of improved procedures 
and enhanced slurries enables the fabrication of high-per-
formance devices in semiconductor and microelectronics 
industries (Zhang et al. 2017a; Qumar et al. 2020; Raza et al. 
2019; Ikram et al. 2020b). Such researches have proved to be 
a landmark in the contribution toward dramatically reducing 

pollution in industrial processes (Zhang et al. 2020b; Cui 
et al. 2019a, 2019b).

BN reveals honeycomb-like structure analogous to gra-
phene with periodic arrangement among boron as well as 
nitrogen atoms. This structure is characterized by sub-
stantial  sp2 (in-plane) covalent bonding and faint van der 
Waals forces between the layers (Kostoglou et al. 2015). 
Moreover, hexagonal boron nitride (h-BN) possesses excel-
lent physical, chemical, thermal, electrical, optical, and 
dielectric properties such as high hardness, good chemi-
cal inertness, fine electrical insulation, high melting point, 
superior thermal conductivity and stability, high optical 
transparency, and low dielectric constant (Kostoglou et al. 
2015; Meziani et al. 2015; Kim et al. 2017). Meanwhile, 
BN is a good insulator material that exhibits a wide band 
gap of 5.9 eV. Incorporation of transition metal (Co, Mn, 
Fe, and Zr) in nanosheets as dopant serves to modify its 
optical, electronic, and thermal properties (Lin et al. 2013). 
Zirconium exhibits good antibacterial behavior, therefore 
it serves as a reliable antibacterial agent (Huang et al. 
2013a). Incorporation of Zr into BN nanosheets enhances 
its antibacterial activity. The literature studies indicate an 
enhancement of antibacterial effect due to incorporation of 
doping (Silva et al. 2018; Merlo et al. 2018). In addition, 
antibacterial activity depends upon shape, size, bonding as 
well as surface energy of the material. Interaction of BN 
nanosheets to exhibit biocompatibility has been reported 
using molecular dynamic simulation. Few experimental 
investigations have been reported to highlight the biocom-
patibility of BN nanosheets with kidney such that the BN 
nanosheets with optimum length of 10 mm, synthesized 
by chemical vapor deposition process exhibited zero cyto-
toxicity (Mateti et al. 2018). Cytotoxic and cell viability 
experiments showed direct proportionality between con-
centration and exposure time of BN nanosheets with regard 
to its biocompatibilty performance (Horvath et al. 2011; 
Ciofani et al. 2010).

In this study, exfoliation of bulk BN powder was car-
ried out to produce nanosheets, while zirconium (Zr) was 
incorporated as a doping agent using hydrothermal process. 
Various characterization techniques were employed to evalu-
ate the effect of Zr doping in BN nanosheets. The current 
study was aimed at investigating the bactericidal action of 
Zr-doped BN nanosheets against E. coli and S. aureus bac-
teria that are widely known to cause bovine mastitis.

Experimental procedure

Materials

Bulk BN powder (98%) and dimethylformamide (DMF) 
were purchased from Sigma-Aldrich (Germany). 
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Zirconium nitrate hydrate (Zn(NO3)4·H2O was purchased 
from BDH laboratory supplies (England). Chemicals 
employed in this research were utilized without any addi-
tional purification.

Exfoliation and synthesis of Zr‑doped BN

Chemical exfoliation approach was adopted to produce 
BN nanosheets. Primarily, 5 g bulk BN powder was dis-
solved in 200 ml DMF solution under continuous stirring 
for 20 min to prepare the stock solution. Prepared stock 
solution was vigorously sonicated for 12 h. After sonica-
tion, BN nanosheets were collected by centrifugation of 
stock solution at 6000 rpm. Subsequently, various con-
centrations (2.5, 5, 7.5, and 10 wt%) of zirconium nitrate 
hydrate (Zr(NO3)4.H2O) were incorporated into the col-
lected BN nanosheets using hydrothermal technique. For 
this purpose, BN nanosheets and Zr(NO3)4·H2O were dis-
persed in 100 ml deionized water (DIW) under stirring 
for 20 min. The resulting suspension was transferred into 
autoclave, placed in vaccum oven at 200 °C for 124 h as 
schematically represented in Fig. 1. Finally, autoclave was 
allowed to cool down to room temperature and the obtained 
solution was dried on hot plate at 100–120 °C to get a fine 
powder product.

Antibacterial activity

The in  vitro antimicrobial behavior of Zr-doped BN 
nanosheets against S. aureus and E. coli was evaluated 
through bovine mastitic milk studied with agar well diffu-
sion process. The petri dishes were wiped with Manitol salt 
agar [MSA] for S. aureus and Macconkey agar [MA] for E. 
coli. Different concentrations of Zr-doped BN nanosheets 
(0.5 mg/50 µl) and (1.0 mg/50 µl) were used and 6-mm 
diameter wells were prepared using sterile cork borer. In 
comparison, ciprofloxacin (0.005 mg/50 µl) was used as +ve 
and DIW (50 µl) for −ve control. The antimicrobial potential 
as per inhibition zones (mm) was evaluated after incubation 
using a Vernier caliper at 37 °C, overnight.

