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Abstract: The characteristics of the denture base surface, in combination with the oral environment,
promote the colonization and development of Candida albicans biofilm, which is the main cause of
denture stomatitis. This study evaluated the effectiveness of fibrin biopolymer with digluconate
chlorhexidine or Punica granatum alcoholic extract to prevent C. albicans biofilm. Conventional
heat polymerized and pre-polymerized poly(methyl methacrylate) (PMMA) circular specimens
(10 × 2 mm) were fabricated (n = 504) and randomly divided into groups: no treatment (control—CT),
fibrin biopolymer coating (FB), fibrin biopolymer with P. granatum (FBPg), or digluconate of chlorhex-
idine (FBCh) coating. The specimens were inoculated with C. albicans SC5314 (1 × 107 cells/mL) and
incubated for 24, 48, and 72 h. Crystal violet and colony-forming unit assays were used to quantify the
total biofilm biomass and biofilm-living cells. A qualitative analysis was performed using confocal
laser scanning microscopy. Data obtained are expressed as means and standard deviations and were
statistically analyzed using a three-way analysis of variance (α = 0.05). The FBPg and FBCh groups
inhibited the growth of C. albicans biofilm in both PMMA materials analyzed, with FBCh performing
better in all periods evaluated (p < 0.0001). The colony forming unit (CFU) assay showed that the FB
group favored the C. albicans biofilm growth at 24 h and 48 h (p < 0.0001), with no differences with
CT group at 72 h (p = 0.790). All groups showed an enhancement in biofilm development up to 72 h
(p < 0.0001), except the FBCh group (p = 0.100). No statistical differences were found between the
PMMA base materials (p > 0.050), except in the FB group (p < 0.0001). Fibrin biopolymer, albeit a
scaffold for the growth of C. albicans, when combined with chlorhexidine digluconate or P. granatum,
demonstrated excellent performance as a drug delivery system, preventing and controlling the
formation of denture biofilm.
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1. Introduction

Denture stomatitis (DS) is a chronic inflammatory condition that affects 15% to 70% of
denture wearers and is mainly related to inflammation caused by Candida albicans of the
palatal mucosa supporting the denture [1–3]. C. albicans can colonize and develop a biofilm
on the inner surface of the dentures, a process influenced by the hydrophobicity, surface
free energy, and surface roughness of the poly(methyl methacrylate) (PMMA) resins [4,5].

The adhesion of C. albicans to the denture base is a critical factor in the development of
DS [6,7]. This adhesion occurs through the colonization of microorganisms to the denture
surface. These act as protective reservoirs that inhibit Candida from being removed by the
self-cleaning effect of saliva, mechanical cleaning, or dislodgment forces [8]. This yeast has
significant proliferation capacity, especially for immunocompromised patients [9].

Conventional heat-cured PMMA resin is the most widely used material for denture
bases, and it has been proven that the processing method used increases the porosity of
the acrylic surface [10]. In addition to conventional PMMA, newer processing systems for
obtaining denture bases have been reported, such as computer-aided design and computer-
aided manufacturing (CAD-CAM) PMMA-based polymers [11–13]. CAD-CAM-fabricated
complete dentures have several promising advantages, including a decrease in porosity
as the polymer base is formed from a pre-polymerized block of acrylic resin industrially
polymerized under protocol conditions at high heat and pressure [13–15]. Moreover,
denture bases fabricated using CAD-CAM release a small amount of monomer, which may
affect microbial adhesion [16]. The internal surface of the denture bases in both PMMA
processing methods are not polished, which may affect the roughness threshold, favoring
Candida biofilm adhesion [17,18].

