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Abstract

Background

Several methods have been developed to predict system-wide and condition-specific intra-

cellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic

models. While powerful in many settings, existing methods have several shortcomings, and

it is unclear which method has the best accuracy in general because of limited validation

against experimentally measured intracellular fluxes.

Results

We present a general optimization strategy for inferring intracellular metabolic flux distribu-

tions from transcriptomic data coupled with genome-scale metabolic reconstructions. It con-

sists of two different template models called DC (determined carbon source model) and AC

(all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux

method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation

with Transcriptomic data), which can be chosen and combined depending on the availability

of knowledge on carbon source or objective function. This enables us to simulate a broad

range of experimental conditions. We examined E. coli and S. cerevisiae as representative

prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our

algorithm was validated by calculating the uncentered Pearson correlation between pre-

dicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions

(11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corre-

sponding central carbon metabolism intracellular flux measurements determined by 13C

metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the

purpose of validating inference methods for predicting intracellular fluxes. In both organ-

isms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, out-

performing a representative sample of competing methods. Easy-to-use implementations of
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E-Flux2 and SPOT are available as part of the open-source package MOST (http://most.

ccib.rutgers.edu/).

Conclusion

Our method represents a significant advance over existing methods for inferring intracellular

metabolic flux from transcriptomic data. It not only achieves higher accuracy, but it also

combines into a single method a number of other desirable characteristics including appli-

cability to a wide range of experimental conditions, production of a unique solution, fast run-

ning time, and the availability of a user-friendly implementation.

Introduction
Intracellular metabolic reactions provide a cell with biochemical building blocks, energy, and a
suitable thermodynamic environment. Due to the large connectivity of metabolic networks via
metabolites each of which participates in multiple metabolic reactions, determination of sys-
tem-level changes in intracellular metabolic fluxes is important for understanding the funda-
mental mechanisms of cellular metabolic responses to environmental or genetic perturbations
[1].

13C metabolic flux analysis (13C-MFA) is available for characterizing intracellular fluxes
experimentally, and is the most widely accepted approach to quantify fluxes in central carbon
metabolism [2]. In this approach, cells are grown on 13C-labeled substrates until the cells are at
both metabolic steady state (i.e. when concentrations of metabolites are constant over time)
and isotopic steady state (i.e. when isotopomer fractions remain stable over time). Then the
level of 13C enrichment in cellular metabolites is measured by mass spectrometry (MS) or
nuclear magnetic resonance (NMR). Finally, the intracellular flux distribution is reconstituted
from the 13C enrichment patterns [2–6]. Though 13C-MFA can determine intracellular fluxes,
extensive instrumentation and specialized expertise is required to carry out the experiment and
the number of fluxes that can be accurately and uniquely determined is limited [7]. Moreover,
in some situations, such as autotrophic growth, 13C-MFA is not capable of intracellular flux
determination, and isotopically nonstationary MFA (INST-MFA), an even more challenging
method both experimentally and computationally, is required [8].

An alternative widely used for system-level studies of metabolism is a computational model-
ing method called flux balance analysis (FBA). FBA defines the space of allowable metabolic
flux distributions of a system at steady state by making use of genome-scale metabolic models
[9]. Since these models are in general underdetermined, context-specific and physiologically
meaningful flux solutions need to be narrowed down from the innumerable distributions by
imposing additional constraints on the system and by optimizing certain objective functions
[10].

Advances in omics technologies have enabled quantitative monitoring of the abundance of
biological molecules at various levels in a high-throughput manner [11]. In the absence of com-
plete information on regulatory rules, omics data can be integrated with genome-scale meta-
bolic models to improve their predictive power through defining flux bounds, objective
functions, or both [12]. For this purpose, transcriptomic data compares favorably to other
omics platforms in that it is a platform where a complete quantitative snapshot of all genome-
wide molecular species is possible [13]. In addition, RNA amount changes can be precisely
measured in a highly automated process at low cost compared to the amount of data gathered
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[14]. Thus, integration of transcriptomics data in genome-scale metabolic models potentially
enables the determination of context-specific system-wide metabolic fluxes through a relatively
simple and low-cost omics technology.

There have been previous studies to integrate transcriptomic data with genome-scale meta-
bolic models, which are well covered in recent reviews [6,11,15–20]. While powerful, existing
methods have several shortcomings:

1. Some of them require multiple sets of input data for a single analysis [21,22], which is often
undesirable.

2. Some methods require a user-defined threshold to define “high” or “low” expression states
[23–26], which leads to subjective results since the specific threshold above which the level
of gene expression indicates physiological activeness of corresponding reactions must be
arbitrarily chosen and may vary across genes, conditions, or organisms.

3. Several methods require a priori assumption of an appropriate objective function such as
biomass production rate (i.e. the growth rate) [21,24,27,28]. The biomass flux is the most
widely used objective function for FBA optimization problems [29]. Although the assump-
tion of biomass flux maximization in FBA has successfully predicted metabolic behavior,
especially of fast-growing microorganisms [30], we need a method which can be universally
applied to a variety of organisms in cases where knowledge of the biological objective func-
tion is uncertain, such as microorganisms with variable biomass composition, pathogens in
dormancy or in latent phase, or cells of a multi-cellular organism [31].

4. Several methods produce non-unique solutions. That is, they produce a solution out of a
space of possibilities, all of which are in theory possible. If all solutions in the space of possi-
bilities were equally good in terms of their ability to predict fluxes, this would be acceptable,
but in general, there is a range of possibilities for predictive accuracy. A single solution that
is arbitrarily chosen is difficult to reproduce and is typically dependent on the software or
hardware used for the analysis [32]. Thus, if a method has non-unique solutions, a deter-
ministic method to pick one of the good solutions (i.e. one of the ones with high predictive
accuracy) is desirable.

5. Lastly, previous studies have generally focused on conditions where the carbon source of the
system and its uptake rate are known. While many biotechnological and laboratory pro-
cesses operate on a known single carbon source, typically glucose, we would sometimes like
to study microorganisms living in conditions where the carbon source is unknown, such as
for in vivo applications [33].

Therefore, in light of various experimental and cellular conditions in practical applications,
there is still a need for a method that can provide all five of the desirable features listed in
Table 1. Moreover, until recently, the predictive accuracy of previous methods had not been
tested [19].

In this study, we compiled the most extensive dataset to date, consisting of 20 experimental
conditions (11 in E. coli and 9 in S. cerevisiae, see Table 2 for details), of genome-wide gene
expression measurements coupled with corresponding central carbon metabolism intracellular
flux measurements. We used this dataset to rigorously evaluate the performance of representa-
tive methods for predicting intracellular metabolic fluxes using transcriptomic data. Based on
this evaluation, we propose two new methods, E-Flux2 and SPOT, to be employed when a suit-
able biological objective is available and unavailable, respectively (Fig 1). The combination of
the two methods provides a general strategy for predicting intracellular fluxes using transcrip-
tomic data that satisfies all of the desirable features mentioned above. Depending on knowledge
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of the carbon source and availability of a suitable biological objective, this strategy achieves an
average uncentered Pearson correlation of predictions against measurements over our dataset
that ranges from 0.59 to 0.87, outperforming a representative selection of currently available
methods.

Materials and Methods
A description of the whole process for our research follows below. A schematic overview of it
can be found in Table A in S1 File.

Table 1. Summary of the desirable features of a method for predicting intracellular metabolic fluxes
using transcriptomic data-integrated genomicmodels.

Desirable features Benefits

1 Requirement for only a single gene expression
data as input

Simpler analysis with less effort and cost

2 Use of continuous gene expression values
without using arbitrary thresholds

Acquisition of more fine-grained information by
avoiding arbitrary classification of gene expression
levels

3 Capability to be used when an appropriate
objective function is unknown

Applications to microorganisms with variable biomass
composition, pathogens in dormancy or in latent
phase, or cells of a multi-cellular organism

4 Capability to produce a unique metabolic flux
distribution

More reproducible analysis independent of hardwares
and softwares used to solve optimization problems

5 Capability to be used when the carbon source
of the system and its uptake rate is unknown

Applications to microorganisms living in intact tissues
or in natural environments

Five desirable features of a new method are listed in the left side of the table, and the corresponding

benefits are described in the right column.

doi:10.1371/journal.pone.0157101.t001

Table 2. Datasets andmetabolic models used for this study.