Materials characterization

Various characterizations were performed to assess the 
properties of the prepared material. Structural properties 
were examined through X-ray diffractometer (XRD), PAN 
analytical X’pert Pro using Cu-Kα radiation (λ = 0.154 nm), 
2θ varying from 5° to 80°. Fourier transform infrared 
(FTIR) Perkin Elmer spectrometer and DXR Raman micro-
scope (Thermoscientific) using diode laser (λ = 532 nm) 
were employed to investigate IR and structural molecular 

Fig. 1  Schematic diagram of 
exfoliation of BN and synthesis 
of Zr-doped BN
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fingerprint. Optical properties were investigated through 
UV–visible Genesys 10S and Photoluminescence spec-
trum JASCO FP-8200 spectrofluorometer. Morphological 
examination and d-spacing measurements were carried out 
with JSM-6460LV field emission scanning electron micro-
scope (FE-SEM) and high resolution transmission electron 
microscope (HR-TEM) equipment Philips CM30, along with 
JEOL JEM 2100F.

Results and discussion

X-ray diffraction was employed to identify crystal struc-
ture and phase constitution as well as to measure crystal-
lite size, as presented in Fig. 2a. Obtained XRD patterns 
reveal peaks positioned at 2θ ~ 26.70°, 41.69°, 43.91°, 
and 50.13°. Main characteristic pattern located at 26.70 
was readily indexed as 002 plane, while other diffraction 
peaks were indexed as 100, 101, and 102 planes, respec-
tively, which correlate strongly with JCPDS reference # 

00-034-0421 (Yuan et al. 2017; Tang et al. 2019). Sig-
nificant peak was observed at 26.70° that relates to h-BN, 
while the interplanar spacing  (d002) evaluated through 
Bragg’s law (nλ = 2dsinθ) was 0.339 nm (Huang et  al. 
2013b). Peak intensity in control and Zr-doped samples 
showed minor shift in diffraction angle which indicates the 
presence of dopant. Electron diffraction profiles obtained 
from SAED patterns are displayed in Fig. 2b–d. Obtained 
profiles exhibited nanosheets with crystalline nature as is 
apparent from the diffraction rings. Characteristic peak of 
BN indexed as 002 coincided with the innermost hollow 
diffraction profile (Zhong et al. 2017).

FTIR was used to analyze the IR fingerprint of pristine 
and doped BN, as demonstrated in Fig. 2e. Observed spectra 
exhibited two core peaks that correspond to h-BN at 740 as 
well as at 1355 cm−1. Primary peak is attributed to B–N–B 
bending vibration  (A2u-out of plane), while secondary peak 
is ascribed to B–N stretching vibration  (E1u-in plane) (Li 
et al. 2017; Ding et al. 2018). Peaks recorded at 1160 and 
1560 cm−1 correspond to C=O and B–N–O, respectively. 

Fig. 2  A XRD reflections of 
pure and various doped concen-
trations (2.5, 5, 7.5 and 10 wt% 
Zr) of BN, b–d SAED profiles 
of (0, 2.5 and 10 wt%), and e 
FTIR spectra of pure and vari-
ous doped concentrations (2.5, 
5, 7.5 and 10 wt% Zr) of BN
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Meanwhile, some peaks in pure sample at 1100, 1020, and 
924 cm−1 are correspondingly related to B–OH, C–O, and 
B–N–O (Li et al. 2013; Sudeep et al. 2015). A minor peak 
at 3155 cm−1 is owed to B–OH bond that exists due to mois-
ture (Gautam et al. 2016). In short, FTIR spectra proved the 
formation of h-BN phase.

Raman spectroscopy was employed to understand the 
electronic properties and structural fingerprint of un-doped 
and doped BN as illustrated in Fig. 3a. Raman spectra indi-
cate two minor peaks centered at ~ 529 and ~ 883 cm−1, 
which were attributed to background fluorescence (Štengl 
et  al. 2014). Spectra exhibit main characteristic peak 
at ~ 1364 cm−1 that refers to  E2g phonon mode for h-BN 
caused by phonon dispersion and bond vibration (B–N) 
within the crystallographic plane (Feng and Sajjad 2012; 
Arenal et al. 2006). Red shift and peak broadening in Raman 
spectra were observed upon incorporation of dopant owing 
to the faint interaction between h-BN layers (Mahdizadeh 
et al. 2017).

