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Abstract: The transmission scheduling scheme of wireless networks for industrial control systems
is a crucial design component since it directly affects the stability of networked control systems.
In this paper, we propose a novel transmission scheduling framework to guarantee the stability of
heterogeneous multiple control systems over unreliable wireless channels. Based on the explicit
control stability conditions, a constrained optimization problem is proposed to maximize the
minimum slack of the stability constraint for the heterogeneous control systems. We propose three
transmission scheduling schemes, namely centralized stationary random access, distributed random
access, and Lyapunov-based scheduling scheme, to solve the constrained optimization problem with
a low computation cost. The three proposed transmission scheduling schemes were evaluated on
heterogeneous multiple control systems with different link conditions. One interesting finding is
that the proposed centralized Lyapunov-based approach provides almost ideal performance in the
context of control stability. Furthermore, the distributed random access is still useful for the small
number of links since it also reduces the operational overhead without significantly sacrificing the
control performance.

Keywords: transmission scheduling scheme; industrial internet of things; wireless networks;
industrial control systems; wireless networked control systems

1. Introduction

Industrial internet of things (IIoT) through wireless sensors and actuators have tremendous
potential to improve the efficiency of various industrial control systems in both process automation
and factory automation [1–5]. IIoTs are integrated systems of computation, wireless networking,
and physical systems, in which embedded devices are connected to sense, actuate, and control
the physical plants. In wireless networked control systems (WNCSs), the wireless sensors basically
measure the physical plants and transmit its information to the controllers. The controllers then
compute the control signal based on the received sensing information in order to manipulate the
physical plants through the actuators. The wireless networks of IIoTs provide many benefits such as
simple deployment, flexible installation and maintenance, and increased modularity in many practical
control systems with the low cost [1].

Unfortunately, the network constraints such as delays and losses can significantly degrade the
control performance and can even lead to unstable control systems [1,6]. In the control community,
extensive research has been conducted to analyze the communication effects on control systems and
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design the control algorithm to handle its effects on the control performance [7]. Comparatively,
much less work of wireless network design for control systems has been proposed. In fact, current
wireless networks do not offer guaranteed stability of heterogeneous multiple control systems over
lossy channels [1]. The main reason is that the numerous parameters of the control system and the
communication system influence each other due to the complex interactions among different layers.
It is important to understand how these communication constraints affect the control stability and
performance properties in a quantitative manner. The quantitative result is an important factor to
bridge the gap between control and communication layers for the efficient and stable control operations
using IIoTs. Furthermore, the communication protocol must guarantee the stability of all control-loops
since each industrial process affects the performance of overall connected control systems [7].

The transmission scheduling policies of sensors and controllers must efficiently optimize the
traffic generation instance and transmit slot allocation since it directly affects the network delay
and loss, and eventually leading to the stability issue of control systems. Decreasing the traffic
generation interval of sensors and controllers generally improves the performance of the control
system at the cost of lossy and delayed control feedback due to the increasing network congestion.
Moreover, increasing the traffic generation rate may not satisfy the schedulability constraint of the
communication system. Thus, the transmission scheduling must adjust its operations dependent on
the control system requirements and the link conditions.

The main contribution of the paper is to propose three transmission scheduling policies, namely
centralized stationary random access, distributed random access, and Lyapunov-based scheduling
scheme, of wireless networks to guarantee the stability of heterogeneous multiple control systems over
different lossy links. The three transmission scheduling policies are based on the max-min optimization
problem where the objective is to maximize the minimum slack of the stability constraint of the control
systems. We show the performance of the proposed scheduling schemes in terms of the stability region
of heterogeneous multiple control systems over different link conditions.

The paper is organized as follows. Section 2 discusses the related works on both control and
communication aspects. In Section 3, we present a general WNCS modeling framework to include both
communication constraints such as varying delays, packet losses, and sampling intervals. In Section 4,
an illustrative WNCS example is used to present the fundamental performance issues of general
communication protocols in terms of the control stability. Based on the fundamental observation,
we formulate a novel optimization problem for the transmission scheduling of wireless networks in
Section 5. We present three different scheduling schemes, namely centralized stationary random access,
distributed random access, and centralized Lyapunov-based schedule schemes, to solve the proposed
optimization problem in Sections 6–8, respectively. In Section 9, we analyze the robust performance
of the proposed three transmission scheduling schemes to guarantee the stability of heterogeneous
control systems. Finally, we summarize the contributions of the paper in Section 10.

Notations: Z+ denotes all nonnegative integers. Normal font x, bold font x, and calligraphic font
X denote scalar, vector, and set, respectively.

2. Related Works

In the control community, extensive research has been conducted to analyze control stability
and to design control algorithms by considering the communication constraints [1,7,8]. The control
community generally considers network imperfections and constraints such as the varying packet
dropouts, network delays, and traffic generation intervals [1]. Note that all these network factors
are highly correlated dependent on the assumptions of the NCS literature. However, most NCS
studies only consider some of the network effects, while ignoring the other factors, due to the high
complexity of the stability analysis. For instance, the network effects of packet dropouts are investigated
in [9,10], of time-varying sampling intervals in [11,12], and of delays in [6,13,14]. By considering the
structure of NCSs, previous works analyze the stability of control systems by using either only
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wireless sensor–controller channel (e.g., [15,16]) or both sensor–controller and controller–actuator
(e.g., [8,17–19]).

In [19], the explicit bounds on the maximum allowable transfer interval and the maximally
allowable delay are derived to guarantee the control stability of NCSs, by considering time-varying
sampling period and time-varying packet delays. If there are packet losses for the time-triggered
sampling, its effect is modeled as a time-varying sampling period from receiver point-of-view.
The maximum allowable transfer interval is the upper bound on the transmission interval for which
stability can be guaranteed. If the network performance exceeds the given requirements, then the
stability of the overall system could not be guaranteed. The developed results lead to tradeoff curves
between maximum allowable transfer interval and maximally allowable delay. These tradeoff curves
provide effective quantitative information to the network designer when selecting the requirements to
guarantee stability and a desirable level of control performance.