E. coli S. cerevisiae

Genome-scale
metabolic model

For Table 3
& Figs 2 and

3

iJO1366 [39] Yeast 5 [40]

For Fig 3 iJO1366 [39], iAF1260 [41], iJR904 [42] Yeast 5 [40], iMM904 [43], iND750 [44]

Transcriptomic data &
measured flux data

Dataset 1 Ishii et al., 2007 [34]: Data were measured under 8
different conditions—wild type E. coli cells cultured at
a growth rate of 0.2, 0.5, and 0.7 hours-1, and single-
gene knockout mutants (Δpgm, Δpgi, Δzwf, Δrpe,
ΔgapC); The transcriptomic data are two-color
microarray data normalized using MAANOVA[45]; The
number of measured fluxes used for validation—
around 248 measured fluxes (31 fluxes per condition,
and total 8 conditions).

Rintala et al., 2009 [36] (transcriptiomic data) &
Jouhten et al., 2008 [37] (fluxomic data): Data were
obtained from yeast cells cultured in 5 different oxygen
levels (20.9, 2.8, 1.0, 0.5, and 0.0% O2); The
transcriptomic data are single-color microarray data
normalized with Robust Multichip Average
normalization [46]; The number of measured fluxes
used for validation—110 fluxes (22 fluxes per
condition, and total 5 conditions).

Dataset 2 Holm et al., 2010 [35]: Data were obtained from 3
different E. coli strains that are wild-type cells, NADH
oxidase- overexpressing cells, and the soluble
F1-ATPase- overexpressing cells; The transcriptomic
data are single-color microarray data normalized using
the Qspline method [47]; The number of measured
fluxes used for validation—66 fluxes (22 fluxes per
condition, and total 3 conditions).

Celton et al., 2012 [38]: Data were collected from
yeast cells treated with 4 different concentrations of
acetoin (0, 100, 200, and 300 mM); Its transcriptomic
data are two-color microarray data normalized using
MAANOVA [45]; The number of measured fluxes used
for validation—116 fluxes (29 fluxes per condition, and
total 4 conditions).

Total 11 conditions in E. coli 9 conditions in S. cerevisiae

doi:10.1371/journal.pone.0157101.t002
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Transcriptomic data, fluxomic data, and metabolic models used for this
study
The first step was to collect a dataset of transcriptomic and fluxomic measurements obtained
from cells under the same conditions. The measured fluxes were obtained to compare them

Fig 1. Flow chart illustrating how to choose between E-Flux2 and SPOT.

doi:10.1371/journal.pone.0157101.g001
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with the predicted fluxes. To this end, we obtained data published by Ishii et al.[34] and Holm
et al. [35] for E. coli, and by Rintalta et al. [36,37] and Celton et al. [38] for S. cerevisiae, where
both expression data and 13C flux data measured under the identical conditions can be
acquired. The dataset is made up of total 20 experimental conditions (11 in E. coli and 9 in S.
cerevisiae), a detailed description of which is given in Table 2.

Our analysis is mainly based on iJO1366 and Yeast 5 for the metabolic models of E. coli and
S. cerevisiae, respectively. We also tested our methods on older models of E. coli (iJR904 and
iAF1260) and those of S. cerevisiae (iND750 and iMM904) to examine the applicability of our
methods to the relatively incomplete models (Fig 3). We used the experimental datasets pub-
lished in the papers listed in the lower row, each of which has both transcriptomic data and
fluxomic data measured under same condition. We needed experimentally measured fluxes
data to validate predictive accuracy of our methods by comparing them with the predicted
fluxes. The model files are given in S1 Dataset. The transcriptomic and fluxomic data sets that
were used in this study can be found in S2 Dataset.

Fig 2. Comparison of the predicted fluxes with the measured fluxes of E. coli data (WT 0.5h-1 sample). The x-axis represents metabolic
reactions used to calculate correlation between the measured (blue bars in the figure) and the predicted fluxes (red bars in the figure), and the y-axis
indicates flux value. The scale and the units on the y-axis are based on those of the measured flux.

doi:10.1371/journal.pone.0157101.g002
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As the metabolic models for E. coli and S. cerevisiae, we used iJO1366 [39] and Yeast 5 [40],
respectively, in most tables and figures of this paper. As shown in Fig 3, we also tested our

Fig 3. Test of our methods onto older models of E. coli and S. cerevisiae.We tested our methods on older models of E. coli (iJR904 and
iAF1260) and those of S. cerevisiae (iND750 and iMM904) to examine the applicability of our methods to the relatively incomplete models. The
x-axis represents the four different optimization strategies and the y-axis identifies the average Pearson correlation coefficient between the
predicted fluxes and the measured fluxes of E. coli (Fig 3a) and S. cerevisiae (Fig 3b). Error bars represent standard error of the mean (SEM).

doi:10.1371/journal.pone.0157101.g003
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methods on older models of E. coli (iJR904 [42] and iAF1260 [41]) and of S. cerevisiae
(iND750 [44] and iMM904 [43]) to examine the applicability of our methods to the relatively
incomplete models. The model files are given in S1 Dataset. The transcriptomic and fluxomic
data sets that were used in this study can be found in S2 Dataset. The transcriptomic data and
model files can be used together in MOST to reproduce our results (see S2 File).

Creation of template metabolic models depending on carbon source
information
When integrating transcriptomic data with genome-scale metabolic models, a problem of scal-
ing can occur because the units for measuring metabolic flux and the units for measuring gene
expression are not related. For instance, if the carbon uptake rate is set to 1, and the transcrip-
tome values are all in the order of 10000, then applying such values as upper bounds will not
constrain the model. To avoid this issue, we construct a template model that is independent of
a priori information on cellular uptake rates and ATP maintenance flux. The template model is
made by setting the flux bounds either to zero or to positive or negative infinity while main-
taining the stoichiometric and reversibility information of the original genome-scale model:

aj � vj � bj ! �aj � vj � �bj ð1Þ

where, for all j,

�aj ¼
0; if aj � 0;

�1; if aj < 0;
and �bj ¼

þ1; if bj > 0;

0; if bj � 0;

8<
:

8<
:

where v is a flux vector representing the reaction rates of the n reactions in the network, and aj
and bj are the minimum and maximum reaction rates through reaction j defined in the original
model. In this manner, we constructed two kinds of template models to simulate two different
situations depending on whether we know which carbon source the cell uses. One template
model, which we call 'DC (determined carbon source)', has a lower bound of negative infinity
for the known carbon source uptake reaction. The other one, which we call 'AC (all possible
carbon sources)', allows all carbon sources in the model to be taken up by the cell. Among all
metabolites participating in the exchange reactions, the set of possible carbon sources were
selected based on their chemical formula. The list of carbon sources whose uptake rate were set
as negative infinity in the AC models for both microorganisms are given in S1 Table. Inorganic
metabolites such as ions and water molecules were allowed to be taken up by the DC and AC
models if their original genome-scale metabolic models did so. The information pertaining to
each specific model we used can be found in S1 Dataset.

This step, converting original genome-scale models into DC or AC template models before
integrating gene expression data, resolves the scaling problem described above. The fluxes pre-
dicted by our method have an arbitrary unit. Thus, the relative magnitude of predicted fluxes
across reactions is meaningful, but their absolute magnitude is not. Any known or measured
reaction rate (e.g. glucose uptake rate, ATP maintenance flux, and oxygen uptake rate that are
discarded when building a DC or AC template model) can be used to normalize the predicted
fluxes to an absolute reference.

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 8 / 22



Two different optimization strategies depending on the availability of
biomass objective
If information on the biomass composition of a certain organism is available and maximizing
its growth rate is appropriate for prediction, our first method, called E-Flux2, is an effective
way to study its metabolic behavior. Otherwise, our second method, called SPOT, can be used.

(1) E-Flux2. E-Flux is an extension of FBA that infers a metabolic flux distribution from
transcriptomic data [27,28]. The rationale behind E-Flux is that, given a limited translational
efficiency and a limited accumulation of enzyme over the time, the mRNA level can be used as
an approximate upper bound on the maximum amount of metabolic enzymes, and hence as a
bound on reaction rates. The standard FBA involves solving the following linear optimization
problem:

max f 0v

subject to
Sv ¼ 0

�aj � vj � �bj
ð2Þ

(

where f is a coefficient vector defining the organism’s objective function, S is the stoichiometric
matrix.

The main difference between E-Flux (Eq 3 below) and the standard FBA (Eq 2 above) is
that E-Flux uses gj, the absolute gene expression level associated with reaction j, for an upper
bound, bej , and sets a lower bound, a

e
j = −gj =�bej for reversible reactions, otherwise a

e
j = 0.

Here, absolute gene expression refers to any transcript abundance measurement in arbitrary
units.