Besides reinforcing oral hygiene, DS treatment usually involves the administration
of local and systemic antifungals [2,19,20]. However, these approaches may have certain
setbacks such as local and systemic side effects, and antifungal resistance, which can lead
to a disease recurrence [2,20]. Denture cleansers and oral mouth rinses are also used as
antimicrobial agents; for the management and control of DS, however, their effectiveness
depends directly on their continuous and proper use, following the manufacturer’s rec-
ommendations on the preparation and immersion period [21–23]. In addition, their use
has been associated with increased surface roughness and the color changes of the base
of the denture, which consequently favors the biofilm development [22,23]. Thus, it is
necessary to develop new alternatives to promote anti-adherent and antimicrobial activity
on PMMA substrates.

In this context, a growing interest in medicinal plants has been recently observed, and
their therapeutic and preventive effects have been reported, including for DS [2,24,25]. The
pomegranate (Punica granatum) is a fruit that is commonly consumed fresh or in beverages
and has high antioxidant activity [25]. Furthermore, its alcoholic extract has already been
proven to possess antifungal activity against Candida species [2,19,25–27]. Almeida et al. [2]
incorporated in vitro anti-C. albicans, an alcoholic extract of P. granatum, into a denture
adhesive. Furthermore, a study by Esawy et al. [28] showed that mouthwashes with
fractions of P. granatum extract were effective as anti-calculus and anti-hemorrhagic agents.

In addition, coating materials have also been suggested as an alternative to promote
changes in the topography and physicochemical characteristics of the PMMA, resulting in it
being less prone to the adhesion and growth of C. albicans, such as synthetic tissue adhesives,
specifically cyanoacrylates (CA) [1,4,29,30]. However, the high cost and controversial
biocompatibility of CA continue to be issues [31].

More recently, a new heterologous fibrin sealant composed of fibrinogen-rich cry-
oprecipitate, extracted from Bubalus bubalis buffalo blood, and a thrombin-like enzyme,
purified from the venom of Crotalus durissus terrificus, has been considered as a promising
material in medicine and dentistry [32–36]. This biopolymer has biocompatibility (non-
toxic), low-cost to produce in addition to hemostatic, sealant, adhesive, scaffold, and drug
delivery properties [32–39]. In the presence of calcium, the thrombin-like enzyme acts on
fibrinogen molecules, turning them into fibrin monomers, resulting in a stable clot [33–35].
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In dentistry, Barbosa et al. [35,40] and Chiquito et al. [41] reported that using FB (fibrin
biopolymer) to immobilize free gingival grafts is as effective as conventional sutures. In
addition, it promoted advanced healing and reduced inflammatory cell density. However,
its application as a coating material for complete dentures such as a drug delivery system
has never been used.

According to the literature, the incorporation of antimicrobial agents into coating
materials has demonstrated promising results, providing clinical advantages as a useful
strategy to avoid microbial colonization [42–44]. Redding et al. [42] evaluated the effec-
tiveness of incorporating chlorhexidine diacetate, amphotericin B, and nystatin into a
thin-film polymer. Although all antifungals promoted satisfactory biofilm inhibition, the
chlorhexidine diacetate group presented significantly better results. Therefore, considering
the lack of studies and the necessity of new alternatives to treat and prevent DS, the aim of
this study was to evaluate for the first time the effectiveness of a new heterologous fibrin
sealant incorporated with digluconate chlorhexidine or P. granatum alcoholic extract against
C. albicans biofilm using two different PMMA base materials. The null hypothesis was that
the different coating conditions would not affect the formation of C. albicans biofilm.

2. Materials and Methods
2.1. Plant Material and Extract Preparation

P. granatum fruit were purchased at the “Boa Fruta” fruit and seedling distribu-
tor supermarket. The fruit was cultivated in Petrolina, Pernambuco, Brazil (9◦4630′ S,
24◦2130′ W). For this study, crude powder extract produced from the peel of the P. grana-
tum fruit was used. The peels were dried in an air circulation oven at 45 ◦C (Drying Kiln
with Renovation/Air Circulation Marconi N480 Novus; Marconi Ltda, Piracicaba, Brazil)
and crushed in a knife mill (MA340—Macro Moinho de Willey Knives; Marconi Ltda,
Piracicaba, Brazil) [2]. For the extraction of its compounds, percolation was performed
at room temperature. This produced a hydroalcoholic extract [2]. The concentrated solu-
tion was subjected to a rotary evaporator (Bath Model Hei Vap Precision G3; Heidolph,
Schwabach, Germany) under reduced pressure and at temperatures below 50 ◦C to remove
the organic solvent. Finally, the crude extract was lyophilized in its powder form [25,45].

