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Bioinformatics analysis of SH2D4A in glioblastoma multiforme to 
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Background: Glioblastoma multiforme (GBM) is the most common and aggressive primary brain cancer 
in adults. This study aimed to obtain data on immune cell infiltration based on public datasets and to 
examine the prognostic significance of SH2 domain containing 4A (SH2D4A) for GBM.
Methods: SH2D4A expression in GBM was analyzed using a Tumor Immunity Estimation Resource 
(TIMER) 2.0 dataset, and a gene expression profile interaction analysis (GEPIA), and the results were 
validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The Chinese 
Glioma Genome Atlas (CGGA) dataset was used to assess the effect of SH2D4A on GBM patient survival. 
The SH2D4A co-expression network of the LinkedOmics dataset and GeneMANIA dataset was also 
investigated. Least absolute shrinkage and selection operator (LASSO) regression models and a nomogram 
were constructed to assess the prognosis of GBM patients. A Gene Set Enrichment Analysis (GSEA) was 
performed using The Cancer Genome Atlas (TCGA) dataset to find functional differences. The relationship 
between SH2D4A expression and tumor-infiltrating immune cells was analyzed using xCELL, the Cell 
Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, and the 
TIMER dataset.
Results: We discovered that SH2D4A expression was upregulated in GBM patients, and elevated SH2D4A 
expression was also substantially correlated with tumor grade. The survival curve analysis and multivariate 
Cox regression analysis showed that high SH2D4A expression was a significant independent predictor of 
poor overall survival (OS) in GBM patients. The immunoassay results suggested that altered SH2D4A 
expression may affect the immune infiltration of GBM tissues and thus the survival outcomes of GBM 
patients.
Conclusions: In addition to being a possible prognostic marker and therapeutic target for GBM, SH2D4A 
may also accelerate the progression of GBM.
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Introduction

Glioblastoma multiforme (GBM) is the most common 
and invasive primary brain tumor in adults, with limited 
choice of treatment, and a poor prognosis (1). Despite 
some progress in the standard treatment, which includes 
resection, radiation therapy, and chemotherapy, the median 
survival time of GBM patients is only about 15 months (2). 
Research has shown that the survival of GBM patients is 
affected by individual molecular biomarkers (3). Therefore, 
the identification of the key signaling molecules that 
contribute to GBM tumorigenesis is crucial to improve 
clinical treatment strategies and patient prognosis.

Tumor cell intrinsic genes, especially master transcription 
factors, dictate the initiation, progression, and evolution of 
GBM (4,5). The tumor microenvironment (TME) is made 
up of extracellular matrix (ECM) components, inflammatory 
mediators, mesenchymal cells, and endothelial cells (6,7). 
The two main subtypes of non-tumor components in the 
TME are stromal cells and immune cells, which have been 
shown to be useful for tumor prognostic and diagnostic 
evaluation (8). The TME also has a significant effect on 
gene expression in tumor tissue, and has been shown to 
influence patient prognosis overall, medication resistance, 
recurrence, and subtype classification (8). Immune-related 
risk factors can be used for treatment response monitoring 
and early diagnosis. Biomarkers and therapeutic targets 
linked to the advancement of GBM have been identified 
through extensive genomic and proteomic studies of 

the disease; however, these prospective targets need to 
be validated to generate novel clinical candidates and 
enhance the dismal prognosis of patients (9). Following 
developments in the fields of proteomics and genomics, 
there have been advances in precision medicine.

SH2 domain containing 4A (SH2D4A) (8p21.3 locus) 
encodes for SH(2)A (10). This protein has a SH2 structural 
domain that is very similar to that of the T cell-specific 
adapter protein and the adapter protein of unknown 
function, and has tyrosine residues with potential sites for 
the phosphorylation of lymphocyte-specific protein tyrosine 
kinase (LCK) (11). Research has shown that these proteins 
control the transduction of T cell receptor signaling (11).  
SH2D4A was shown to inhibit cell proliferation in a 
human embryonic kidney cell line (12). SH2D4A also 
plays different roles in different human cancers, and 
previous studies have shown the effect of SH2D4A as an 
oncogene. Hepatocellular carcinoma (HCC) usually results 
in the deletion and downregulation of six gene clusters on 
chromosome 8p, including SH2D4A, and the low expression 
of these genes is connected to a worse prognosis for HCC 
patients (10,13).