For one-color microarrays and RNA-seq measurements, it is relatively straightforward to
determine absolute gene expression [48]. For two-color microarrays, however, it is more diffi-
cult to determine absolute gene expression because of effects such as spot size variation, and
relative expression between two conditions is typically reported [49]. It is, however, possible to
normalize two-color microarray data so that the gene expression levels can be compared both
within an array and across arrays by estimating and removing non-biological effects, such as
dye-specific, spot-specific, and array-specific effects [50,51]. For two-color microarray data (i.e.
the datasets from Ishii et al. and Celton et al.), we used the MAANOVA normalization method
[45] to achieve this normalization. MAANOVA uses an ANNOVAmodel to estimate and
remove non-biological effects. We have previously used this method to successfully obtain esti-
mates of absolute gene expression from two-color microarray measurements for E-Flux [28].

E-Flux solves the following:

max f 0v ð3Þ

subject to
Sv ¼ 0

aej � vj � bej

(

where, for all j,

aej ¼
�gj; if �aj < 0;

0; if �aj � 0;
and bej ¼

gj; if �bj > 0;

0; if �bj � 0:

8<
:

8<
:
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Gene expression data were mapped to corresponding reactions in the network based on
gene-protein-reaction (GPR) associations. For example, in the case where an enzyme complex
consisting of subunits encoded by multiple genes mediates a certain metabolic reaction, we put
the minimum value of the expression level of the associated genes on bej because the minimum

concentration of the components determines the maximum concentration of the complete
enzyme complex (See Fig A-(a) in S1 File). If a reaction is catalyzed by isozymes, we took the
sum of the expression values of the associated genes for bej since the total capacity of the reac-

tion is given by the sum of the capacities of its isozymes (Fig A-(b) in S1 File). If either the gene
expression or GPR association relationship is unavailable for a certain reaction, then the values
of aej and b

e
j of that reaction were kept as they were defined in the template model (0 or positive

or negative infinity, see Eq 1 above) so as not to constrain the model unnecessarily.
A problem of E-Flux is that the outcome solution is not unique, making it difficult to clearly

identify predicted metabolic responses. Bonarius et al. [52] used minimization of the Euclidean
norm as an objective function to find a unique metabolic flux distribution in hybridoma cells.
The Euclidean norm of a vector x, also called the l2 norm, is given by:

jxj2 ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12 þ x22 þ . . .þ xn2

p
for x ¼

x1

x2

..

.

xn

2
6666664

3
7777775

ð4Þ

whose intuitive geometric meaning is the length of a vector x on an n-dimensional Euclidean
space Rn. Thus, as stated by Bonarius et al., the constraint of minimizing the Euclidean norm
corresponds to the strategy of a cell to minimize the length of the metabolic flux vector to chan-
nel metabolites as efficiently as possible. We additionally applied this theoretical constraint
after maximizing the biomass flux to find a unique metabolic flux distribution satisfying both
optimal biomass flux and the flux minimizing its Euclidean norm. So, the first method that we
propose, which we call "E-Flux2" (meaning E-Flux method combined with minimization of l2

norm), consists of two steps of optimization, which can be chosen when a suitable objective
function is known:

Step 1. E-Flux

z� ¼ max f 0v ð5Þ

subject to
Sv ¼ 0

aej � vj � bej

(

#
Step 2. Minimization of l2 norm min

Xn

j¼1
vj

2

subject to

Sv ¼ 0

aej � vj � bej

f 0v ¼ z�

8><
>:

After calculating the optimal biomass flux, denoted as z� here, this method finds a unique
metabolic flux distribution by minimizing the Euclidean norm of the flux vector. The square
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root function was ignored since removing the square root does not change the solution. Since
the objective function, the Euclidean norm squared, is strictly convex, and all equality and
inequality constraints are linear, which is convex, the solution of E-Flux2 is unique because the
optimal solution to the problem of minimizing a strictly convex function over a convex set is
unique [53]. The output vector calculated by E-Flux2 can be biologically interpreted as a meta-
bolic flux distribution that allows the cell to achieve maximum growth rate in an energy effi-
cient way. The idea underlying E-Flux2 is similar to parsimonious FBA (pFBA) in which FBA
is followed by minimization of the l1 norm (or Manhattan norm) [54]. pFBA does not, how-
ever, necessarily produce a unique solution since the objective function, the l1 norm, is not
strictly convex.

Though not largely different from E-Flux, E-Flux2 overcomes a major shortcoming of
E-Flux, namely, that it does not yield a unique solution. Among the space of solutions that
E-Flux provides, E-Flux2 provides a method to select one solution in a manner that is intuitive
and yields high correlation to measured fluxes (see Results and Discussion).

(2) SPOT. If a suitable objective such as the biomass flux is unknown, we can use a second
method which is to maximize correlation between a flux vector, v, and its corresponding gene
expression data, g. The assumption behind this strategy is that enzymatic transcript concentra-
tions and metabolic fluxes can be related to each other, albeit in a complex manner, since the
existence of a transcript is necessary for the presence or activity of its corresponding enzyme
[55]. To calculate the correlation, we used the uncentered Pearson product-moment correla-
tion which is a popular measure of the linear correlation between two variables, resulting in the
following optimization problem:

max
v � g

kvkkgk ¼
Pn

j¼1 vjgj
kvkkgk ð6Þ

subject to
Sv ¼ 0

�aj � vj � �bj

(

where; for all j ¼ 1; . . . ; n;

gj ¼
gj; if gj is available and �aj � 0;

�gj; if gj is available and �bj � 0;

0; otherwise

8><
>:

we will consider a problem with modified upper and lower bounds that are 0 or ± infinity as
described in Eq 1. If the network contains reversible reactions, the objective function of prob-
lem (6) is potentially problematic because the directions of reversible reactions (signs of their
fluxes) are unknown, while gene expression is always positive as shown in Fig B-(a) in S1 File.
We therefore decomposed each reversible reaction j into two positive irreversible reactions, the

forward reaction, vfj , and the backward reaction, v
b
j , where vj ¼ vfj � vbj , and v

f
j ; v

b
j � 0 (Fig B-

(b) in S1 File). Let us assume without loss of generality that reactions 1,. . .,n − r are irreversible,
while reactions n – r + 1,. . .,n are reversible, and that all irreversible reactions are defined in
the forward reactions (i.e. their fluxes are non-negative). Then, instead of problem (6), we
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solve:

max
�v � �g

k�vkk�gk ¼
Pn�r

k¼1 vkgk þ
Pn

k¼n�rþ1 v
f
k gk þ

Pn
k¼n�rþ1 v

b
kgk

k�vkk�gk ð7Þ

subject to

�S�v ¼ 0

v � 0

vf � 0

vb � 0

8>>>><
>>>>:

where �v ¼ ½virr vf vb�T ¼ ½v1 � � � vn�r vfn�rþ1 � � � vfn vbn�rþ1 � � � vbn�T , �g ¼ ½girr grev grev�T ¼
½g1 � � � gn�r gn�rþ1 � � � gn gn�rþ1 � � � gn�T , �S ¼ ½Sirr Srev �Srev�, Sirr is the submatrix consisting
of the first n – r columns of S, and Srev is the submatrix consisting of columns n – r + 1 to n of
S. Solving this optimization problem is computationally inefficient since the form of the objec-
tive function is nonlinear. However, this problem can be converted to an equivalent semi-defi-
nite programming problem (8):

max �v � �g ð8Þ

subject to

�S�v ¼ 0

0 � �v

k�vk2 � 1

8><
>:

This is the second method we propose, which we call "SPOT" (Simplified Pearson cOrrela-
tion with Transcriptomic data). SPOT can be used when biomass flux is not an appropriate
optimization objective. The conversion of optimization problem (7) to SPOT (8) is based on a
few steps of justification.

First, the maximum Pearson product-moment correlation is not dependent on the length of
the flux vector, �v (see Fig B-(c) and Supplementary Methods in S1 File). Thus, the norm of �v
can be ignored in the objective function. Since the norm of �g is a constant that only affects the
objective value, not the optimal flux distribution, it was also removed in the objective function.
Lastly, to avoid the situation where the maximum value of �v � �g goes to infinity, the norm of �v
was constrained to an arbitrary number, in this case, 1.

The optimization problem described in Eq 7 can be simplified to SPOT only if the maxi-
mum correlation is independent of the length of the flux vector, �v . This is true provided the
allowable flux solution space includes the origin, which is indeed the case. Fig B-(d) in S1 File
explains this geometrically. The solution of (8) is unique (see Supplementary Methods in S1
File for the proof).

Transcriptomic data are used to constrain fluxes in the model for E-Flux2, and they are
used to define the objective function for SPOT. The process of making a choice between
E-Flux2 and SPOT is described in the flow chart in Fig 1.