PL spectroscopy was employed to evaluate excitons 
migration phenomenon of control and Zr-doped BN, as 
illustrated in Fig. 3b. Obtained PL spectra were observed 
with excitation and emission wavelength of 220 and 310 nm, 
respectively, as nanomaterials are quite sensitive to exci-
tation wavelength. PL spectra indicate wide band centered 
at ~ 325 nm (blue emission) that is assigned to vacancies 
present, which epitomize as electron–hole recombination, 
adsorption, activation, and photosensitivity centers (Lee and 
Song 2017). Another peak observed at ~ 480 nm reveals that 
the intensity increases sharply from undoped (control sam-
ple) to doped sample; whereas, for 10 wt% Zr-doped BN, it 
reduces abruptly. The most intense peak implies maximum 
recombination of photogenerated charges where the lowest 
intensity indicates separation of electron–holes (Silly et al. 

2007). Therefore, it is concluded that an excitation-depend-
ent PL behavior is observed that is in agreement with the 
previously reported results (Wu et al. 2017).

Optical properties of pure BN and Zr-doped BN as meas-
ured with UV–vis. spectroscope are expressed in Fig. 4a. 
Extracted spectra demonstrate absorption peak at 210 nm 
stretched out in UV region (see Fig. 4a) which corresponds 
to optical band gap of 5.74 eV. The calculated band gap 
matched well with the reported values. No absorption peak 
at lower or higher energy side was identified which indi-
cates the existence of dense structural defects (Mahdizadeh 
et al. 2017). The literature survey indicates that the band 
gap for multilayer h-BN was 6.07 eV; whereas, single layer 
exhibits a band gap of 5.56–5.92 eV. Besides these, theoreti-
cal analysis reveals a band gap of 6.0 eV. This difference 
in band gap is due to electronic band dispersion caused by 
layer-to-layer interaction (Zhang et al. 2017b; Kumbhakar 
et al. 2015). Upon incorporation of Zr, red shift in wave-
length was observed that serves to decrease band gap from 
5.72 to 4.55 eV as demonstrated in Fig. 4b via Tauc plot. 
This decrease in band gap coincides with the experimental 
observation of increase in crystallite size as calculated using 
XRD analysis.

Morphological examination of pure and Zr-incorporated 
BN was undertaken from the micrographs obtained through 
FESEM as represented in Fig. 5a–e. From FESEM micro-
graph in Fig. 5a, it can be seen that the obtained particles 
exhibited aggregated nanosheets structure. Smooth surface of 
nanosheets compact with uniform features and round edges 
was also observed. Meanwhile, doped samples shown in 
Fig. 6b–e indicate high agglomeration with the presence of 
Zr above nanosheets. Furthermore, microstructure of sam-
ples was investigated through HRTEM study as shown in 
Fig. 5a′–d′. Typical HRTEM images of control and doped-BN 

Fig. 3  a Raman spectra of host BN and Zr-doped BN, b PL spectra
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indicate curled edges along with intermediate transparency. 
Effect of doping can be seen from obtained micrographs. 
Dark spots on HRTEM images depict decoration of Zr on 
BN nanosheets. The observed morphology of prepared sam-
ples affirms that chemical exfoliation did not produce adverse 
effect on nanosheets (Özkan et al. 2019). It is worth men-
tioning that the viability of cells exposed to bulk BN and 
nanosheets varied. As BN is a chemically inert material, 
altering its size from bulk to micro/nanoscale affects BN’s 
biocompatibility. Pure and Zr-doped BN nanosheets as indi-
cated in Fig. 5(a-d) are produced as a result of chemical exfo-
liation of bulk BN which exhibit good antimicrobial activity 
because of their change in size from bulk to nanoscale (Mateti 
et al. 2018). Experimental results indicate that FESEM and 
HRTEM analysis agree well with each other.

Average interplanar distance between nanosheets was 
evaluated through plane view HRTEM images as illustrated 
in Fig. 6a–c. Extracted HRTEM micrographs indicate that 
nanosheets consist of crystalline phase along with a signifi-
cant number of uniform layers. Average d-spacing for BN 
nanosheets is 0.34 nm which corresponds well to previously 
cited results (Huang et al. 2013b). Meanwhile, for 2.5 and 
5 wt% doped nanosheets, d-spacing befits as 0.27 and 0.26 nm, 
respectively. Besides, d-spacing was evaluated employing 
inverse fast Fourier transform (IFFT) (see inset of Fig. 6).

The antimicrobial action of Zr-doped BN nanosheets was 
investigated in vitro through inhibition zones measurements 
(mm) using agar well diffusion assay against S. aureus and 
E. coli as shown in Fig. 7a–d. Extracted results from antibac-
terial activity specify excellent effect on inhibition zones and 
doped-BN nanosheets. It is worth noting that excellent anti-
microbial efficacy of Zr-doped BN nanosheets was observed 
against bacterial strains as illustrated.