Molecular studies have shown that tumor-infiltrating 
immune cells (TIICs) can promote and regulate tumor 
progression and growth through interactions among 
different cell types (14). There has been some advancement 
in the understanding of immune cell infiltration in central 
nervous system malignancies. However, little is known about 
its role in the origin of tumors and patient prognosis (14). 
CD8+ T cell enrichment is related to glioma hypermutation 
at diagnosis or recurrence. Notably, following radiation 
therapy, glioma short-term recurrence has been linked to 
M2 macrophages (5). Research has shown that glioma-
associated macrophages/monocytes promote glioma growth 
and invasion by acting as tumor-supporting cells that can 
infiltrate gliomas from the circulation (15).

Few studies have examined SH2D4A in GBM, and there 
are little data available. We systematically investigated the 
relationship between SH2D4A and GBM prognosis and 
validated it using different datasets. GBM patients with 
high SH2D4A expression have better clinical prognosis 
than those with low SH2D4A expression. Notably, 
the knockout of SH2D4A can significantly inhibit the 
proliferation and migration of U87 cells (16). The unique 
and complex immune microenvironment of gliomas is an 
important obstacle to immunotherapy (17). The infiltration 
of immune cells may be regulated by SH2D4A expression 
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patterns. Therefore, we investigated the potential 
mechanisms and effects of SH2D4A and the glioma immune 
microenvironment. Our findings might help to improve 
the efficacy of immunotherapy. The Cancer Genome Atlas 
(TCGA) and the Chinese Glioma Genome Atlas (CGGA) 
were the data sources in this study. Cell Type Identification 
by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT), xCELL, and Tumor Immunity Estimation 
Resource (TIMER)/TIMER 2.0 were used to measure 
the density of large TIICs in various TMEs. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-2000/rc).

Methods

Datasets and data collection

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Clinical data 
and TCGA RNA-sequencing transcriptome data were 
retrieved from TCGA dataset (18) (http://cancergemome.
nih.gov/) .  The CGGA dataset  (19)  (http ://www.
CGGA.org.cn) was used to collect the messenger RNA 
(mRNA) expression data (mRNAseq 325) and associated 
clinicopathological characteristics. To formalize the pooled 
gene numbers into gene symbols for analysis, we used Perl 
(20) scripts to acquire the Genotype-Tissue Expression 
(GTEx) data from the University of California, Santa 
Cruz (UCSC) Xena (http://Xena.UCSC.edu/). R software 
was used to process the raw data, and a robust multi-array 
analysis was conducted to normalize and compensate for the 
backdrop.

Expression analysis by Gene Expression Profile Interaction 
Analysis (GEPIA)

GEPIA (21)  (http://GEPIA.cancer-pku.cn/index.
html) was used to confirm the relationship between the 
clinicopathological data and SH2D4A expression in GBM. 
To determine the differential expression of SH2D4A, we 
created box plots using the disease status (tumor or normal) 
as a variable.

Cell culture

The T98G, U87, and HA1800 cell lines were purchased 
from the Shanghai Cell Bank, Type Culture Collection 

Committee, Chinese Academy of Sciences. The cells were 
cultured using Dulbecco’s Modified Eagle Medium (Wisent, 
Canada) supplemented with 10% fetal bovine serum 
(Wisent). All the cell lines were stored in a humidified 
atmosphere containing 5% carbon dioxide at 37 ℃.

PPI network analysis

GeneMANIA (22) (http://genemania.org/) was used to 
predict the functionally comparable genes of the hub genes 
and build protein-protein interaction (PPI) networks 
once SH2D4A was added to its dataset. Additionally, 
GeneMANIA was used to make predictions about the 
relationships, pathways, physiological and biochemical 
responses, co-expressions, and co-localizations between 
the functionally related genes and the main gene. To 
examine the interaction network of the hub gene-encoded 
proteins, the resulting hub genes were added to the 
STRING dataset (version 11.5, https://string-db.org/). The 
necessary minimal interaction score was set to 0.4 (medium 
confidence level).

LinkedOmics analysis

We used LinkedOmics (http://www.linkedomics.org/) to 
analyze multivariate histological data for 32 different cancer 
types (23). The co-expression of the SH2D4A gene was 
examined using Pearson correlations, and the results were 
displayed as a volcano map and a heat map.