In the communication community, most existing approaches design the scheduling algorithms
to meet the delay constraint of each packet for a given traffic demand [20–23]. An interesting design
framework is proposed to minimize the energy consumption of the network, while meeting reliability
and delay requirements from the control application [24,25]. In [24], modeling of the slotted random
access scheme of the IEEE 802.15.4 medium access control (MAC) is developed by using a Markov
chain model. The proposed Markov chain model is used to derive the analytical expressions of
reliability, delay, and energy consumption. By using this model, an adaptive IEEE 802.15.4 MAC
protocol is proposed. The protocol design is based on a constrained optimization problem where the
objective function is the energy consumption of the network, subject to constraints on reliability and
packet delay. The protocol is implemented and experimentally evaluated on a testbed. Experimental
results show that the proposed algorithm satisfies reliability and delay requirements while ensuring a
longer network lifetime under both stationary and transient network conditions.

The cross-layer protocol solution, called Breath, is designed for industrial control applications
where source nodes attached to the plant must transmit information via multihop routing to a
sink [25]. The protocol is based on randomized routing, MAC, and duty-cycling to minimize the energy
consumption, while meeting reliability and packet delay constraints. Analytical and experimental
results show that Breath meets reliability and delay requirements while exhibiting a nearly uniform
distribution of the work load.

Since the joint design of controller and wireless networks necessitates the derivation of the
required packet loss probability and packet delay to achieve the desired control cost, we provided the
formulation of the control cost function as a function of the sampling period, packet loss probability,
and packet delay [26]. We first presented how the wireless network affects the performance of NCSs
by showing the feasible region of the control performance. By considering these results, the joint
design between communication and control application layers is proposed for multiple control systems
over the IEEE 802.15.4 wireless network. In particular, a constrained optimization problem is studied,
where the objective function is the energy consumption of the network and the constraints are the
packet loss probability and delay, which are derived from the desired control cost. We clearly observe
the tradeoff between the control cost and power consumption of the network.

Recently, a novel framework of communication system design is proposed by efficiently
abstracting the control system in the form of maximum allowable transmission interval and maximum
allowable delay constraints [27,28]. The transmission interval is the traffic generation interval of
successfully received information. The objective of the optimization is to minimize the total energy
consumption of the network while guaranteeing interval and delay requirements of the control system
and schedulability constraints of the wireless communication system. A schedulability constraint is
introduced as the sum of the utilization of the nodes, namely the ratio of the delay to the sampling
periods. The decision variables are the set of transmission rate and sampling period. The proposed
mixed-integer programming problem is converted to an integer programming problem based on
the analysis of optimality and relaxation [27]. Then, the centralized resource allocation algorithm
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gives the suboptimal solution for the specific case of M-ary quadrature amplitude modulation and
earliest deadline first scheduling. For a fixed sampling period, the formulation is also extended for
any non-decreasing function of the power consumption as the objective function, any modulation
scheme, and any scheduling algorithm in [28]. All related works [27,28] propose the centralized
algorithm to adapt the communication parameters for the homogeneous control systems over the
equal link condition.

In [29], the cross-layer optimized control protocol is proposed to minimize the worst-case
performance loss of multiple control systems over a multihop mesh network. The design approach
relies on a constrained max–min optimization problem, where the objective is to maximize the
minimum resource redundancy of the network and the constraints are the stability of the closed-loop
control systems and the schedulability of the communication resources. The stability condition of
the control system has been formulated in the form of stochastic transmission interval constraint [19].
The centralized algorithm gives the optimal solutions of the protocol operation in terms of the sampling
period, slot scheduling, and routing.

In comparison to these works [27–29], the transmission control policies of IIoTs must optimize
both traffic generation instance and transmit slot allocations to guarantee the stability of heterogeneous
control systems over different link conditions. The earliest deadline first scheduling only guarantees the
optimal performance for the homogeneous requirements [30]. Furthermore, the centralized approach
generally provides the optimal performance but at the cost of the monitoring and network control
overhead and single point failure problem. In this paper, we focus on the robust performance guarantee
of the control stability rather than the energy efficiency issue of wireless networks. In fact, researchers
have recently applied the IEEE 802.11 standards for the real-time control applications instead of
low-power wireless standards such as IEEE 802.15.4 and 802.15.3 [1,31,32].

3. System Model

Figure 1 illustrates the general structure of multiple control processes over wireless networks.
It consists of a number of plants and controllers, which are connected through wireless networks.
When the plant and controller are connected over wireless networks, it leads to the following operation
aspects of WNCSs in Figure 1.
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Figure 1. General structure of wireless networked control systems.

• While each sensor operates in a time-driven fashion, both the controller and actuator operate in
an event-driven fashion. In general, wireless sensors transmit data in each assigned time slot
dependent on the transmission scheduling scheme. However, both the controller and actuator only
respond to newly received data over unreliable wireless links. We assume that the controllers are
collocated with the actuators since the control signal is more critical than the sensing information
in many practical NCSs [7].

• In [1], we defined three major metrics of WNCSs, namely sampling interval, packet dropout,
and packet delay. Two main reasons of packet dropouts are packet discard due to the control
algorithm and packet loss due to the wireless network itself. Most works of control systems
model the dropouts as prolongations of the sampling interval [6,19]. The reason is that a
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new packet is transmitted at the next transmission time with new data if a packet is dropped.
Hence, both the controller and actuator observe the time-varying sampling interval even if the
sensing and actuating links operate in a fixed time interval. The time-varying sampling interval
of successfully received information called transmission interval (TI) effectively captures the
essential characteristics of packet dropout and sampling interval [8,19]. The delays are generally
assumed to be smaller than the transmission intervals.

The uncertain time-varying TIs and time-varying delays provide the fundamental interactions
between control and communication layers [6,19,33]. In the next section, we describe more details of
mathematical modelings and assumptions.