If we know the cell's carbon source, we use the DC (determined carbon source) template
model which has a negative infinity value on the lower bound of the known carbon source
uptake reaction. Otherwise, we use the AC (all possible carbon sources) model which allows all
carbon sources in the model to be taken up by the cell. If the biomass composition of the cell is
known and the maximization of biomass flux is a suitable objective function, E-Flux2 (E-Flux
method and minimization of l2norm) can be used. Otherwise, we can use SPOT (Simplified
Pearson cOrrelation with Transcriptomic data).

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 12 / 22



Validation of the predictive accuracy of the algorithm using the
measured fluxes
The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson
product-moment correlation between in silico fluxes and corresponding 13C-determined in
vivo intracellular fluxes, that is

vp � vm
kvpkkvmk

ð9Þ

where vp and vm are the predicted and measured vectors of intracellular fluxes, respectively,
and k�k denotes the l2 norm. The uncentered Pearson correlation is a good metric of the perfor-
mance of flux inference methods because these methods allow determination of fluxes only
within an unknown scale factor. A value of the correlation coefficient close to +1 or -1 indicates
a strong positive or negative linear relationship between vp and vm, respectively. A value of 0
indicates no linear relationship [56].

We found that some of the measured fluxes are not directly matched with predicted fluxes
of the model in a 1-to-1 relationship since the reactions described in the model are more
detailed. Like the GPR association relationships that were used to match genes with corre-
sponding reactions, we identified OR or AND relationships between predicted fluxes (Fig
A-(c) and A-(d) in S1 File). If a measured reaction corresponds to the set of consecutive
reactions in the model that are linked with intermediate metabolites (AND relationship, Fig
A-(c) in S1 File), then the minimum flux value—the slowest reaction rate—among those pre-
dicted fluxes was used to calculate correlation with the corresponding measured flux since the
rate of a reaction with several steps is determined by the slowest step, which is known as the
rate-limiting step in chemical kinetics [57]. If a measured flux corresponds to multiple identical
reactions (OR relationship, Fig A-(d) in S1 File), the sum of those predicted fluxes was used
to calculate the correlation since the rate of a reaction would be faster, that is, would have
greater flux value, as the number of reactions that can perform an identical chemical conver-
sion increases.

The reactions whose measured fluxes were used to calculate the correlation for each dataset
are shown in S2 Dataset. It should be noted that our validation is directly based only on these
reactions and, in general, they belong to central carbon metabolic pathways. We hypothesize
that our flux predictions for other reactions (e.g., reactions in secondary metabolism) are likely
also to be good, given the interconnected nature of metabolism, but our data do not allow us to
directly test this hypothesis. Another thing to note is that all data were gathered from cells
grown on glucose. There are, therefore, significant similarities among all the measured flux dis-
tributions, and indeed, it is possible to find a single flux distribution for E. coli and a single flux
distribution for S. cerevisiae that each achieve high correlations with the measured data in each
organism (data not shown). Nevertheless, the dataset we have gathered is the largest and most
comprehensive dataset that currently exists for validating methods of predicting intracellular
fluxes from transcriptomic data. We expect that the high correlations obtained by E-Flux2 and
SPOT will generalize beyond E. coli and S. cerevisiae growing on glucose, given how their
underlying optimizations reflect our general understanding of the relationship between meta-
bolic flux and gene expression, but we cannot conclude this without additional data. In particu-
lar, coupled trascriptomic and fluxomic data obtained in organisms under very different
conditions (e.g., organisms growing photoautotrophically or organisms under non-growth
conditions) would help significantly in establishing the generality of our method.
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Algorithm implementation of our methods
All methods in this study initially implemented in MATLAB (The Mathworks, Inc., Natick,
Mass.). These were tested using MATLAB R2013b with Gurobi Optimizer 5.6 (Gurobi Optimi-
zation, Inc., Houston, Texas). SBMLToolbox was used to convert an SBML (Systems Biology
Markup Language) model into a MATLAB data structure [58]. Computations were carried out
on the Window 8 platform using a personal computer with an Intel Core i5 3.10 GHz processor
with 8 GB of RAM. E-Flux2 and SPOT methods are also implemented in a freely downloadable
software package called MOST (Metabolic Optimization and Simulation Tool) which is avail-
able at http://most.ccib.rutgers.edu/ whose source code is open to the public [59].

Results and Discussion

Validation of the accuracy of our predictions against measured
intracellular fluxes
The Pearson correlation between the predicted and the measured intracellular fluxes was calcu-
lated to validate the predictive accuracy of our method. All correlation values used to draw fig-
ures and tables are summarized in S2 Table. The correlation values were grouped into four
different cases depending on the availability of carbon source or objective function informa-
tion. Biomass flux and glucose were used as the known objective function and the known car-
bon source in this study. The bold number in each category of the table presents the average
correlation of 11 samples in E. coli and 9 samples in S. cerevisiae. The number on the right side
of the plus minus sign indicates its standard deviation.

As summarized in Table 3, overall, the predicted fluxes of our method showed good correla-
tion with the measured fluxes both in E. coli and S. cerevisiae. The result implies that our
method can predict the measured intracellular fluxes best when we have knowledge of both

Table 3. Validation of the accuracy of our predictions against measured intracellular fluxes.

Known C source (glucose, in this case) Unknown C source

Known objective
function (biomass, in
this case)

Standard FBA1) pFBA1) FBA+min l2 DC+E-Flux1) Our method
(DC+E-Flux2)

AC+E-Flux1) Our method
(AC+E-Flux2)

Known C uptake rate Unknown C uptake rate

0.7952 ± 0.2317
[0.4965, 0.8516]

0.8337 ±
0.1800

0.8106 ±
0.1740

0.7829 ± 0.1307
[0.3506, 0.9223]

0.8683 ± 0.0964 0.4516 ± 0.2343
[0.0027, 0.8625]

0.6733 ±
0.1349

Unknown objective
function

DC+Lee et al. Our method (DC+SPOT) AC+Lee et al. Our method
(AC+SPOT)

0.5792 ± 0.3642 0.8030 ± 0.0342 0.1257 ± 0.1268 0.5927 ±
0.0974

The Pearson correlation between the predicted and the measured intracellular fluxes was calculated to validate the predictive accuracy of our method.

The correlation values were grouped into four different cases depending on the availability of carbon source or objective function information. The bold

number in each category of the table presents the average correlation of 11 samples in E. coli and 9 samples in S. cerevisiae. The number to the right of

the ± indicates its standard deviation. Since the fluxes predicted by standard FBA, pFBA and E-Flux are not unique, the output flux obtained using our

specific implementation was used to calculate the average correlation. For FBA and E-Flux solutions, the minimum and the maximum correlations

between predicted fluxes and the measured fluxes that each method can theoretically achieve are given within square brackets after their average

correlations. The way that we calculated the possible range of correlations of each method is described in Supplementary Methods in S1 File. Note that

the maximum possible correlation can be calculated only when we already have the measured flux datasets. There is no way to force each method to

produce a metabolic flux distribution that achieves the best correlation with the measured fluxes. Our methods, E-Flux2 and SPOT, were developed during

the process of testing various strategies for producing unique flux distributions and identifying those that achieve good correlation on average with

measured fluxes.
1) metabolic flux distributions produced by these methods—FBA, pFBA, E-Flux- are not unique

doi:10.1371/journal.pone.0157101.t003
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carbon source and objective function (DC+E-Flux2, average correlation: 0.8683). Our algo-
rithm is able to predict intracellular metabolic fluxes with a good correlation if the information
on either biomass objective or carbon source is unknown as we can see in the category of DC
+SPOT (average correlation: 0.8030), and AC+E-Flux2 (average correlation: 0.6733). In the
case where there is no information on both carbon source and biomass objective, our AC
+SPOT method allows us to predict intracellular metabolic fluxes with an average correlation
of 0.5927. Although this value is weaker than those of the other three cases of our method, a
Pearson correlation coefficient around 0.6 nevertheless represents moderate positive correla-
tion [60].

To see whether the good or modest correlation value between predicted and measured fluxes
in each case is because of a good correlation between transcripts and measured fluxes itself, we
also calculated the correlation between gene expression data andmeasured fluxes. When calculat-
ing the correlation with gene expression data, we used the absolute values of measured metabolic
fluxes since gene expression values are always positive, while we used the signed measured fluxes
when calculating the correlations with predicted fluxes. The correlation between gene expression
data and the absolute values of the measured fluxes was 0.4923 (standard deviation: 0.2900),
which is weaker than all of the correlations between the predicted fluxes and the measured fluxes.
Although this value cannot be directly compared with correlations within the table (since they
are calculated differently), this relatively poor correlation between gene expression data and the
measured fluxes, given as a point of comparison, suggests that the correlation is improved by
incorporating the gene expression data into a genome scale model.