Independent prognostic role of the risk signature

Univariate and multivariate Cox regression analyses were 
conducted, the outcomes of the independent predictor 
analyses were presented as forest plots, and the patients 
were divided into high- and low-risk groups based on 
median risk scores to ascertain whether the risk profile 
associated with high SH2D4A expression was dependent 
on other clinicopathological factors (e.g., age, gender, 
and radiotherapy) that predicted patient overall survival 
(OS). Log-rank tests and a Kaplan-Meier OS analysis 
were then used. The aforementioned analyses were all 
completed using the R program. A P value <0.05 indicated a 
statistically significant difference.

Development and assessment of the nomogram

A nomogram generates custom predictive models that show 
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the likelihood of clinical events using simple graphs of 
statistical predictive models. In this study, the nomogram 
was drawn using the R “survival” and “rms” packages, 
and the nomogram included scores for age, sex, radiation 
status, and the risk associated with SH2D4A. Calibration 
curves were used to assess the accuracy of the nomogram 
in predicting the one-, two-, and three-year survival of 
patients with glioma. The more closely the calibration 
curves’ projected and actual curves coincided, the greater 
their predictive value of the nomogram. An analysis of the 
receiver operating characteristic curves was conducted to 
evaluate the accuracy of the prediction model.

Functional enrichment analysis

A Gene Set Enrichment Analysis (GSEA) is a computational 
technique for evaluating whether there are consistently 
different biological states between two states, and the 
statistical significance of a collection of genes selected 
a priori (24). The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and Gene Ontology (GO) 
biological processes (BPs) related to risk factors were 
evaluated using the gene set variation analysis (GSVA) 
package in R. We identified the various BPs that were 
enriched in the high- and low-risk groups by comparing 
the differences in the scores across the risk groups after the 
GSVA software assessed the GO BPs and KEGG pathways 
in each sample. To find the differentially expressed genes 
(DEGs) and gene sets in the various groups, the “limma” 
package in R was used. The “clusterProfiler” package in 
R was used to conduct the GO and KEGG analysis of 
the DEGs to further validate the feature-related KEGG 
pathways and GO processes.

Assessing the number of TIICs using TIMER/TIMER2.0 

We used the TIMER/TIMER2.0 (25,26) as a complete 
resource to investigate the immune infiltration systems of 
various cancer types (https://cistrome.shinyapps.io/timer/). 
TIMER2.0 uses a previously described statistical technique 
known as deconvolution, which estimates the number of 
TIICs (27). The abundance of TIIC subtypes [B cells, 
CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and 
dendritic cells (DCs)] and the expression of SH2D4A were 

analyzed and visualized.

xCELL analysis and CIBERSORT analysis

An R package called “xCell” was used to calculate the 
integrated levels of 64 different cell types, including 14 
stromal cells. Using CIBERSORT, the abundance scores 
of each sample for 21 different immune cell types were 
precisely quantified (T cells gamma delta information 
was missing in 22 immune cell types in this study). We 
used xCELL and CIBERSORT to determine the ratio of 
stromal cell to immune cell abundance in the GBM samples 
separately.

Real-time quantitative reverse transcription polymerase 
chain reaction (qRT-PCR)

Using qRT-PCR, the relative mRNA expression of 
SH2D4A was evaluated. TRIzol (Invitrogen) was used 
to extract the total RNA from the GBM cell lines. RNA 
was reverse transcribed into complementary DNA using a 
reverse transcription kit (Vazyme, China). The target gene 
was amplified in a final volume of 20 µL with the SYBR 
qPCR Master Mix (Vazyme). The data were acquired 
and processed automatically by the ABI 7500 machine 
(Applied Biosystems, USA). The relative expression of 
the genes was calculated using the 2−ΔΔCt method. The 
following primers were used for the experiments: SH2D4A 
forward:5'-AGAAAGGAAGAGGCGGTGAGAGG-3' 
and reverse: 5'-ACTGAGGCTTGGGTGGAAGGG-3' 
with ACTIN as the internal reference; and forward: 
5 ' -CCTGGCACCCAGCACAAT-3'  and  rever se : 
5'GGGCCGGACTCGTCATAC-3'.