3.1. Control Aspect

Consider a single-hop wireless network consisting with N sensor nodes and a controller, as shown
in Figure 1. Note that the controller is considered as a base station of a general star network topology.
We assume the slotted time with slot index k ∈ Z+. Let us denote the transmission time, ts, s ∈ Z+,
of sth successfully received packet at the controller. At each slot, the transmission scheduling policy
determines which of the nodes i ∈ {1, . . . , N} can access the network. When the sensor is allowed to
transmit, it measures the plant state and sends it over the wireless channel. The packet arrives after
the transmission delay δs at the controller. Hence, the controller only updates the plant state at time
ts + δs, ∀s ∈ Z+. Figure 2 illustrates the typical evolution of plant state updates at the controller.

Time

S
ta

te

Transmission

Reception

Actual plant state

Updated plant state

Figure 2. Illustration of a typical evolution of plant state updates at the controller.

The transmission times of successfully received packet satisfy 0 ≤ t0 < t1 < t2 < . . . and there
exists δ > 0 such that the TIs hs = ts+1 − ts satisfy δ ≤ ts+1 − ts ≤ h̄ for ∀s ∈ Z+, where h̄ is the
maximum allowable transmission interval (MATI). Furthermore, we assume the maximum allowable
delay (MAD) in the sense that δs ∈ [0, δ̄], ∀s ∈ Z+, where 0 ≤ δ̄ ≤ h̄. To guarantee the stability, the TI
must satisfy δ ≤ ts+1 − ts ≤ h̄, s ∈ Z+ and the delays satisfy 0 ≤ δs ≤ min(δ̄, ts+1 − ts), ∀s ∈ Z+.
It implies that each transmitted packet arrives before the next sampling instance. Hence, the delay is
smaller than the TI.

In the control community, many studies are conducted to analyze the stability of control systems
for a given set of MATI and MAD values [6,19,33]. Hence, it is possible to derive the MATI and MAD
requirements as the set of network design parameters by using the stability analysis techniques.

3.2. Communication Aspect

Denote the set of i’s interfering links, Ci = {j : j ∈ N \ i} where N is the total set of nodes for
the star topology. Let ui(k) = 1 if the node i transmits during slot k, whereas ui(k) = 0 otherwise.
When ui(k) = 1 , node i generates a new packet and transmits it over the wireless channel to minimize
the delay. Hence, the packet delay is fixed to 1 time slot. Note that we motivate the fixed delay between
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traffic generation instance and transmission schedule through an illustrative example in Section 4.
The scheduling constraint is

N

∑
i=1

ui(k) ≤ 1, ∀k ∈ Z+ (1)

It means that the centralized scheduling scheme selects at most one node for transmission at
any given time slot k. On the other hand, each node decides its transmission for the distributed
approach. We assume that the transmission scheduling algorithm is located at the controller for the
centralized approach.

Let di(k) be the random variable to indicate the successful packet transmission of node i to
the controller. If node i sends a packet at slot k, ui(k) = 1 and other nodes j ∈ Cj do not transmit,
then di(k) = 1 with probability pi ∈ (0, 1] and di(k) = 0 with probability 1− pi. If node i does not
transmit, ui(k) = 0, then di(k) = 0 with probability one. We assume the heterogeneous link reliability
pi over different links. Hence, the expected delay becomes

E[di(k)] = piE[ui(k)]. (2)

4. Fundamental Observation

To analyze the stability of control systems, linear matrix inequality (LMI) conditions were
verified on the polytopic overapproximation in [6,19,33]. The LMI conditions were verified using the
YALMIP [34] and the SeDuMi solver [35]. We used the analytical technique of the control stability
in [33]. This technique effectively analyzes the stability to a given linear time-invariant (LTI) plant
model, a LTI controller model, and MATI and MAD bounds on the network uncertainties. In this
illustrative example, we first analyzed the batch reactor system [33,36] to demonstrate how stability
regions can be visualized. Then, we investigated the fundamental tradeoff between MATI and MAD
for the control stability. The network is assumed to incur

• uncertain time-varying TIs h ∈ [h, h̄]; and
• uncertain time-varying network delays d ∈ [d, min(h, d̄)].

We fixed h = 10 ms and d = 10 ms due to the slot duration of the typical industrial wireless
standards [37].

Figure 3 shows the stability region over different MATI, h̄ = 0.01, . . . , 1 s and MAD,
d̄ = 0.01, . . . , 0.58 s. The circle and rectangular marker present the stability and instability operating
region for a given MATI and MAD value. The solid line represents the assumption of the MATI and
MAD constraints, namely d̄ ≤ hs ≤ h̄, ∀s ∈ Z+. Clearly, as the MATI and MAD values increase, the
control system becomes unstable. In other words, the lower are the MATI and MAD values, the better
is the control system stability. It is not simple to approximate the boundary between stability and
instability region due to the complex stability analysis techniques in Figure 3. However, in general,
the MAD requirement of the stability becomes more strict as the MATI requirement is relaxed. Hence,
there is a fundamental tradeoff between MATI and MAD requirements for the stability guarantee of
control systems.
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Figure 3. Stability region over different MATI and MAD values. The circle and rectangular marker
present the stability and instability operating region of control systems for a given MATI and
MAD value.

Since the wireless medium is shared between nodes, we analyzed the performance of typical
access control schemes in the context of the control stability. In Figure 4, we provide the TI and the
delay performance of two well-known schemes, namely time division multiple access (TDMA) and
slotted Aloha over the stability region. The color bar shows the probability density function of the
TI and the delay measurements of different access schemes. Note that the stability region in Figure 4
is equal to that in Figure 3 with different X and Y scales. The medium access scheme guarantees the
control stability if it satisfies the network performance of both TI and the delay inside of the stability
region. Hence, the outage probability of the control stability is a good performance metric of wireless
networks in the context of the control stability.
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Figure 4. Transmission interval and delay of both TDMA and slotted Aloha schemes over the
stability region: (a) TDMA performance over stability region; and (b) slotted Aloha performance
over stability region.