2.2. Specimen Preparation

A total of 504 circular specimens (10 mm diameter × 2 mm thick) using a pre-
polymerized resin (Vipi block gum; Vipi, Pirassununga, Brazil) and heat polymerized
acrylic resin (Vipi Cril Plus; Vipi, Pirassununga, Brazil) were prepared in accordance with
the manufacturer’s instructions. To obtain a highly rough surface compatible with the
growth of microorganisms (2–3 µm range), each specimen had one surface sanded using
a polishing machine (PFL; Fortel, São Paulo, Brazil) with 120-grit sandpaper (Norton
Abrasivos, Guarulhos, Brasil) for 15 s [30,46]. Surface roughness was measured using a
roughness tester (Hommel Tester T 1000 basic; Hommelwerke GmbH, Vs-Schwenningen,
Germany), and four readings were taken at different positions on the roughened surface of
each specimen [47]. Subsequently, the specimens were immersed in 2 mL of distilled water
at 37 ◦C for 48 h to allow for the release of residual monomer (ISO 10139-2, International
Organization for Standardization, 1999) and were sterilized using ethylene oxide (Acecil
Ltda, Campinas, Brazil) [47,48]. Finally, the specimens were randomly distributed into
four groups: without coating or control group (CT), coated with FB only, coated with
biopolymer fibrin incorporated with chlorhexidine (FBCh) or P. granatum (FBPg).

2.3. Surface Treatment of the Specimens

The fibrin biopolymer was discovered, developed and supplied by the Center for
the Study of Venoms and Venomous Animals from São Paulo State University (CEVAP),
Botucatu, São Paulo, Brazil. CEVAP maintains a serpentarium with authorization for
the management of wild fauna (no. 3507.7263/2012-SP) and registration as a scientific
breeder for research purposes at the Brazilian Institute of the Environment and Natural
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Resources (IBAMA) (protocol number 02001.005670/90–77). The extraction of the venom
from Crotalus durissus terrificus snakes is carried out following the strictest standards of
good laboratory practices and standard operating protocols to guarantee the quality and
purity required in the production of biopharmaceuticals [49]. First, the venom is extracted
and filtered, then the processing is carried out by evaluating its protein dosage. The venom
undergoes a lyophilization process and then fractionated through high-performance liquid
chromatography (HPLC), where the purity of the thrombin-like enzyme is evaluated
by sequencing techniques and mass spectrometry [50,51]. Next, the fraction is stored
at −20 ◦C. More information about the fibrin biopolymer is available on YouTube at
https://youtu.be/y6ho6M0amA8 (accessed on 22 March 2021).

Bubalus bubalis buffaloes are used for the large-scale production of cryoprecipitate [37].
To guarantee that the cryoprecipitate is safe and free of any foreign or detrimental sub-
stance to the human organism, donor animals are selected and their health is evaluated.
The animals are submitted to frequent sanitary management (vaccines and deworming,
diagnostic serological tests, and tuberculinization tests, besides clinical examinations).
CEVAP researchers extract the cryoprecipitate, which is then analyzed by two-dimensional
electrophoresis, to isolate and identify proteins. The research bases for processing and
traceability were reported by Pontes et al., 2017 [52] and Ferreira Jr. et al., 2019 [53]. The
specifications of formulation are protected by patents no. BR 10 2014 011432 7 and BR
10 2014 011436-0 [54,55].