Statistical analysis by R-4.2.1

TCGA statistics were combined and run through R 4.2.1. The 
R package “ggplot2” was used to create a volcano plot of the 
DEGs. Cox regression was used to examine the correlations 
between the clinical data and SH2D4A expression. To 
determine the effects of SH2D4A expression and the other 
clinicopathological variables (e.g., age, sex, and radiation) on 
survival, multifactorial and univariate Cox regression analyses 
were performed. The cut-off value was set at P<0.05.
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Figure 1 Levels of SH2D4A expression in GBM. (A) Volcano plot of TCGA dataset’s variously expressed RNA. (B) Differential expression 
of SH2D4A in LGG and GBM. (C) Verification of SH2D4A expression in GBM cell lines using qRT-PCR. (D) Expression of SH2D4A 
mRNA in pan-cancer malignant and paracancerous tissues by TIMER2.0. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. GBM, 
glioblastoma multiforme; TCGA, The Cancer Genome Atlas; LGG, low-grade glioma; qRT-PCR, quantitative reverse transcription 
polymerase chain reaction. 
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Results

Relationship between the prognosis of GBM and SH2D4A 
expression

Based on TCGA dataset, we first analyzed the DEGs of 
the mRNAs in GBM. The analysis showed that there 
were 6,765 DEGs, of which 3,413 were upregulated and 
3,352 were downregulated, as shown in the generated 
volcano plot (Figure 1A). Using the GEPIA dataset, we 
examined the SH2D4A expression pattern in the GBM 
tissues. We found that the expression level of SH2D4A was 
significantly higher in the GBM tissues than the normal 
peritumor tissues (Figure 1B). Interestingly, compared 
with the normal brain tissues, SH2D4A was observed to 
be upregulated in highly aggressive GBM tissues but not 
in low-grade glioma (LGG) tissues (Figure 1B). Thus, the 
results showed that SH2D4A is significantly upregulated 

in GBM and has prognostic value for GBM. We verified 
the differential expression between the GBM cells (U87 
and T98G) and normal human astrocyte HA1800 cells by 
qRT-PCR (Figure 1C). Compared to the HA1800 cells, 
SH2D4A was upregulated in the GBM cells, especially in 
the U87 cells. In conclusion, these findings suggest that 
SH2D4A promotes malignancy in GBM. We examined 
the connection between SH2D4A expression and pan-
cancer in the TIMER2.0 dataset to verify the outcomes of 
the GEPIA dataset study and further investigate the link 
between SH2D4A expression and GBM. We confirmed that 
SH2D4A expression was upregulated in GBM, renal small-
pigmented cell carcinoma, cervical adenocarcinoma, cervical 
squamous cell carcinoma, thyroid cancer, and gastric cancer. 
Conversely, the SH2D4A expression pattern was decreased 
in head and neck squamous cell carcinoma, renal clear cell 
carcinoma, and lung squamous carcinoma (Figure 1D).
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Figure 2 Correlation study between clinical characteristics and SH2D4A expression. Analysis of the relationships between SH2D4A 
expression and several clinical characteristics. (A) WHO grade, (B) IDH mutation status, (C) 1p19q codeletion status, (D) gender, and (E) 
age. WHO, World Health Organization; IDH, isocitrate dehydrogenase.
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The clinical and prognostic significance of SH2D4A 
expression according to the CGGA dataset

We conducted an online study of the CGGA dataset 
comprising mRNA expression data (mRNAseq 325 array) 
and the accompanying clinicopathological characteristics 
to further evaluate their predictive value for GBM. We 
discovered that SH2D4A was considerably upregulated 
in GBM (Figure 2A-2E). Interestingly, consistent with 
the GEPIA and TCGA results, GBM patients with 
high SH2D4A expression had poorer survival outcomes  
(Figure 3A-3D). Shorter survival times were associated with 
upregulated SH2D4A expression in patients classified with 
grades III and IV GBM under the classification system of 
the World Health Organization (P<0.05). Additionally, 
there was a substantial correlation between SH2D4A 
differential expression and age, 1p19q deletion status, and 
the isocitrate dehydrogenase mutation (Figure 2A-2E). 
The above results suggest that SH2D4A is differentially 
expressed in gliomas and may be a potential biomarker for 

GBM progression.