Both access schemes rely on the time slotted mode with N = 5 and p = 0.3. TDMA uses a simple
round robin algorithm to assign the slot to each node of the network in Figure 4a. On the other hand,
each node randomly decides its transmission based on the traditional slotted Aloha mechanism in
Figure 4b. We set the optimal channel access probability of slotted Aloha to maximize the network
throughput [38].
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By comparing Figure 4a,b, we clearly observed the completely different network performances
over the stability region. Since each node of TDMA transmits its corresponding values on the assigned
slots, it generates the packet before the transmitting slot. Hence, the delay of the TDMA scheme
is constant to 1 time slot, 10 ms, as shown in Figure 4a. On the other hand, the slotted Aloha only
generates new packets after it successfully transmits the packets. Hence, the delay of the slotted
Aloha is equal to TI. This is the main reason for significantly different behaviors between TDMA and
slotted Aloha. In fact, the outage probability of the stability region of slotted Aloha is 0.06 while its
corresponding probability is 0 for the TDMA scheme.

The MATI requirement is around 0.89 s when the delay is 10 ms for the TDMA scheme. However,
as the MAD constraint is increased to 0.5 s, the MATI requirement becomes around 0.5 s, beyond which
the control systems are unstable, as shown in Figure 4b. Increasing the packer delay significantly
degrades the stability region. Note that the retransmission of old data to maximize the reliability
increases the delay and is generally not useful for control applications [7]. As we increase the MATI
requirement, the WNCS becomes more robust since it allows more number of packet losses. Hence,
it is great to minimize the time delay between packet generation instance and packet transmission to
maximize the MATI requirement and to simplify the protocol operation. This is the main reason of the
actual packet transmission right after the packet generation in Section 3.2. Hence, the transmission
scheduling policy controls both the packet generation instance and the actual packet transmission in
this paper.

5. Optimization Problem Formulation

A transmission scheduling policy is an essential component to meet the MATI requirement of
node i for a given network setup (N, h̄i, pi). Our objective was to design low complexity scheduling
schemes to optimize the TI performance with respect to the heterogeneous MATI requirements of
each node. In this section, we first introduce the performance metric called extended transmission
interval (ETI) of the network. Then, we formulate a constrained optimization problem to optimize the
ETI performance.

5.1. Extended Transmission Interval

Since the exact definition of TI is based on the discrete random event of packet receptions, it is not
an efficient performance metric to use for the transmission scheduling policy. Hence, we introduced a
continuous version of the TI metric, called the ETI metric. The extended transmission interval describes
how old the information is from the controller perspective.

Figure 5 illustrates the evolution of ETI for a given sequence of packet deliveries of node i. Let τi(k)
denote the positive integer to represent the ETI value of node i at slot k. We reset τi(k + 1) = 1 if the
controller receives a packet from node i at slot k. As a reminder, the received packet was generated
at the beginning of slot k. However, if the controller does not receive a packet, then we increase
τi(k + 1) = τi(k) + 1. Hence, the iterative update of τi(k) is

τi(k + 1) =

{
1 if di(k) = 1

τi(k) + 1 otherwise
(3)

Note that the ETI linearly increases when there is no packet reception, as shown in Figure 5.
The ETI constraint of each link is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] ≤ h̄i ∀i ∈ {1, . . . , N} (4)
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Since we are interested on the robust ETI performance with respect to the MATI requirement of
each node, we define the ETI slack of node i as h̄i − τi(k) at slot k. Hence, the expected value of the ETI
slack of node i is

lim
K→∞

1
K
E
[

K

∑
k=1

h̄i − τi(k)

]
∀i ∈ {1, . . . , N} (5)

Figure 5. Illustration of a typical evolution of ETI.

5.2. Optimization Problem

By considering the ETI metric with the robustness criterion, our objective is to maximize the
minimum ETI slack of the network. We formulate the constrained optimization problem

min η (6a)

s.t. lim
K→∞

1
K
E
[

K

∑
k=1

τi(k)− h̄i

]
≤ η ∀i ∈ {1, . . . , N} (6b)

N

∑
i=1

ui(k) ≤ 1 ∀k ∈ Z+ (6c)

Equations (6b) and (6c) present the minimum ETI slack value constraint and the schedulability
constraint, respectively. The optimal solution of the optimization problem assigns more network
resources as h̄i decreases, i.e., more network resources for faster control systems.

In the following section, we propose three low-complex scheduling schemes based on the
optimization problem in Equation (6). Three transmission scheduling policies are centralized random
access scheme, distributed random access scheme, and centralized Lyapunov-based scheduling scheme.
The first two approaches are randomized methods and the third one is a deterministic approach in
order to assign the slot resources to all requirement sets h̄i, ∀i ∈ {1, . . . , N}.

6. Centralized Random Access Scheme

In this section, we propose the ETI optimization problem for the stationary randomized scheduling
scheme in a centralized manner. The controller selects node i with probability αi ∈ (0, 1] in each
time slot. Hence, the randomized scheduling scheme is the vector of scheduling probabilities
α = (α1, . . . , αN). They select nodes randomly based on the fixed scheduling probabilities α.

Since we consider the stationary random scheduling, we first derive the expected behavior of ETI
in the following proposition.
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Proposition 1. The long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
1

piαi
(7)

Proof. The proof of Proposition 1 is provided in Appendix A.

By using Proposition 1 and the schedulability constraint of α, the optimization problem in
Equation (6) is reformulated as

min
α,η

η (8a)

s.t.
1

piαi
− h̄i ≤ η ∀i ∈ {1, . . . , N} (8b)

N

∑
i=1

αi ≤ 1 (8c)

Note that Equation (8c) represents the schedulability constraint.