Comparison of correlation with competing methods
Using the same transcriptomic and fluxomic datasets, we compared the accuracy of our predic-
tions with other competing methods. We chose to compare against E-Flux [27,28] and the
approach of Lee et al. [61], which are representative of competing methods which use a single
transcriptomic dataset for an analysis without thresholds. Moreover, these two methods were
compared against other methods of a similar nature including GIMME [24] and iMAT [23,25],
and showed better performance in predicting exometabolome fluxes [61] or in robustness anal-
ysis [19]. For the Lee et al. method, we used an implementation provided with the original
publication.

In all four scenarios with varying availability of carbon source or biomass objective informa-
tion, our method outperformed existing methods in that it showed a higher average correlation
with a smaller standard deviation (Table 3). Particularly when the carbon source is known but
the biological objective is unknown, the Lee et al. method gives better predictions in E. coli
(average correlation: 0.8887) but worse predictions in yeast (average correlation: 0.2009) than
our method (DC+SPOT) whose average correlation is 0.7960 and 0.8117 in E. coli and in yeast,
respectively (S2 Table). Unlike a prokaryote model such as iJO1366, a eukaryote model such as
Yeast 5 is compartmentalized into organelles (e.g. mitochondria, peroxisomes, lysosomes, ER,
and nucleus). As can be seen in S2 Dataset, the set of measured intracellular fluxes that were
used for validation includes inter-organelle transport reactions such as pyruvate transport
between cytoplasm and mitochondria where the incorrect predictions of the Lee et al. method
mainly occurred. Considering the importance of compartmentalization in eukaryotic meta-
bolic models [62], our method seems to be more desirable to study more complex systems
since it is less influenced by whether the model is compartmentalized or not.

We also have carried out standard FBA and parsimonious FBA (pFBA) for reference [54].
pFBA was performed using the COBRA Toolbox [63]. Since standard FBA and pFBA require a
priori information on several specific fluxes such as sugar (e.g. glucose) uptake rate and oxygen
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exchange rate, these fluxes were set according to the experimental conditions described in the
four papers where the transcriptomic and fluxomic data sets were obtained. Simulating anaero-
bic growth with Yeast 5 requires the simulated medium to be supplemented with phosphadiate
and sterols and modification of the biomass definition [40]. Due to inconsistency with the
experimental condition, we could not evaluate the performance of standard FBA and pFBA in
the 0% oxygen condition of the Rintalta et al. dataset (S2 Table).

Since standard FBA and pFBA need both carbon source and objective function information,
their correlations can be compared with those of E-Flux and E-Flux2 in Table 3. Our method
(0.8683, SD: 0.0964) performs better than standard FBA (0.7952, SD: 0.2317) and pFBA
(0.8337, SD: 0.1800) in terms of both the correlation and the standard deviation. In the previ-
ous study by Machado and Herrgård [19], pFBA has been shown to have a higher overall pre-
dictive capability over various methods that integrate gene expression data, which casts doubt
on the necessity of utilizing transcriptomic data in constraint-based modeling. Our result, how-
ever, suggests that integration of gene expression data can be used to improve flux distribution
predictions, particularly when the carbon and oxygen uptake rates are unknown.

Importantly, the result predicted by our method is unique. The Lee et al. method also pro-
duces a unique solution using geometric FBA [32], which identifies the center of a solution
space. Since halfway between infinity and zero or between plus and negative infinity is not
defined, we set lower and upper bounds of the models to either zero or ±1000 (1000 is chosen
as an arbitrary, large number) to run the Lee et al. method. For standard FBA and E-flux,
which do not necessarily produce a unique flux distribution, and can produce flux distributions
within a set of possibilities, the possible range of correlation (from the minimum to the maxi-
mum) between the measured fluxes and the predicted fluxes was calculated, which is presented
within square brackets next to the average correlation. The calculation of these ranges is
described in Supplementary Methods in S1 File. pFBA also does not necessarily produce a
unique flux distribution (as discussed in Methods), but calculation of the possible range of cor-
relation is complex, and we have therefore omitted it.

In addition, we performed FBA along with the minimization of l2 norm (Table 3, denoted as
FBA+min l2). It also showed good correlation with measured fluxes (0.8106, SD: 0.1740).
When knowledge of uptake rates is available, the FBA+min l2method is a good alternative to
pFBA, since it is easier to implement and produces a unique metabolic flux distribution.

Detailed quantitative features of the predicted fluxes
In addition to calculating correlations, we examined how the predicted and the measured met-
abolic flux distribution visually compare to each other. Since the predicted flux of our method
has an arbitrary unit, the magnitudes of the predicted fluxes were normalized by the Euclidean
norm of the measured flux vector for comparison. The results are shown in Fig 2 and Fig C in
S1 File for E. coli and S. cerevisiae, respectively. The x-axis represents a set of metabolic reac-
tions used to calculate correlation between the measured and the predicted fluxes, and the y-
axis indicates flux value. The scale and the units on the y-axis are based on those of the mea-
sured flux. The reactions are grouped functionally based on the pathways in which they are
participating such as glycolysis and the tricarboxylic acid cycle. As can be seen in the figure, the
predicted and the measured metabolic flux distribution look similar to each other when the
correlation between them is high. We see moreover that AC+SPOT predicts negative fluxes for
some reactions which are supposed to be positive, which might explain one of the reasons why
the method shows relatively poor correlation compared to the other three methods (DC+-
E-Flux2, AC+E-Flux2, and DC+SPOT). Based on this observation, possible ways to improve
the correlation of AC+SPOT will be discussed in the following section.
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Test of our methods on previous models of E. coli and S. cerevisiae
E. coli and S. cerevisiae are two of the most intensively studied model microorganisms. On the
other hand, genome-scale metabolic models of many other organisms are still incomplete.
Thus, it is important to examine the applicability of our methods to relatively incomplete mod-
els before applying our methods to other organisms. One of the ways to test this is by running
our methods on older models of E. coli and S. cerevisiae that are relatively incomplete. Using
the same transcriptomic and fluxomic datasets, we tested our methods on older models of E.
coli (iJR904 and iAF1260) and of S. cerevisiae (iND750 and iMM904), and the results obtained
are shown in Fig 3. In this figure, the x-axis represents the four different optimization strategies
(denoted as DC+E-Flux2, AC+E-Flux2, DC+SPOT and AC+SPOT) and the y-axis identifies
the average Pearson correlation coefficient between the predicted fluxes and the measured
fluxes of E. coli (Fig 3A) and S. cerevisiae (Fig 3B). Each optimization strategy consists of a
group of three bars among which the blue, red, and green bars indicate the average correlation
of the oldest, middle, and newest models. Error bars represent the standard error of the mean
(SEM).

In case of E. coli (Fig 3A), the two recent models (iAF1260 and iJO1366) showed better aver-
age correlation than the oldest model (iJR904) in most cases. We found that there is little differ-
ence in the average correlation between iAF1260 and iJO1366.

In the case of S. cerevisiae (Fig 3B), the newest model (Yeast 5) achieves a correlation that is
essentially as good as or better than earlier models (iND750 and iMM904) when the carbon
source is known (DC+E-Flux2 and DC+SPOT). Unlike the E. coli case, however, the newest
yeast model performs worse than the older models when carbon source of a yeast cell is
unknown, especially for AC+SPOT. To understand why, we explored the hypothesis that the
reason for the poor performance of Yeast5 is because of the larger number of carbon sources
(see Fig E in S1 File for details). Although we could not fully identify the reason, it seems that
the larger number of carbon sources has something to do with its decrease performance, but is
certainly not the whole story. A different degree of interconnectivity among intracellular and
exchange reactions inherent to each model or other unknown factors (e.g. thermodynamically
infeasible cycles and dead-end metabolites that are unintentionally added to a newer model)
may also play a role.

Except for iJR904 in E. coli, DC+E-Flux2 showed the highest average correlation (between
0.8 and 0.9) in both microorganisms. Thus, if we study an organism where information on
both carbon source and objective function is known, applying DC+E-Flux2 is recommended.

Interestingly, DC+SPOT (known carbon source and unknown objective function) shows
steady and constant average correlation between 0.7 and 0.8 in both E. coli and S. cerevisiae
regardless of which model was used. The method seems to be the least influenced by incom-
pleteness of the model. Thus, DC+SPOT is useful for predicting intracellular metabolic flux
distribution in less well-studied organisms.