SH2D4A co-expression network

The GeneMANIA website was used to identify functionally 
similar genes and build a PPI network by entering the 
specific gene needed; that is, SH2D4A. In the PPI, 19 
functionally similar genes were located in the outer loop, and 
the hub genes were located in the inner loop (Figure 4A).  
Based on the STRING dataset, the PPI network of these 
crossover genes was constructed, and the following 10 hub 
genes were identified: SH2D4A, SH3GL1, LYN, PPP1CB, 
PPP1R7, PPP1CA, DTD1, GRB2, DBNL, and HCLS1 
(Figure 4B). The co-expression pattern of SH2D4A in 
TCGA cohort was studied using the functional module 
of LinkedOmics to examine the biological significance 
of SH2D4A in TCGA. Based on the RNA sequencing, 
we screened 19,660 genes associated with SH2D4A (and 
a false discovery rate <0.01) (Figure 4C). Two heatmaps 
were generated displaying the top 50 significant genes 
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Figure 3 The relationship between the expression level of SH2D4A and the survival rate in the Chinese Glioma Genome Atlas dataset. (A) 
All WHO grades, (B) WHO grade II, (C) WHO grade III, and (D) WHO grade IV. WHO, World Health Organization.
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both negatively and positively correlated with SH2D4A  
(Figure 4D,4E).

SH2D4A acted as an independent risk factor of a poor 
prognosis in GBM patients 

Using least absolute shrinkage and selection operator 
(LASSO) regression and the “glmnet” R package, we 
screened the 107 samples of TCGA mRNA-sequencing 
data. The change in trajectory for each variable is plotted 
in Figure 5A, while Figure 5B displays the confidence range 
for each. The one-way Cox regression analysis identified 
SH2D4A expression as a risk factor affecting the prognosis 
of GBM patients (Table 1). Based on the median risk score 
for each cohort, the samples from TCGA cohort were split 
into low- and high-risk groups. According to the Kaplan-

Meier analysis, patients in the low-risk group had better 
outcomes than those in the high-risk group (Figure 5C). 
In a multifactorial Cox analysis, SH2D4A expression and 
radiation status were identified as independent predictor 
variables of GBM (Figure 6A and Table 2). 

In TCGA dataset, we developed a nomogram based on 
age, sex, radiation status, and risk score to predict one, two-, 
and three-year OS. The score of each factor in the nomogram 
indicated how much risk it posed in terms of OS (Figure 6B). 
For the one-year OS rate in TCGA cohort, the calibration 
curves revealed a significant agreement between the predicted 
survival time and actual survival time (Figure 6C). An area 
under the curve of 0.72 was found for the anticipated 
time-dependent one-year survival nomogram (Figure 6D). 
However, additional pertinent clinical investigations are 
required to confirm the validity of this nomogram.
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SH2D4A-related signaling pathways in glioblastoma

To further investigate the biological role of SH2D4A in 
GBM, a GSEA was performed (Figure 7A). The results 
showed a number of functions were enriched in the highly 
expressed region of SH2D4A, including ECM organization 
and cytokine-mediated signaling pathways. The two 
KEGG items, neuroactive ligand-receptor interactions 
and protein digestion and uptake, showed significant 
enrichment differences in the SH2D4A high expression 
phenotype (Figure 7B). We performed a GO analysis of the 
BP, molecular function (MF), and cellular component (CC) 
(Figure 7C). The GO analysis showed that the significantly 
enriched BP included epidermal growth and ECM tissue, 
the significantly enriched CC included collagen containing 
the ECM, and the significantly enriched MF included 

DNA binding transcription repressor activity and the RNA 
polymerase II-specific and ECM structural constituent.

Relationship between immune cells that invade tumors and 
SH2D4A expression 

We also sought to determine if immune infiltration in 
GBM was correlated with SH2D4A expression. Using the 
CIBERSORT method, we first examined the immune 
infiltration of 22 immune cell subpopulations in GBM 
tissue. The fraction of immune cells in each GBM sample is 
depicted using various colors in Figure 8A, while the immune 
cell population is represented by the length of the bars in 
the bar graph. According to the graphs, the GBM tissues 
had comparatively large concentrations of M0, M1, and M2 
macrophages and monocytes. Next, using the R package, we 