Optimal Solution

Since the proposed optimization problem in Equation (8) is a convex problem, we obtain the
optimal stationary scheduling probabilities α∗ by analyzing the KKT conditions of the problem.
The Lagrange function of the problem is

L(α, η, λ, γ) = η +
N

∑
i=1

λi

(
1

piαi
− h̄i − η

)
+ γ

(
N

∑
i=1

αi − 1

)
(9)

where λ = (λ1, . . . , λN), λ ≥ 0 and γ are the Lagrange multipliers due to Equations (8b) and (8c),
respectively.

The KKT conditions are

• Stationarity with αi

∇αi L(η, αi, λi, γ) = 0 (10)

• Stationarity with η

∇η L(η, αi, λi, γ) = 0 (11)

• Complementary slackness of Equation (8b)

λi

(
1

piαi
− h̄i − η

)
= 0 (12)

• Complementary slackness of Equation (8c)

γ

(
N

∑
i=1

αi − 1

)
= 0 (13)
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• Primal feasibility

1
piαi
− h̄i − η ≤ 0 (14)

N

∑
i=1

αi ≤ 1 (15)

• Dual feasibility

λi ≥ 0, γ ≥ 0 (16)

The first stationarity condition, ∇αi L(αi, λi, γ) = 0, gives

λi

piα
2
i
= γ (17)

from the partial derivation. With a similar method, the second stationarity condition,
∇η L(η, αi, λi, γ) = 0, gives

N

∑
i=1

λi = 1 . (18)

We obtain that either γ = 0 or ∑N
i=1 αi = 1 from the complementary slackness of Equation (13).

However, Equation (17) implies γ > 0 since the value of γ is zero if λi = 0 or αi → ∞, which conflicts
the conditions of Equation (18) or αi ∈ (0, 1], respectively. Hence, we obtain

N

∑
i=1

αi = 1 (19)

since γ > 0. We separate node i into two groups, namely λi = 0 and λi > 0, based on the dual
feasibility λi ≥ 0.

If node i has λi = 0, then αi = 0 from Equation (17) since γ > 0. On the other hand, if node i has
λi > 0, then

αi =
1

(h̄i + η)pi
(20)

due to the complementary slackness of Equation (12). For any fixed value of γ > 0, the randomized
scheduling probability of node i is given by Equation (20).

Our objective is to find the optimal values to meet the constraints of Equations (19) and (20).
In Equation (20), η is only unknown variable to compute the scheduling probability. Hence, we first
find the optimal value of η∗ satisfying Equations (19) and (20). Now, let us derive the boundaries of η.
The minimum value of η is 1/pi − h̄i if αi = 1 from Equation (20). Hence, the feasible range of η is

1
pi
− h̄i ≤ η ≤ 0 . (21)

From Equation (20), a decreasing value of η, the probability αi increases. As η converges to
the lower bound, η → 1/pi − h̄i, Equation (19) becomes ∑N

i=1 αi ≥ 1. On the other hand, as η → 0,
then ∑N

i=1 αi = ∑N
i=1

1
h̄i pi
� 1 due to Equation (20). Hence, there is a unique value of η∗ to meet

Equation (19) due to the monotonicity of αi with respect to η. By gradually increasing η from 1/pi − h̄i
and adjusting αi using Equation (20), we find the unique set of α∗ and η∗ that satisfies Equations (19)
and (20).
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Next, we compute the optimal set of λ∗ and γ∗. With a similar method, the boundaries of γ are

0 ≤ γ ≤ γ̄ = max
i∈{1,...,N}

1
piα

2
i

(22)

The upper bound of γ is derived from Equations (17) and (19). By gradually decreasing γ from γ̄,
we adjust λi = γpiα

2
i from Equation (17). We then obtain the optimal set of λ∗ and γ∗ for Equation (18).

Note that the unique vector (α∗, η∗, λ∗, γ∗) fulfills the KKT conditions.

7. Distributed Random Access Scheme

In this section, we present a distributed random access where each node decides its transmission
probability so that the minimum ETI slack of the network is maximized. Let us assume that each node
i transmits a packet with probability βi in each slot. As a reminder, the set of i’s interfering links is Ci.
Let β = (β1, . . . , βN) be the vector of transmission probabilities of all nodes. Hence, a transmission of
node i ∈ {1, . . . , N} is successful if and only if no node in Ci transmits during the transmission of node
i. Hence, the successful transmission probability of node i is

piβi ∏
j∈Ci

(1− β j) (23)

By applying Equation (23) to Proposition 1, the long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
1

piβi ∏j∈Ci
(1− β j)

(24)

After substituting Equation (24) into Equation (4) of the ETI constraint, we obtain

1
pi h̄iβi ∏j∈Ci

(1− β j)
≤ 1 . (25)

Motivating by the network utility problem [39,40], we formulate a constrained optimization
problem to optimize the transmission probability of nodes. Our objective is to maximize the minimum
ETI slack with respect to h̄i of the network. After some manipulations of Equation (6), we propose the
max-min robust optimization problem

max
β,ψ

ψ (26a)

s.t. aiβi ∏
j∈Ci

(1− β j) ≥ ψ ∀i ∈ {1, . . . , N} (26b)

where ai = pi h̄i. Notice that ψ > 1 is necessary for the feasibility of ETI constraint of Equation (4).
Different fairness notions corresponding to different utility functions are discussed in [39,40].

Unfortunately, the proposed max-min robust problem in Equation (26) is a non-convex problem.
Next, we convert the problem in Equation (26) to a convex optimization problem in order to design
the distributed random access scheme.
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Proposition 2. The max-min robust problem in Equation (26) is equivalent to the following convex
programming problem

min
1
2

N

∑
i=1

ν2
i (27a)

s.t. νi ≤ log ai + log βi + ∑
j∈Ci

log(1− β j) (27b)

νi = νj ∀i ∈ {1, . . . , N}, ∀j ∈ Ci (27c)

Proof. The proof of Proposition 2 is provided in Appendix B.