Measurement of the speed of our methods
From a practical perspective, short running time is a desirable characteristic. Thus, we
measured the running time of our algorithm for all 80 samples (4 optimization strategies
and 20 samples per strategy) using the built-in MATLAB function, profile. The execution
time for our method is illustrated in Fig D in S1 File. Regardless of which simulation strat-
egy is used, our method, including mapping the transcriptomic data, solving the optimiza-
tion problem, predicting the intracellular metabolic flux distribution and calculating the
correlation with the measured fluxes, can be performed within two seconds for both
microorganisms.
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Implementation of our methods in a user-friendly interface
As an ultimate representation of the cellular metabolic phenotype, metabolic fluxes provide
important information to understand the functioning of cellular processes [5]. Our methods
which allow to quickly and easily determine metabolic fluxes from gene expression data, thus,
will be of interest to a wide audience in various biological fields. For possible users of our
method especially who are not skilled in computer programming, we implemented E-Flux2
and SPOT in an intuitive user-friendly interface called MOST to make our methods viable to
all researchers regardless of whether they are trained in computer science or not. MOST (Meta-
bolic Optimization and Simulation Tool, http://most.ccib.rutgers.edu/) is an open source-
based software package for constraint-based modeling [59]. It provides Excel-like editing func-
tionality as well as supports Systems Biology Markup Language (SBML) and Comma Separated
Value (CSV) files. How to run our E-Flux2 and SPOT in MOST is described in S2 File.

Conclusions
In this study, we developed a computational method to infer intracellular fluxes from tran-
scriptomic data using genome-scale models, which satisfies desirable features summarized in
Table 1. On top of that, the predictive accuracy of our method was validated against measured
intracellular fluxes, and we found it to be more accurate than existing methods.

Our method can also be easily applied to study the metabolic flux distributions of various
engineered strains with little or no modification to genome-scale models since transcriptomic
data themselves reflect knock-outs, knock-ins (with addition of metabolic reactions into the
model that correspond to the knocked-in gene), induced-amplification or induced-repression
of metabolic genes. In addition, E-Flux2 is flexible in that if there is an alternative objective to
maximizing growth rate that is considered more applicable to a certain organism, then the bio-
mass flux used in the first optimization step of E-Flux2 can be replaced with this objective
function.

The multiple advantages of our method make it a useful tool for identifying fundamental
mechanisms of metabolic responses and finding molecular targets for metabolic engineering.
For instance, by using this tool with a set of gene expression data measured over a time course,
we can determine how intracellular metabolic flux changes and where significant redirection
occurs. Our method is available in a user-friendly, open source-based software package called
MOST (http://most.ccib.rutgers.edu/).

Supporting Information
S1 Dataset. Genome scale metabolic models used in this study. Three E. colimodels (iJR904
[42], iAF1260 [41], and iJO1366 [39]) and three S. cerevisiaemodels (iND750 [44], iMM904
[43], and Yeast 5 [40]) used in this study are provided in Systems Biology Markup Language
(SBML) format. Both DC and AC versions of each model are available.
(ZIP)

S2 Dataset. Transcriptomic and fluxomic data used for this study. The transcriptomic and
the fluxomic data sets that were used in this study can be found in the first four sheets of this
Excel file and on the fifth sheet, respectively.
(XLS)

S3 Dataset. MATLAB code that implements our method. Instructions on using it with the
dataset of Ishii et al. can be found in README.doc. The source code written in Java is also
available (see S2 File for details). This MATLAB code includes calculation of the Pearson
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correlation with measured flux data.
(ZIP)

S1 File. Supplementary figures and methods. This file contains five Supplementary figures
(Fig A. Schematic overview of this study, Fig B. Rationale for the SPOT method, Fig C. Com-
parison of the predicted fluxes with the measured fluxes of S. cerevisiae data, Fig D. Average
running time of our algorithm, Fig E. Exploration of the way to improve a poor performance of
Yeast 5 in AC+SPOT) and three supplementary methods (A mathematical justification for
dropping the kvk term in the objective function of SPOT, A mathematical proof of the unique-
ness of SPOT solutions, Calculation of the possible range of correlation between the measured
fluxes and the predicted fluxes).
(PDF)

S2 File. Tutorial on how to run E-Flux2 and SPOT in MOST. E-Flux2 and SPOT are imple-
mented in the open source package MOST (http://most.ccib.rutgers.edu/). This document cov-
ers information on how to reproduce our results in MOST using the model files and
transcriptomic data that are provided as Datasets S1 and S2.
(DOC)

S1 Table. List of potential carbon source uptake reactions in E. coli and S. cerevisiaemod-
els. The lower flux bounds of these reactions were relaxed to -Inf to construct AC template
models for each microorganism (i.e. to simulate the condition where knowledge of carbon
source is unavailable).
(XLS)

S2 Table. Detailed correlation values for tables and figures. All the Pearson correlation val-
ues between predicted fluxes of our method and measured fluxes, that are used for producing
Table 3 and Fig 3, are summarized.
(XLS)

S3 Table. Common exchange reactions of the possible carbon sources across three yeast
models. Total 106 exchange reactions that are common across all three yeast models (iND750,
iMM904, and Yeast 5) were identified to test the hypothesis that the number of carbon source
uptake reactions affects the performance of the models.
(XLS)

Acknowledgments
The authors thank Dr. Benedetto Piccoli (Rutgers University, USA) for his mathematical help
in proving the uniqueness of SPOT solutions. We thank Dr. Caroline Colijn (Imperial College
London, UK) and Dr. Kuhn Ip (Rutgers University, USA; University of South Australia, Aus-
tralia) for inspirational discussions. This work was supported in part by the Samsung
Advanced Institute of Technology (SAIT) through the Samsung Global Research Outreach
(GRO) program.

Author Contributions
Conceived and designed the experiments: DSL MKK. Performed the experiments: MKK. Ana-
lyzed the data: MKK. Contributed reagents/materials/analysis tools: AL JJK DSL MKK. Wrote
the paper: MKK DSL.

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157101.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157101.s005
http://most.ccib.rutgers.edu/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157101.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157101.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157101.s008


References
1. Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metab Eng. 1999; 1: 1–11. doi: 10.

1006/mben.1998.0101 PMID: 10935750

2. Wiechert W. 13Cmetabolic flux analysis. Metab Eng. 2001; 3: 195–206. doi: 10.1006/mben.2001.0187
PMID: 11461141

3. Zamboni N, Fendt S-M, Ruhl M, Sauer U. 13C-based metabolic flux analysis. Nat Protoc. 2009; 4: 878–
892. doi: 10.1038/nprot.2009.58 PMID: 19478804

4. Beurton-Aimar M, Beauvoit B, Monier A, Vallée F, Dieuaide-Noubhani M, Colombié S. Comparison
between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant
cells. BMC Syst Biol. 2011; 5: 95. doi: 10.1186/1752-0509-5-95 PMID: 21682932

5. Nielsen J. It is all about metabolic fluxes. J Bacteriol. 2003; 185: 7031–7035. doi: 10.1128/JB.185.24.
7031–7035.2003 PMID: 14645261

6. Kim MK, Lun DS. Methods for integration of transcriptomic data in genome-scale metabolic models.
Comput Struct Biotechnol J. 2014; 11: 59–65. doi: 10.1016/j.csbj.2014.08.009 PMID: 25379144

7. Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006; 2: 62. doi: 10.
1038/msb4100109 PMID: 17102807

8. Dieuaide-Noubhani M, Alonso AP. Application of metabolic flux analysis to plants. Methods Mol Biol.
2014; 1090: 1–17. doi: 10.1007/978-1-62703-688-7-1 PMID: 24222406

9. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010; 28: 245–248. doi:
10.1038/nbt.1614 PMID: 20212490

10. Price ND, Reed JL, Palsson BØ. Genome-scale models of microbial cells: evaluating the conse-
quences of constraints. Nat Rev Microbiol. 2004; 2: 886–897. doi: 10.1038/nrmicro1023 PMID:
15494745

11. ZhangW, Li F, Nie L. Integrating multiple “omics” analysis for microbial biology: application and meth-
odologies. Microbiology. 2010; 156: 287–301. doi: 10.1099/mic.0.034793–0 PMID: 19910409

12. Palsson B. In silico biology through “omics”. Nat Biotechnol. 2002; 20: 649–650. doi: 10.1038/nbt0702-
649 PMID: 12089538

13. Hoppe A. What mRNA Abundances Can Tell us about Metabolism. Metabolites. 2012. pp. 614–631.
doi: 10.3390/metabo2030614 PMID: 24957650

14. Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC
Biol. 2011; 9: 34. doi: 10.1186/1741-7007-9-34 PMID: 21627854

15. Blazier AS, Papin JA. Integration of expression data in genome-scale metabolic network reconstruc-
tions. Frontiers in Physiology. 2012. doi: 10.3389/fphys.2012.00299