The concentrations of the tested antimicrobials that were incorporated into the fibrin
biopolymer were established according to a pilot study and corresponded to 20 mg/mL of
P. granatum and 4 mg/mL of chlorhexidine (data not shown). The biopolymer is available
in three solutions: fraction 1 (0.400 mL)—Crotalus durissus terrificus thrombin-like enzyme,
fraction 2 (1 mL)—buffalo cryoprecipitate solution, and diluent (0.600 mL)—containing
calcium chloride. These compounds were kept frozen and thawed prior to use. The
amounts used were 0.400 mL of fraction 1, 0.400 mL of diluent, and finally, 0.200 mL
of fraction 2, which should be the last to be homogenized, since it is the responsible for
polymerization, totaling 1 mL. Then, the powdered medicines were incorporated into the
biopolymer until a homogeneous mixture was formed.

The experimental specimens were coated with 50 µL of each experimental product,
which was equally distributed across the surface using a disposable brush tip (Disposable
Brush Tips/60; 3M ESPE, Sumaré, Brazil). Afterward, the specimens were dried at room
temperature for 40 min.

2.4. Yeast Strain, Growth Conditions and Biofilm Development

C. albicans (strain SC5413) frozen culture stocks (−80 ◦C) were incubated in tryptic
soy broth (Accumidia manufactures Inc, Lansing, MI, USA) with 1% chloramphenicol
(Quemicetina Succinato, Pfizer, Guarulhos, Brazil) at 30 ◦C for 24 h under aerobic conditions.
Subsequently, the suspension was centrifuged at 5000 rpm for 10 min at 22 ◦C and the cells
were harvested and washed with phosphate-buffered saline (PBS, pH 7.2) and standardized
to 1 × 107 cell/mL−1 in PBS using a hemocytometer [46,56].

To form the biofilm, all acrylic resin specimens were carefully washed with PBS and
immersed in 1 mL of the previously standardized cell suspension and incubated for 90 min
at 37 ◦C, at 75 rpm. Then, the specimens were washed in 1 mL of PBS to remove non-
adherent organisms and immersed in 1 mL of Roswell Park Memorial Institute solution
(RPMI-1640; Gibco, New York, NY, USA) for 24, 48, and 72 h at 37 ◦C (75 rpm). The medium
was changed at 24-h intervals [2,46].

2.5. Viable Cell Count (Colony-Forming Units (CFU)/mL)

For this experiment, 108 specimens of each acrylic resin was fabricated. Each group
included 3 specimens, and the experiment was repeated 3 times per period. After each
evaluation period, the specimens were gently washed in 1 mL of PBS. The biofilm was
removed from the specimen surface with the aid of a cell scraper (Costar® 3010; Corning,

https://youtu.be/y6ho6M0amA8
https://youtu.be/y6ho6M0amA8
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New York, NY, USA) and stored in 1 mL of PBS [2,57]. These suspensions were serially
diluted (10−1 to 10−4), and aliquots (50 µL) of each dilution were plated in triplicate on
Sabouraud Dextrose agar (Accumedia Manufacturers, Lansing, MI, USA) and incubated
for 48 h at 37 ◦C [58]. After this period, the colonies were counted and expressed as mean
CFU/mL values.

2.6. Total Biomass of the C. albicans Biofilm

For this assay, 108 specimens of each acrylic resin were produced. Each group included
3 specimens, and the experiment was repeated 3 times per period. After the formation
of the biofilm, the non-adherent cells were removed by washing the specimens in 1 mL
of PBS in each well. Then, the biofilm formed on the rough surface was fixed with
1 mL of 99% methanol (Merck Millipore, Burlington, VT, USA) for 15 min, dried at room
temperature, and immersed in 2 mL of 0.1% violet crystal (VC) solution (Sigma–Aldrich,
St. Louis, MO, USA) for 20 min. The specimens were then washed with distilled water to
remove the excess VC [59]. To dissolve the stain, the specimens were immersed in 2 mL of
95% ethanol (Synth, Diadema, Brazil) [60], and an aliquot of 100 µL was transferred to a
96 wells microtiter plate for spectrophotometer reading, programmed with a wavelength
of 570 nm [46,61].