Optimal Solution

A distributed algorithm can effectively obtain the optimal access probability of the previous
convex optimization problem in Equation (27). In this section, we show how globally optimal access
probability is obtained in a distributed manner. When we replace the equality constraints νi = νj
of Equation (27) by two inequality constraints, νi ≤ νj and νi ≥ νj, the Lagrange function of the
problem is

L(β, ν, µ, ω) =
1
2 ∑

i∈N
ν2

i + ∑
i∈N

µi

νi − log ai − log βi − ∑
j∈Ci

log(1− β j)

+ ∑
i∈{1,...,N}

∑
j∈Cj

ωi,j(νi − νj) (28)

where µ = (µ1, . . . , µN) and ω = (ωi,j, i ∈ {1, . . . , N}, j ∈ Ci) are the Lagrange multipliers and
ν = (ν1, . . . , νN).

Our basic idea is to apply the gradient project method for the dual problem maxβ,ν D(β, ν) where
the dual function is D(β, ν) = minβ,ν L(β, ν, µ, ω) [41]. By considering the stationarity condition of
the Lagrange function, they give ∂L

∂βi
= 0

βi =
µi

µi + ∑j∈Ci
µj

(29)

and ∂L
∂νi

= νi + µi + ∑j∈Ci
ωi,j −ωj,i = 0

ui =

[
−λi − ∑

j∈Li

(vi,j − vj,i)

]−
(30)

where [z]− = min(z, 0). Note that βi satisfies the constraints 0 ≤ βi ≤ 1. The Lagrange multipliers of
the gradient project method are adjusted in the direction of the gradient ∇D(β, ν):

µi(n + 1) =
[

µi(n) + εn
∂D
∂µi

]+
(31)

ωi,j(n + 1) =

[
ωi,j(n) + εn

∂D
∂ωi,j

]+
(32)

Here, εn > 0 is the step size at the nth iteration, and [z]+ = max(z, 0). The gradient are
∂D
∂µi

= νi − log ai − log βi −∑j∈Ci
log(1− β j) and ∂D

∂ωi,j
= νi − νj.
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8. Centralized Lyapunov-Based Scheduling Scheme

The Lyapunov optimization theory is extensively applied to the general communication and
queueing systems [42]. Using Lyapunov optimization techniques, we derive the centralized scheduling
scheme for the ETI optimization problem in Equation (6). The Lyapunov-based scheduling scheme
uses the feedback ETI state of nodes in order to reduce the value of the Lyapunov function. We define
the Lyapunov function to give a large positive scalar when nodes have high ETI with respect to the
MATI h̄i. Hence, the Lyapunov-based scheduling approach basically tries to minimize the growth of
its function.

Next, we define the fundamental components of the Lyapunov-based scheduling scheme, namely
Lyapunov function with notions of the ETI debt. Let us denote xi(k) as the ETI debt of node i at slot k.
The ETI debt of node i is

xi(k) = τi(k)− h̄i (33)

where h̄i is the MATI value and τi(k) is the ETI at slot k.
When the scheduling scheme does not meet the ETI requirement h̄i, then the value of the ETI

debt is positive. We define the positive part of the ETI debt, x+i (k) = max(xi(k), 0). As increasing debt
x+i (k) indicates to the scheduling scheme that node i needs more transmission slots to meet the MATI
requirement.

Let Sk = (x1(k), . . . , xN(k)) be a vector of network ETI dept states at slot k. Then, we define the
Lyapunov Function by

V(Sk) =
1
2

N

∑
i=1

[
(xi(k))2 + G(x+i (k))2

]
(34)

where G is a large positive value to emphasize the ETI constraints. Remark that V(Sk) is large when
nodes have high ETI with respect to the requirement or positive ETI debt.

Optimal Solution

To minimize the Lyapunov function, we introduce the Lyapunov drift

∆(Sk) = E [V(Sk+1)−V(Sk)|Sk] (35)

Note that the Lyapunov drift measures the change of the Lyapunov function over time slots.
The Lyapunov-based scheduling scheme minimizes V(Sk) by reducing ∆(Sk) in every slot k.

The high computation complexity of V(Sk) prevents us from deriving the exact form of ∆(Sk).
Hence, we derive the upper bound of ∆(Sk) and apply it for the actual transmission scheduling scheme.

Proposition 3. The upper bound of ∆(Sk) is

∆(Sk) ≤ −
N

∑
i=1

E[ui(k)|Sk]Pi(k) + Q(k) (36)

where Pi(k) and Q(k) are given by

Pi(k) = piτi(k)[xi(k) + 1 + G(x+i (k) + 1)] (37)

Q(k) =
N

∑
i=1

[
xi(k) +

τ2
i (k)
2

+ G

(
x+i (k) +

τ2
i (k)
2

)]
(38)

Proof. The proof of Proposition 3 is provided in Appendix C.
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We observe that both Pi(k) and Q(k) are functions of the network state Sk and setup parameters
(N, h̄i, pi). However, Q(k) of Equation (38) is not dependent on the scheduling decision ui(k). Hence,
in each slot k, the centralized Lyapunov-based scheduling scheme selects the node with maximum
value of Pi(k) to minimize the upper bound of ∆(Sk).

9. Performance Evaluation

In this section, we evaluate the performance of four transmission scheduling policies, namely
ideal scheduling scheme, centralized random access scheme, distributed random access scheme,
and centralized Lyapunov-based scheduling scheme. The ideal scheduling scheme optimizes the
transmission schedule based on the entire packet loss sequences of each link. Hence, it gives
the fundamental performance bounds even though it is not feasible to implement in practice.
We considered a star network topology where N sensor nodes contend to send data packets to
the controller. Each node has different sets of h̄i and pi. Note that each link i of the centralized
scheduling approach has equal pi for both uplink and downlink. Let us denote the maximum MATI
and minimum MATI of the network as hmax and hmin, respectively. With a similar method, we define
the maximum link reliability and minimum link reliability of the network pmax and pmin, respectively.
Then, the MATI and link reliability of node i are

h̄i =
hmax − hmin

N − 1
(i− 1) + hmin ∀i ∈ {1, . . . , N}, (39)

pi =
pmax − pmin

N − 1
(i− 1) + pmin ∀i ∈ {1, . . . , N}. (40)

The lower are the values of h̄i and pi, the more challenging are the constraints. Hence, the lower
node ID has more strict MATI requirement with worse link reliability. Each simulation ran K = N× 108

time slots.
Both centralized schemes of static random access and Lyapunov-based schedule need the resource

allocation message to assign the time slot to nodes. We assumed that both centralized schemes use one
additional slot to transmit the resource allocation message. The centralized solutions consume two
slots for the single data transmission while the distributed random access only requires one slot for the
data transmission. Since the packet delay is fixed to 1 time slot, we mainly analyzed the performance
of TI of different schemes.