The in vitro antimicrobial activity of various Zr-doped 
BN nanosheet samples was investigated with agar well 
diffusion method by calculating inhibition zones in mm 
as depicted in Fig. 7 and Table 1. All results demonstrate 
antimicrobial efficacy against Gram-positive and negative 
bacterial strain. Significant inhibition zones were observed 
for doped BN (2.5, 5, 7.5, and 10 wt% Zr) against S. aureus 
in the range (0–1 mm) and (1–3.6 mm) for low and high 
concentrations as shown in Fig. 7a-d, and (0–3.6 mm) and 
(2.55–5 mm) at low and high concentrations against E. coli 
as shown in Fig. 7a′–d′. BN-doped nanosheets exhibited 
(0 mm) inhibition at low concentration against both bacte-
rial strains. Increase in doping resulted in direct proportion 
increase in inhibition zones at high concentrations for E. 
coli and S. aureus as shown in Fig. 7a–d′. All results are 
compared to ciprofloxacin (9 mm) and DIW (0 mm). In 
general, Zr-doped BN nanosheets revealed enhanced anti-
bacterial activity against E. coli (g-negative) compared 
to S. aureus (g-positive) as graphically represented in 
Fig. 7e–f.

Generation of strong rate surface-oxygen species can be 
achieved through antimicrobial response of Zr-doped BN 
nanosheets by formation of inhibition zone. Antimicrobial 
activity in terms of inhibition zones (mm) increased due 
to increased wt% doping of Zr on BN that produces maxi-
mum cationic availability. Antimicrobial effectiveness 
depends upon size and concentration and exhibits inverse 
relationship to the size of doped nanosheets (Haider et al. 
2019). Small-sized NS produces reactive oxygen species 
[ROS] which stay more effectively in implants in bacterial 
membrane resulting in cytoplasmic-contents extrusion and 
annihilation of bacteria. Second, the strong cationic inter-
action of  Zr4+ with negative charged bacterial membrane 

Fig. 4  a UV–vis. spectra of control BN and Zr-doped BN, b Tauc plot for band gap
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parts resulted in enhanced bactericidal activity at increas-
ing concentrations by inducing lysis and collapse of bacte-
rial cell (Haider et al. 2020).

Conclusion

In this study, successful preparation of BN nanosheets was 
achieved by chemical exfoliation; further, various Zr dopant 
concentrations (2.5, 5, 7.5, and 10 wt%) were incorporated 

using hydrothermal method. Successful incorporation of 
dopants was tested through XRD, FTIR, Raman, PL, UV–vis, 
FESEM, and HR-TEM. Hexagonal phase of BN was affirmed 
via XRD analysis, while FTIR spectra indicated the pres-
ence of  sp2 bonded B–N (in-plane) and B–N–B (out of 
plane) bending vibrations that belonged to IR fingerprints 
of BN nanosheets. Raman analysis showed  E2g active band 
of BN whereas PL spectra indicated excitons recombination 
and transfer rate. Spectra evaluated by means of UV–Vis. 
spectroscopy indicated an absorption that lies in the deep 

Fig. 5  a–d FESEM micrographs of bare and various doped concentrations (5, 7.5 and 10 wt% Zr) of BN, a′–d′ HRTEM micrographs with cor-
responding inset (50 nm)
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UV region which makes it suitable for use in optoelectronic 
devices; however, band gap decreases with the incorpora-
tion of dopant due to quantum confinement effect. Sheet-like 
morphology was confirmed through FESEM and HR-TEM 
analysis. Calculated interlayer spacing (0.34 nm) matched 
well with that reported in the literature. In conclusion, 

significant inhibition zones were observed for Zr-doped BN 
against S. aureus in the range (0–1 mm) and (1–3.6 mm) at 
low and high concentrations and similarly, (0–3.6 mm) and 
(2.55–5 mm) for E. coli. Zr-doped BN nanosheets at high 
concentrations (0.5, 1.0 mg/50 μl) resulted in enhanced anti-
bacterial activity for E. coli compared with S. aureus.

Fig. 6  a Interlayer spacing measurements of host BN, b, c 2.5 and 5 wt% Zr-doped BN
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Table 1  Antimicrobial activity 
of Zr-doped BN nanosheets

Sample [Zr (%):BN] S. aureus E. coli

Inhibition zone (mm) Inhibition zone (mm)

0.5 mg/50 μl 1.0 mg/50 μl 0.5 mg/50 μl 1.0 mg/50 μl

0.025:1 0 1 0 2.55
0.05:1 0 0 0 3
0.075:1 0 2.75 2.5 4.35
0.1:1 1 3.6 3.6 5
Ciprofloxacin 9 9 9 9
DIW 0 0 0 0
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