2.7. Confocal Laser Scanning Microscopy

After 24, 48, and 72 h of incubation, 36 specimens of each resin type were transferred
to a sterile 24-well plate and carefully washed with PBS. In sequence, in the absence of light,
the specimens were stained with LIVE/DEAD® BaclightTM L7007 Kit (Molecular Probes;
Sigma–Aldrich, St. Louis, MO, USA) at 1% for 20 min at 37 ◦C. The stained C. albicans
biofilm remaining on the acrylic resin surface was qualitatively analyzed using confocal
laser scanning microscopy (CLSM) (TCS-SPE; Leica Mycrosystems, Wetzlar, Germany) [1].

2.8. Statistical Analysis

Data obtained from the CFU and VC assays are presented as means and standard
deviations and were statistically analyzed using a 3-way analysis of variance (α = 0.05).

3. Results
3.1. CFU Assay

Data from the CFU assay is shown in Tables 1 and 2. The chlorhexidine group
incorporated in the fibrin biopolymer (FBCh) exhibited high inhibitory values in all of
the materials studied, showing statistically significant differences when compared with
the CT, FB, and FBPg groups (p < 0.0001). In addition, it can be confirmed that this
material has an inhibitory capacity of up to 72 h of exposure in microbial biofilm, with
no significant differences between the periods evaluated (p = 0.100) in all of the materials
studied (Tables 1 and 2).

Table 1. Mean values of colony forming unit (CFU)/mL (103) ± standard deviations (SD) in heat polymerized resin.

Groups Experimental Periods Mean ± SD/Group

24 h 48 h 72 h

CT 1304.44 ± 500.07 Aa 1726.44 ± 386.45 Aa 3144.44 ± 474.11 Ba 2058.44 ± 453.55
FB 2297.78 ± 613.55 Ab 2557.78 ± 758.19 Ab 3220 ± 424.15 Ba 2691.85 ± 598.63

FBPg 891.11 ± 178.36 Aa 1277.78 ± 196.58 Ac 2186.67 ± 220.45 Bb 1451.85 ± 198.46
FBCh 0.0 ± 0.0 c 0.07 ± 0.2 d 0.02 ± 0.07 c 0.03 ± 0.09

Mean ± SD/Period 1123.33 ± 322.99 (103) 1390.52 ± 335.35 (103) 2137.78 ± 279.69 (103)

CT: Control group; FB: Fibrin biopolymer; FBPg: P. granatum incorporated in fibrin biopolymer; FBCh: chlorhexidine incorporated in fibrin
biopolymer. Horizontally, different capital letters indicate a statistical difference between the experimental periods for the same group
(p < 0.05). Vertically, different lowercase letters indicate a statistical difference between the groups for the same period (p < 0.05).
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Table 2. Mean values of CFU/mL (103) ± standard deviations (SD) in computer-aided design and computer-aided
manufacturing (CAD-CAM) resin.

Groups Experimental Periods Mean ± SD/Group

24 h 48 h 72 h

CT 1271.11 ± 315.73 Aa 1504.44 ± 458.89 Aa 2664.44 ± 402.71 Ba 1813.33 ± 392.44
FB 1842.22 ± 410.18 Ab 1753.33 ± 597.99 Ab 3044,44 ± 434.14 Ba 2213.33 ± 480.77

FBPg 888.89 ± 251.62 Aa 1053.33 ± 190.79 Ac 1753.33 ± 410.97 Bb 1231.85 ± 284.46
FBCh 0.02 ± 0.07 c 0.02 ± 0.07 d 0.09 ± 0.2 c 0.04 ± 0.11

Mean ± SD/Period 1000.56 ± 244.39 (103) 1077.78 ± 311.94 (103) 1865.58 ± 312.01 (103)

CT: Control group; FB: Fibrin biopolymer; FBPg: P. granatum incorporated in fibrin biopolymer; FBCh: chlorhexidine incorporated in fibrin
biopolymer. Horizontally, different capital letters indicate a statistical difference between the experimental periods for the same group
(p < 0.05). Vertically, different lowercase letters indicate a statistical difference between the groups for the same period (p < 0.05).