16. Reed JL. Shrinking the Metabolic Solution Space Using Experimental Datasets. PLoS Computational
Biology. 2012. p. e1002662. doi: 10.1371/journal.pcbi.1002662 PMID: 22956899

17. Hyduke DR, Lewis NE, Palsson BØ. Analysis of omics data with genome-scale models of metabolism.
Mol Biosyst. 2013; 9: 167–74. doi: 10.1039/c2mb25453k PMID: 23247105

18. Saha R, Chowdhury A, Maranas CD. Recent advances in the reconstruction of metabolic models and
integration of omics data. Curr Opin Biotechnol. 2014; 29C: 39–45. doi: 10.1016/j.copbio.2014.02.011

19. Machado D, Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into
constraint-based models of metabolism. PLoS Comput Biol. 2014; 10: e1003580. doi: 10.1371/journal.
pcbi.1003580 PMID: 24762745

20. Joyce A, Palsson B, Joyce AR, Palsson BØ. The model organism as a system: integrating “omics” data
sets. Nat Rev Mol Cell Biol. 2006; 7: 198–210. doi: 10.1038/nrm1857 PMID: 16496022

21. Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regula-
tory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2010;
107: 17845–17850. doi: 10.1073/pnas.1005139107 PMID: 20876091

22. Jensen PA, Papin JA. Functional integration of a metabolic network model and expression data without
arbitrary thresholding. Bioinformatics. 2011; 27: 541–547. doi: 10.1093/bioinformatics/btq702 PMID:
21172910

23. Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010; 26:
3140–3142. doi: 10.1093/bioinformatics/btq602 PMID: 21081510

24. Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS
Comput Biol. 2008; 4: e1000082. doi: 10.1371/journal.pcbi.1000082 PMID: 18483554

25. Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E. Network-based prediction of human tissue-
specific metabolism. Nat Biotechnol. 2008; 26: 1003–1010. doi: 10.1038/nbt.1487 PMID: 18711341

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 20 / 22

http://dx.doi.org/10.1006/mben.1998.0101
http://dx.doi.org/10.1006/mben.1998.0101
http://www.ncbi.nlm.nih.gov/pubmed/10935750
http://dx.doi.org/10.1006/mben.2001.0187
http://www.ncbi.nlm.nih.gov/pubmed/11461141
http://dx.doi.org/10.1038/nprot.2009.58
http://www.ncbi.nlm.nih.gov/pubmed/19478804
http://dx.doi.org/10.1186/1752-0509-5-95
http://www.ncbi.nlm.nih.gov/pubmed/21682932
http://dx.doi.org/10.1128/JB.185.24.7031&ndash;7035.2003
http://dx.doi.org/10.1128/JB.185.24.7031&ndash;7035.2003
http://www.ncbi.nlm.nih.gov/pubmed/14645261
http://dx.doi.org/10.1016/j.csbj.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25379144
http://dx.doi.org/10.1038/msb4100109
http://dx.doi.org/10.1038/msb4100109
http://www.ncbi.nlm.nih.gov/pubmed/17102807
http://dx.doi.org/10.1007/978-1-62703-688-7-1
http://www.ncbi.nlm.nih.gov/pubmed/24222406
http://dx.doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
http://dx.doi.org/10.1038/nrmicro1023
http://www.ncbi.nlm.nih.gov/pubmed/15494745
http://dx.doi.org/10.1099/mic.0.034793&ndash;0
http://www.ncbi.nlm.nih.gov/pubmed/19910409
http://dx.doi.org/10.1038/nbt0702-649
http://dx.doi.org/10.1038/nbt0702-649
http://www.ncbi.nlm.nih.gov/pubmed/12089538
http://dx.doi.org/10.3390/metabo2030614
http://www.ncbi.nlm.nih.gov/pubmed/24957650
http://dx.doi.org/10.1186/1741-7007-9-34
http://www.ncbi.nlm.nih.gov/pubmed/21627854
http://dx.doi.org/10.3389/fphys.2012.00299
http://dx.doi.org/10.1371/journal.pcbi.1002662
http://www.ncbi.nlm.nih.gov/pubmed/22956899
http://dx.doi.org/10.1039/c2mb25453k
http://www.ncbi.nlm.nih.gov/pubmed/23247105
http://dx.doi.org/10.1016/j.copbio.2014.02.011
http://dx.doi.org/10.1371/journal.pcbi.1003580
http://dx.doi.org/10.1371/journal.pcbi.1003580
http://www.ncbi.nlm.nih.gov/pubmed/24762745
http://dx.doi.org/10.1038/nrm1857
http://www.ncbi.nlm.nih.gov/pubmed/16496022
http://dx.doi.org/10.1073/pnas.1005139107
http://www.ncbi.nlm.nih.gov/pubmed/20876091
http://dx.doi.org/10.1093/bioinformatics/btq702
http://www.ncbi.nlm.nih.gov/pubmed/21172910
http://dx.doi.org/10.1093/bioinformatics/btq602
http://www.ncbi.nlm.nih.gov/pubmed/21081510
http://dx.doi.org/10.1371/journal.pcbi.1000082
http://www.ncbi.nlm.nih.gov/pubmed/18483554
http://dx.doi.org/10.1038/nbt.1487
http://www.ncbi.nlm.nih.gov/pubmed/18711341


26. Song H-S, Reifman J, Wallqvist A. Prediction of metabolic flux distribution from gene expression data
based on the flux minimization principle. PLoS One. 2014; 9: e112524. doi: 10.1371/journal.pone.
0112524 PMID: 25397773

27. Brandes A, Lun DS, Ip K, Zucker J, Colijn C, Weiner B, et al. Inferring Carbon Sources from Gene
Expression Profiles Using Metabolic Flux Models. PLoS ONE. 2012. p. e36947. doi: 10.1371/journal.
pone.0036947 PMID: 22606312

28. Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting expression data with
metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput
Biol. 2009; 5: e1000489. doi: 10.1371/journal.pcbi.1000489 PMID: 19714220

29. Pramanik J, Keasling JD. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-
rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng. 1997;
56: 398–421. doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J PMID:
18642243

30. Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010; 13: 344–349. doi:
10.1016/j.mib.2010.03.003 PMID: 20430689

31. Raman K, Chandra N. Flux balance analysis of biological systems: applications and challenges. Brief
Bioinform. 2009; 10: 435–449. doi: 10.1093/bib/bbp011 PMID: 19287049

32. Smallbone K, Simeonidis E. Flux balance analysis: A geometric perspective. J Theor Biol. 2009; 258:
311–315. doi: 10.1016/j.jtbi.2009.01.027 PMID: 19490860

33. Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wüthrich K, Hohmann H-P, et al. Intracellular car-
bon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
Appl Environ Microbiol. 2002; 68: 1760–1771. doi: 10.1128/AEM.68.4.1760–1771.2002 PMID:
11916694

34. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, et al. Multiple high-throughput analyses
monitor the response of E. coli to perturbations. Science. 2007; 316: 593–597. doi: 10.1126/science.
1132067 PMID: 17379776

35. Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, et al. Metabolic and transcriptional
response to cofactor perturbations in Escherichia coli. J Biol Chem. 2010; 285: 17498–17506. doi: 10.
1074/jbc.M109.095570 PMID: 20299454

36. Rintala E, Toivari M, Pitkänen J-P, Wiebe MG, Ruohonen L, Penttilä M. Low oxygen levels as a trigger
for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMCGenomics. 2009; 10:
461. doi: 10.1186/1471-2164-10-461 PMID: 19804647

37. Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, et al. Oxygen dependence of
metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol.
2008; 2: 60. doi: 10.1186/1752-0509-2-60 PMID: 18613954

38. Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S. A comparative transcriptomic,
fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in
NADPH oxidation. BMCGenomics. 2012. p. 317. doi: 10.1186/1471-2164-13-317 PMID: 22805527

39. Orth JD, Conrad TM, Na J, Lerman JA, NamH, Feist AM, et al. A comprehensive genome-scale recon-
struction of Escherichia coli metabolism—2011. Molecular Systems Biology. 2011. doi: 10.1038/msb.
2011.65

40. Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP. Yeast 5—an expanded reconstruction of
the Saccharomyces cerevisiae metabolic network. BMC Syst Biol. 2012; 6: 55. doi: 10.1186/1752-
0509-6-55 PMID: 22663945

41. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic
information. Mol Syst Biol. 2007; 3: 121. doi: 10.1038/msb4100155 PMID: 17593909

42. Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-
12 (iJR904 GSM/GPR). Genome Biol. 2003; 4: R54. doi: 10.1186/gb-2003-4-9-r54 PMID: 12952533