Figure 6 shows the cumulative density function (CDF) of slack of ideal solution, centralized
random access, distributed random access, and Lyapunov-based approach with link reliability
pmin = 0.9, pmax = 1, MATI requirement hmin = 70, hmax = 100, and number of nodes N = 8. The slack
is the difference between MATI and TI measurements. As a reminder, the minimum slack of TI with
respect to MATI is the objective value of the proposed optimization problem. The higher is the slack,
the better is the robustness. Hence, a lower CDF is better than a higher CDF for the stability guarantee.
The Lyapunov-based scheduling scheme generally gives a lower CDF than other CDFs. However,
our objective was to maximize the worst slack of the network. In fact, the worst slack value of the
ideal solution is greater than the one of the Lyapunov-based approach in Figure 6. Hence, the ideal
solution still provides the optimal solution of our proposed optimization problem in Equation (6)
using the perfect knowledge of the packet loss sequences. The Lyapunov-based approach efficiently
improves the robust performance based on the feedback slack information between TI and MATI of
heterogeneous multiple control systems.
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Figure 6. CDF of slack of ideal solution, centralized random access, distributed random access, and
Lyapunov-based approach with N = 8.

On the other hand, there is a significant gap between ideal solution with two randomized
scheduling approaches, namely centralized random access and distributed random access. Note that
the centralized random access does not rely on any feedback information of TI. The interesting
observation is that the distributed random access generally performs better than the centralized one for
N = 8. Even though the distributed random access may incur the collisions with other transmissions,
each data transmission requires only one time slot. While the centralized random access has no
contention with other nodes, each data transmission consumes two time slots due to the resource
allocation message. Since the collision probability is low for the small number of nodes, the distributed
random access gives better robustness, as shown in Figure 6.

Another interesting point is the different percentile values between four schemes. While the four
schemes have similar 50th percentile values, the percentile difference between different approaches
increases as the percentage decreases. It means the worst case performance of the proposed approaches
is significantly different.

Figure 7 shows the minimum slack, average TI, and outage probability of four different schemes
as a function of different number of nodes N = 3, . . . , 30 with link reliability pmin = 0.9, pmax = 1,
and MATI requirement hmin = 50, hmax = 100. The outage probability is defined as the probability
that the TI value is greater than MATI, h̄i.

Let us first compare the performance between ideal solution and Lyapunov-based approach.
In Figure 7a,c, the ideal solution provides the lower outage probability and higher minimum slack
than the one of the Lyapunov-based approach. However, the average TI of the ideal solution is
slightly higher than the one of Lyapunov-based approach in Figure 7b. As a reminder, the objective
of the proposed optimization problem is to maximize the minimum TI slack with respect to MATI
requirements instead of minimizing average TI value of the network. The average TI is not explicitly
considered in the optimization problem.

While the Lyapunov-based approach is comparable with the ideal solution, both random accesses
show significantly different behaviors. In Figure 7, the centralized random access has an almost
constant gap of the minimum slack, average TI, and outage probability with the Lyapunov-based
approach over different number of nodes. On the other hand, the distributed random access
significantly degrades these performance metrics as increasing the number of nodes. By comparing two
random accesses, the distributed random approach provides better performance than the centralized
random access for the small number of nodes N ≤ 9. There is the fundamental stability limits of
the distributed random access approach due to the increasing collision probability dependent on the
number of nodes [38].
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Figure 8 shows the MATI requirement and the average TI of each node using different transmission
scheduling schemes with N = 9. As a reminder, the MATI requirement and link reliability become
more strict as decreasing node ID of the network. We observe that the average TI of the ideal
solution is decreasing as the MATI requirement becomes more strict for the lower node ID. However,
the Lyapunov-based approach is quite flat over different MATI requirements with respect to the ideal
solution. The node ID 1 provides the minimum slack of both ideal solution and Lyapunov-based
approach of the network. This is the main reason of the greater minimum slack of the ideal solution at
the cost of the higher average TI compared to the Lyapunov-based approach in Figure 7.
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Figure 7. Minimum slack, average TI, and outage probability of ideal solution, centralized random
access, distributed random access, and Lyapunov-based approach as a function of different number of
nodes N = 3, . . . , 30: (a) minimum slack vs. number of nodes; (b) average TI vs. number of nodes; and
(c) outage probability vs. number of nodes.

On the other hand, both random accesses significantly increase the average TI as the MATI
requirement becomes relaxed for the higher node ID. In both random accesses, the slack between
MATI and average TI is decreasing as the node ID increases. In fact, the minimum slack value of both
random accesses occurs at node ID 9.
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Figure 8. MATI requirement and average TI of each node using different transmission scheduling
schemes with N = 9.

While the centralized random access supports the stationary optimal resource allocation,
its operation requires the additional slots for the resource allocation message. In fact, each successful
data transmission of the centralized approaches needs both successful transmissions of the resource
allocation message and data packet. Hence, the performance of the random access is a complex
function of number of nodes, link reliability, and operational overhead. Figure 9 compares the channel
access probabilities of each node using both centralized random access and distributed random access
with N = 9. Both solutions of random accesses assign the higher access probability to the higher
priority node ID, i.e., lower node ID. While the channel access probability of distributed random access
is mush smoother for different nodes, the centralized random access approach sets the very high
channel access probability 0.58 for the most demanded node ID 1. In fact, both random accesses show
the over-allocation of slot resources to the most demanded node as shown in Figure 8.
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Figure 9. Access probability of each node using centralized random access and distributed random
access schemes with N = 9.