At 24 h, it was evident that the FBPg group was not statistically different (p = 0.060)
than the control group in all of the materials studied. However, at 48 and 72 h, this group
showed inhibitory capacity when compared to the control group (p < 0.0001) in all of the
materials studied. FB favored C. albicans biofilm growth compared to the control group at
24 and 48 h in all of the materials evaluated (p < 0.0001). However, at 72 h, these differences
were not significant (p = 0.790; Tables 1 and 2).

Comparison among materials in the evaluation periods revealed significant differences
between heat polymerized and CAD-CAM resins when FB coating was applied (p = 0.0100).

3.2. Metabolic Activity Test (VC)

Cellular accounting, expressed in absorbance values, is described in Tables 3 and 4. Sig-
nificant differences were observed for both the factors “groups” and “periods” (p < 0.0001).
However, no statistical significance was found for the factor “material” (p = 0.830). In-
hibitory effects were observed for the FBPg and FBCh groups when compared to the control
group (p < 0.0001), with FBCh having the lowest values. However, there were no significant
differences between the CT and FB groups (p = 0.590).

Table 3. Mean absorbance values (nm) ± standard deviations (SD) of the metabolic activity of the C. albicans biofilm for the
adhesives tested on specimens made with conventional heat polymerized resin.

Groups Experimental Periods Mean ± SD/Group

24 h 48 h 72 h

CT 1576.56 ± 850. 56 1897.67 ± 702.62 2763.444 ± 387.19 2079.23 ± 646.79 a
FB 1879.78 ± 702.88 2003.44 ± 776 2102.333 ± 1179.4 1995.18 ± 886.09 a

FBPg 1153.44 ± 647.59 1470.56 ± 591.57 1598.333 ± 672.35 1407.44 ± 637.17 b
FBCh 110 ± 2.74 120.11 ± 4.76 127.889 ± 5.71 119.33 ± 4.4 c

Mean ± SD/Period 1179.95 ± 550.94 A 1372.95 ± 518.74 A 1647.99 ± 561.16 B

CT: Control group; FB: Fibrin biopolymer; FBPg: P. granatum incorporated in fibrin biopolymer; FBCh: chlorhexidine incorporated in fibrin
biopolymer. Horizontally, different capital letters indicate a statistical difference between the experimental periods for the same group
(p < 0.05). Vertically, different lowercase letters indicate a statistical difference between the groups for the same period (p < 0.05).

Regarding the factor “period”, a significant increase in the biofilm adhered to the
surface was observed at 72 h in all the groups evaluated (p < 0.0001).

3.3. Qualitative Confocal Analysis

After 24 h of incubation, the control counterpart showed a higher proportion of
uniform and elongated C. albicans yeast arranged in clusters (Figure 1). Similarly, at the
same time point, the FB group was densely populated with uniform yeast (Figure 1). In
contrast, growth suppression of C. albicans by FBCh (Figure 1) and FBPg (Figure 1) was
seen with LIVE/DEAD staining, confirming the CFU and VC assay data.
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Table 4. Average absorbance values (nm) ± standard deviations (SD) of the metabolic activity of the C. albicans biofilm for
the adhesives tested on specimens made with CAD-CAM resin.