43. MoML, Palsson BO, Herrgård MJ. Connecting extracellular metabolomic measurements to intracellular
flux states in yeast. BMC Syst Biol. 2009; 3: 37. doi: 10.1186/1752-0509-3-37 PMID: 19321003

44. Duarte NC, Herrgård MJ, Palsson BØ. Reconstruction and validation of Saccharomyces cerevisiae
iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004; 14: 1298–
1309. doi: 10.1101/gr.2250904 PMID: 15197165

45. WuH, Kerr M, Cui X, Churchill G, Yang H. MAANOVA: A Software Package for the Analysis of Spotted
cDNAMicroarray Experiments. . . . data: methods and software. 2003. pp. 313–341. doi: 10.1007/0-
387-21679-0_14

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 21 / 22

http://dx.doi.org/10.1371/journal.pone.0112524
http://dx.doi.org/10.1371/journal.pone.0112524
http://www.ncbi.nlm.nih.gov/pubmed/25397773
http://dx.doi.org/10.1371/journal.pone.0036947
http://dx.doi.org/10.1371/journal.pone.0036947
http://www.ncbi.nlm.nih.gov/pubmed/22606312
http://dx.doi.org/10.1371/journal.pcbi.1000489
http://www.ncbi.nlm.nih.gov/pubmed/19714220
http://dx.doi.org/10.1002/(SICI)1097-0290(19971120)56:4&lt;398::AID-BIT6&gt;3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/18642243
http://dx.doi.org/10.1016/j.mib.2010.03.003
http://www.ncbi.nlm.nih.gov/pubmed/20430689
http://dx.doi.org/10.1093/bib/bbp011
http://www.ncbi.nlm.nih.gov/pubmed/19287049
http://dx.doi.org/10.1016/j.jtbi.2009.01.027
http://www.ncbi.nlm.nih.gov/pubmed/19490860
http://dx.doi.org/10.1128/AEM.68.4.1760&ndash;1771.2002
http://www.ncbi.nlm.nih.gov/pubmed/11916694
http://dx.doi.org/10.1126/science.1132067
http://dx.doi.org/10.1126/science.1132067
http://www.ncbi.nlm.nih.gov/pubmed/17379776
http://dx.doi.org/10.1074/jbc.M109.095570
http://dx.doi.org/10.1074/jbc.M109.095570
http://www.ncbi.nlm.nih.gov/pubmed/20299454
http://dx.doi.org/10.1186/1471-2164-10-461
http://www.ncbi.nlm.nih.gov/pubmed/19804647
http://dx.doi.org/10.1186/1752-0509-2-60
http://www.ncbi.nlm.nih.gov/pubmed/18613954
http://dx.doi.org/10.1186/1471-2164-13-317
http://www.ncbi.nlm.nih.gov/pubmed/22805527
http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1186/1752-0509-6-55
http://dx.doi.org/10.1186/1752-0509-6-55
http://www.ncbi.nlm.nih.gov/pubmed/22663945
http://dx.doi.org/10.1038/msb4100155
http://www.ncbi.nlm.nih.gov/pubmed/17593909
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://www.ncbi.nlm.nih.gov/pubmed/12952533
http://dx.doi.org/10.1186/1752-0509-3-37
http://www.ncbi.nlm.nih.gov/pubmed/19321003
http://dx.doi.org/10.1101/gr.2250904
http://www.ncbi.nlm.nih.gov/pubmed/15197165
http://dx.doi.org/10.1007/0-387-21679-0_14
http://dx.doi.org/10.1007/0-387-21679-0_14


46. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normali-
zation, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4:
249–264. doi: 10.1093/biostatistics/4.2.249 PMID: 12925520

47. Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, et al. A new non-linear normalization
method for reducing variability in DNAmicroarray experiments. Genome Biol. 2002; 3: research0048.
doi: 10.1186/gb-2002-3-9-research0048

48. Dudley AM, Aach J, Steffen M a, Church GM. Measuring absolute expression with microarrays with a
calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A. 2002;
99: 7554–7559. doi: 10.1073/pnas.112683499 PMID: 12032321

49. Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression profiling. Am
J Obstet Gynecol. 2006; 195: 373–388. doi: 10.1016/j.ajog.2006.07.001 PMID: 16890548

50. Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNAmicroarray
measurements. Trends in Genetics. 2006. pp. 101–109. doi: 10.1016/j.tig.2005.12.005 PMID:
16380191

51. Reimers M. Making informed choices about microarray data analysis. PLoS Comput Biol. 2010; 6: 1–7.
doi: 10.1371/journal.pcbi.1000786

52. Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J. Metabolic flux
analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng. 1996;
50: 299–318. doi: 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B PMID:
18626958

53. Bertsekas D, Nedić A, Ozdaglar A. Convex Analysis and Optimization. Athena Scientific; 2003.

54. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from
evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol.
2010; 6: 390. doi: 10.1038/msb.2010.47 PMID: 20664636

55. Reder C. Metabolic control theory: a structural approach. J Theor Biol. 1988; 135: 175–201. PMID:
3267767

56. Bewick V, Cheek L, Ball J. Statistics review 7: Correlation and regression. Crit Care. 2003; 7: 451–459.
doi: 10.1186/cc2401 PMID: 14624685

57. RayWJ. Rate-limiting step: a quantitative definition. Application to steady-state enzymic reactions. Bio-
chemistry. 1983; 22: 4625–4637. doi: 10.1021/bi00289a003 PMID: 6626520

58. Keating SM, Bornstein BJ, Finney A, Hucka M. SBMLToolbox: an SBML toolbox for MATLAB users.
Bioinformatics. 2006; 22: 1275–1277. doi: 10.1093/bioinformatics/btl111 PMID: 16574696

59. Kelley JJ, Lane A, Li X, Mutthoju B, Maor S, Egen D, et al. MOST: a software environment for con-
straint-based metabolic modeling and strain design. Bioinforma. 2014; doi: 10.1093/bioinformatics/
btu685

60. Taylor R. Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical
Sonography. 1990. pp. 35–39. doi: 10.1177/875647939000600106

61. Lee D, Smallbone K, DunnWB, Murabito E, Winder CL, Kell DB, et al. Improving metabolic flux predic-
tions using absolute gene expression data. BMC Syst Biol. 2012; 6: 73. doi: 10.1186/1752-0509-6-73
PMID: 22713172

62. Klitgord N, SegrèD. The importance of compartmentalization in metabolic flux models: yeast as an eco-
system of organelles. Genome Inform. 2010; 22: 41–55. doi: 10.1142/9781848165786_0005 PMID:
20238418

63. Hyduke D, Hyduke D, Schellenberger J, Que R, Fleming R, Thiele I, et al. COBRA Toolbox 2.0. Protoc
Exch. 2011; 1–35. doi: 10.1038/protex.2011.234

Methods for Inferring Metabolic Fluxes from Transcriptomic Data

PLOS ONE | DOI:10.1371/journal.pone.0157101 June 21, 2016 22 / 22

http://dx.doi.org/10.1093/biostatistics/4.2.249
http://www.ncbi.nlm.nih.gov/pubmed/12925520
http://dx.doi.org/10.1186/gb-2002-3-9-research0048
http://dx.doi.org/10.1073/pnas.112683499
http://www.ncbi.nlm.nih.gov/pubmed/12032321
http://dx.doi.org/10.1016/j.ajog.2006.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16890548
http://dx.doi.org/10.1016/j.tig.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16380191
http://dx.doi.org/10.1371/journal.pcbi.1000786
http://dx.doi.org/10.1002/(SICI)1097-0290(19960505)50:3&lt;299::AID-BIT9&gt;3.0.CO;2-B
http://www.ncbi.nlm.nih.gov/pubmed/18626958
http://dx.doi.org/10.1038/msb.2010.47
http://www.ncbi.nlm.nih.gov/pubmed/20664636
http://www.ncbi.nlm.nih.gov/pubmed/3267767
http://dx.doi.org/10.1186/cc2401
http://www.ncbi.nlm.nih.gov/pubmed/14624685
http://dx.doi.org/10.1021/bi00289a003
http://www.ncbi.nlm.nih.gov/pubmed/6626520
http://dx.doi.org/10.1093/bioinformatics/btl111
http://www.ncbi.nlm.nih.gov/pubmed/16574696
http://dx.doi.org/10.1093/bioinformatics/btu685
http://dx.doi.org/10.1093/bioinformatics/btu685
http://dx.doi.org/10.1177/875647939000600106
http://dx.doi.org/10.1186/1752-0509-6-73
http://www.ncbi.nlm.nih.gov/pubmed/22713172
http://dx.doi.org/10.1142/9781848165786_0005
http://www.ncbi.nlm.nih.gov/pubmed/20238418
http://dx.doi.org/10.1038/protex.2011.234