10. Conclusions

In this paper, we consider the transmission scheduling schemes of industrial wireless sensors
for heterogeneous multiple control systems over unreliable wireless channels. We first discuss the
fundamental tradeoffs of the TI and the packet delay of wireless networks for the control stability.
Based on the fundamental observation, we formulate the constrained optimization problem of
maximizing the minimum slack of the TI with respect to the maximum allowable requirement of all
network nodes. We propose three low-complex transmission scheduling schemes, namely centralized
stationary random access, distributed random access, and centralized Lyapunov-based scheduling
scheme, to solve the proposed optimization problem. The simulation results show that the centralized
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Lyapunov-based scheduling approach provides robust performance closer that is to the ideal solution
by using the feedback state information. Furthermore, the distributed random access is another good
candidate of the transmission scheduling for the small number of control loops.

The practical validation of the proposed scheduling scheme is critical in the context of industrial
setup [3]. Future investigations include the practical implementation of different scheduling schemes
using Zolertia sensors [43] based on the specifications of the IEEE 802.15.4 standard. Furthermore,
we are planning to extend the proposed framework to balance the control cost and the energy efficiency
while considering the additional constraints using the energy harvesting techniques [44].
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Appendix A. Proof of Proposition 1

Proof. In each slot k, the controller successfully receives a packet if the node is scheduled with
probability αi and the link condition is good with probability pi. Hence, the probability of successful
transmission of node i is piαi. Let us denote hi as the TI of successful received packet of node i. Then,
the sum of ETI is

K

∑
k=1

τi(k) = 1 + 2 + . . . + hi =
h2

i + hi

2

Note that hi follows P[hi = j] = piαi(1− piαi)
j−1, ∀j ∈ Z+ since it is independent and identically

distributed. By using renewal theory, the expected ETI of node i becomes

1
K

K

∑
k=1

E[τi(k)] =
1

E[hi]

(
E[h2

i ] +E[hi]

2

)
(A1)

Hence, the long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
E[h2

i ]

2E[hi]
+

1
2
=

1
piαi

(A2)

due to its generalization for renewal-reward processes [45].

Appendix B. Proof of Proposition 2

Proof. Since the logarithmic function is strictly increasing, each ETI constraint of Equation (26b) is
equivalently rewritten as ν ≤ log ai + log βi + ∑j∈Ci

log(1− β j), ∀i ∈ {1, . . . , N} where ν = log ψ.
Hence, the constraint becomes

ν− log ai − log βi − ∑
j∈Ci

log(1− β j) ≤ 0 . (A3)

Note that each constraint of Equation (A3) shows a convex set of (β, ν) with the monotonically
increasing logarithmic function. Hence, the optimization problem of Equation (26) is reformulated as
the following convex problem

max ν (A4a)

s.t. ν ≤ log ai + log βi + ∑
j∈Ci

log(1− β j) . (A4b)



Sensors 2018, 18, 4284 20 of 22

Since we assume the fully connected graph of the single hop network, all νi must have equal
value, namely νi = νj for all i ∈ {1, . . . , N} and j ∈ Ci. By assuming aiβi ∏j∈Ci

(1− β j) ≤ 1, we have
ν ≤ 0. Hence, maximizing ν is equivalent to minimize ν2 in the optimization problem. Therefore, it is
possible to rewrite the non-convex optimization problem in Equation (26) to the convex problem in
Equation (27).

Appendix C. Proof of Proposition 3

Proof. In this appendix, we obtain the upper bound of the Lyapunov drift ∆(Sk) of Equation (36).
Let us consider the network state Sk, the Lyapunov function V(Sk) in Equation (34), and the Lyapunov
drift ∆(Sk) in Equation (35). After plugging Equation (34) into Equation (35), we obtain

∆(Sk) =
1
2

N

∑
i
E[x2

i (k + 1)− x2
i (k)|Sk] +

G
2

N

∑
i
E[(x+i (k + 1))2 − (x+i (k))2|Sk] (A5)

In Equation (A5), we derive the expressions of (x+i (k + 1))2 − (x+i (k))2 and x2
i (k + 1)− x2

i (k).
The ETI update of Equation (3) is rewritten as

τi(k + 1) = τi(k)(1− di(k)) + 1 (A6)

By combining Equations (33) and (A6), the iteration of the ETI debt is

xi(k + 1) = xi(k)− τi(k)di(k) + 1, (A7)

where xi(1) = 0. Hence, (x+i (k + 1))2 becomes

(x+i (k + 1))2 = [max(xi(k)− τi(k)di(k) + 1, 0)]2 (A8)

≤ [max(x+i (k), 0)]2 (A9)

≤ (x+i (k))2 (A10)

Equation (A10) is rewritten as

(x+i (k + 1))2 − (x+i (k))2 ≤− 2τi(k)(x+i (k) + 1)di(k) + 2x+i (k) + τ2
i (k) . (A11)

By taking the expectation of Equation (A11), we compute the upper bound

E[(x+i (k + 1))2 − (x+i (k))2|Sk] ≤ −2τi(k)(x+i (k) + 1)piE(ui(k)|Sk) + 2x+i (k) + τ2
i (k) (A12)

With a similar method, we get

E[(xi(k + 1))2 − (xi(k))2|Sk] ≤ −2τi(k)(xi(k) + 1)piE[ui(k)|Sk] + 2xi(k) + τ2
i (k) (A13)

After substituting Equations (A12) and (A13) into the Lyapunov drift of Equation (A5), we obtain
the upper bound of ∆(Sk) as Equations (36)–(38).
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