Groups Experimental Periods Mean ± SD/Group

24 h 48 h 72 h

CT 1591.778 ± 583.75 1475.667 ± 612.7 2126.556 ± 1204.09 1731.33 ± 800.18 a
FB 1925.889 ± 438.85 1777.667 ± 685.53 2643.333 ± 340 2115.63 ± 488.13 a

FBPg 1500.778 ± 177.55 1330.222 ± 520.12 1807.111 ± 976.89 1546.04 ± 558.19 b
FBCh 136.222 ± 2.28 126 ± 14.16 141.333 ± 12.37 134.52 ± 9.6 c

Mean ± SD/Period 1288.67 ± 300.61 A 1177.39 ± 458.13 A 1679.58 ± 633.34 B

CT: Control group; FB: Fibrin biopolymer; FBPg: P. granatum incorporated in fibrin biopolymer; FBCh: chlorhexidine incorporated in fibrin
biopolymer. Horizontally, different capital letters indicate a statistical difference between the experimental periods for the same group
(p < 0.05). Vertically, different lowercase letters indicate a statistical difference between the groups for the same period (p < 0.05).
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Figure 1. Confocal images of C. albicans biofilms developed on heat-polymerized (HP) and pre-pol
ymerized (PP) surfaces after 24 h of incubation. CT: control group; FB: Fibrin biopolymer; FBPg:
P. granatum incorporated in fibrin biopolymer; FBCh: Chlorhexidine incorporated in fibrin biopolymer.
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After 48 h of incubation, in the control (Figure 2) and FB groups (Figure 2), a large
amount of yeast and hyphae were evident, ratifying the quantitative CFU and VC findings.
Some C. albicans blastopores and yeasts were noted in biofilms treated with FBPg (Figure 2),
while sparsely distributed C. albicans blastopores and dead yeast were detected in the FBCh
group (Figure 2).
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After 72 h of incubation, the FB (Figure 3) and control groups (Figure 3) were highly
densely populated with uniform yeast, pseudohyphae, and hyphae, similar to the results
found in the CFU and VC assay. At the same time point, sparsely distributed C. albicans
blastopores and a considerable amount of dead yeast were visible among scattered C. albi-
cans in the FBCh group (Figure 3). Yeast and some hyphae of diffuse formats were evident
in the group treated with FBPg (Figure 3).
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4. Discussion

DS, the most common oral condition involving denture wearers, is mainly caused
by the adherence of C. albicans to the porous and rough surfaces of denture base materi-
als [7,8]. Coating the denture surface may alter these rough characteristics and prevent
the colonization of this yeast. Strategies such as the incorporation of antimicrobials into
the composition of coating materials can provide additional benefits in preventing the
development of biofilms on the inner surface of removable dentures [42,43]. Thus, in
the present study, we assessed whether the coating of fibrin biopolymer adhesive with
P. granatum and digluconate chlorhexidine could affect the adhesion of C. albicans on the
surface of two different PMMA resins.

To the best of our knowledge, no study has investigated fibrin biopolymer combined
with antimicrobial agents nor its effectiveness against fungus as an alternative therapy for
DS. The results showed that heat-treated and pre-polymerized resin specimens coated with
fibrin biopolymer incorporated with chlorhexidine (FBCh) significantly reduced C. albicans
biofilm formation and growth in all of the evaluated assays and periods. These findings
are supported by Redding et al. [42] who evaluated chlorhexidine incorporated thin-film
polymer on acrylic resin specimens after 24 h of incubation. In addition, Garaicoa et al. [44]
showed the antifungal capacity of chlorhexidine incorporated in denture adhesives. Elle-
pola and Samaranayake [62] found that the chlorhexidine digluconate compound provoked
rupture in the cell membrane yeast, even at low concentrations, and was a potent anti-
fungal. Moreover, the antimicrobial efficacy of chlorhexidine is also associated with its
substantivity, assuring its gradual release, and the promotion of its efficacy over a long
period [63].

Although not as efficient as chlorhexidine, the incorporation of P. granatum in fibrin
biopolymer (FBPg) also showed an inhibitory capacity on C. albicans biofilm at all periods
and in both evaluated PMMA materials. Almeida et al. [2] also reported reduced biofilm
development up to 12 h after biofilm induction in specimens treated with prosthetic
adhesive with P. granatum incorporation. The antifungal effect of crude hydroalcoholic
extract from P. granatum peel has been attributed to several structural compounds of the
peel, specifically the punicalagin and ellagitannin derivatives [25,26,64]. These components
are found in abundance in the crude hydroalcoholic extract of P. granatum peels, causing
serious damage to the cellular structure of C. albicans yeast [26,27], possibly related to their
molecular structure and toxicity, and astringent properties of tannins [45].

Surprisingly, and observed for the first time, FB favored biofilm development for
at least 72 h in both quantitative tests. As far as we know, none of the studies before
found these C. albicans-scaffold properties. Therefore, only indirect comparisons can be
worthy of the previous discussion. Biofilm overgrowth could be related to the presence
of abundant fibrin net—a special biological material—acting as a nutrient reservoir for
C. albicans development on the resin surface [65]. However, it is noteworthy that this study
proved the wet tolerance of FB and its efficiency as a drug delivery system for antimicrobials
or antifungals. In this way, FBs incorporated with antimicrobials could be a sustainable
alternative for the local prevention and management of DS. Moreover, previous studies
have demonstrated the biocompatibility or absence of cytotoxicity of FB in human and
animal cells [32–34]. It should be noted that for the first time, a biodegradable biological
material (fibrin biopolymer) was innovatively applied together with antimicrobial-yeast
candidate agents to prevent DS.

Among the two different PMMA materials, the CAD-CAM pre-polymerized resin
presented the best inhibitory effect to the development of C. albicans biofilm. Recent
studies have demonstrated that the surface of CAD-CAM specimens exhibit significantly
less adherence to C. albicans than heat-cured specimens [11,14]. These results could be
attributed to the surface roughness of the materials once the pre-polymerized PMMA
presents a smoother surface compared to heat-cured resin [14,15].

Considering the time exposure evaluated in this investigation, all groups presented
a significant overgrowth of C. albicans biofilm after 72 h, as observed in other Candida
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species-related studies [44]. The development of C. albicans biofilm proceeds in three
developmental phases: early (0–11 h), intermediate (12–30 h), and maturation (38–72 h).
In the present study, the overgrowth of C. albicans biofilm was detected in the mature
phase of biofilm development, which is probably associated with its highly heterogeneous
architecture and extracellular material [49], besides greater drug tolerance since mature
biofilm starts to express resistance genes [3,59]. In addition, “persister” necrotic fungal
cells in mature biofilm subjected to antifungal agents, which are subpopulations of cells
highly tolerant of stress conditions, protected by the cell-matrix can repopulate the biofilm
and interact and co-aggregate with other microorganisms present in the oral environment.
This represents an important factor in its virulence [66,67].

In summary, the results of the present study suggested that fibrin biopolymer, a
natural biological material, facilitates the growth of C. albicans, possibly due to the robust
fibrin network. On the other hand, when this biological medicine was applied as a drug
delivery system, associated with molecules that are candidates for antifungal agents,
such as chlorhexidine or P. granatum used in this investigation, there was an important
inhibition in dentures biofilm production. These outcomes suggest that the incorporation
of P. granatum or digluconate chlorhexidine in a vehicle tolerant to a wet environment has
the potential to prevent and treat DS by acting on the main etiological factor, C. albicans.
However, among the limitations of this study, it comprised in vitro rather than in vivo tests,
thus, these findings must be carefully applied to clinical conditions, since the adhesive will
be subjected to routine hygiene and disinfection protocols performed by denture users,
in addition to thermal and pH variations that may affect the effect and durability of this
experimental product. Thus, further in vivo investigations on the anti-adherent potential
against biofilm-associated with the denture base are needed to prove its effectiveness
against DS, determine its longevity, and whether it causes any damage to the structure
of dentures.

5. Conclusions

Within the limitations of this in vitro study and according to the data obtained, it
was possible to conclude that, although fibrin biopolymer facilitated C. albicans growth,
it proved to be effective when used as a drug delivery-system in combination with diglu-
conate chlorhexidine or P. granatum, resulting in a reduction of fungal biofilm growth on
the surface of two different PMMA base materials up to 72 h.
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