Figure 4 The genes co-expressed with SH2D4A in GBM. (A) Examination of 21 hub genes. (B) The protein-protein interaction network is 
comprised of 10 hub genes. In TCGA cohort based on LinkedOmics, (C) SH2D4A mRNA was significantly linked with the genes identified 
by the Pearson test (red dots: upregulation, green dots: downregulation, black dots: no significance). (D,E) Heatmaps of the top 50 genes in 
TCGA based on LinkedOmics that are negatively and positively linked with SH2D4A. GBM, glioblastoma multiforme; TCGA, The Cancer 
Genome Atlas.
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generated a correlation heat map to identify the correlation 
between the above eight hub genes and 21 immune cells 
(Figure 8B). The results revealed a positive correlation 
between SH2D4A and the expression of T cells with activated 
CD4 memory cells, and a negative correlation between 
SH2D4A and activated natural killer cells. To determine the 
association between SH2D4A and other stromal cells, we 
calculated the levels of 64 immune cells using the xCELL 

algorithm (Figure 8C). The findings revealed that SH2D4A 
expression was correlated with type 1 T helper cells, neurons, 
plasma cells, megakaryocytes, and eosinophils.

We also examined the relationship between SH2D4A 
expression and the degree of immunological infiltration 
using TIMER. Our findings demonstrated that higher levels 
of SH2D4A expression were linked to a worse prognosis and 
a compromised immune response in GBM. Additionally, 
there was a negative correlation between the levels of 
SH2D4A expression and B cell infiltration (r=−0.094, 
P=5.50e−02), CD4+ T cells (r=−0.116, P=1.79e−02), CD8+ 
T cells (r=−0.046, P=3.52e−01), macrophages (r=−0.081, 
P=1.00e−01), neutrophils (r=−0.192, P=7.87e−05) and DCs 
(r=0.314, P=5.01e−11) (Figure 9A). Next, a univariate Cox 
survival analysis was performed using the TIMER data. 
According to the findings of the univariate analysis, DCs 
and SH2D4A affected the survival prognosis of GBM 
patients (Figure 9B). However, the degree of immune 
infiltration of GBM did not appear to be correlated with 
variations in the SH2D4A copy number (Figure 9C). The 
significance of SH2D4A in the immunological infiltration of 
DCs is clearly supported by our findings.

Figure 5 Construction of the prognostic risk model. (A) Profiles of the LASSO coefficients from TCGA dataset. (B) Selection of optimal 
parameters (lambda) in the LASSO model. (C) Risk scores, survival times, and survival status. Low- to high-risk scores are represented in 
the scatterplot at the top. While the survival times and survival statuses correlated to the various risk scores of the samples are represented at 
the bottom. LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas.
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Table 1 Using Cox regression, the associations between overall 
survival and clinicopathologic characteristics were examined using 
TCGA data

Clinical characteristics HR (95% CI) P value

Risk 1.59 (1.03, 2.47) 0.04

Gender 1.06 (0.67, 1.69) 0.80

Radiation therapy 0.21 (0.11, 0.42) <0.001

Age 1.02 (1, 1.04) 0.02

SH2D4A 1.36 (1.1, 1.67) 0.004

TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, 
confidence interval.
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Figure 6 Creating and approving a nomogram survival model. (A) Forest plot of TCGA cohort’s multivariate Cox regression analyses. (B) 
The nomogram plot was created based on factors such as age, gender, risk, and radiation therapy. (C) Nomogram calibration plot based on 
TCGA data. (D) Time-dependent receiver operating characteristic curves for the prediction of the one-, three-, and five-year survival rates. 
TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval; RSS, recurrence-free survival; AUC, area under the curve.
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Table 2 Cox regression for multivariate survival

Clinical characteristics HR (95% CI) P value

Radiation therapy 0.249 (0.126, 0.494) <0.001

SH2D4A 1.303 (1.054, 1.612) 0.01

HR, hazard ratio; CI, confidence interval.

Discussion

Even with the use of the most recent treatments, such as 
immunotherapy and small molecule-targeted therapy, the 
median survival time for GBM patients remains about 
12–15 months (28). Therefore, to increase the OS of GBM 
patients, it is crucial that critical chemicals for GBM growth 
and tumor resistance be identified.

Cell-to-cell interactions in the TME and changes 

in the expression of particular genes can influence how 
aggressively GBM grows. A number of ongoing clinical 
trials are seeking to find novel targets and medications for 
the treatment of GBM (29). Beta-1,4-galactosyltransferase 
(B4GALT3) expression is increased in GBM samples, and 
this high expression predicts poor survival for patients 
with glioma. B4GALT3 depletion reduces cell viability 
and the invasion of U251 cells (30). After temozolomide 
(TMZ) treatment, the small nucleolar RNA host gene 
12 (SNHG12) is overexpressed in GBM samples that are 
resistant to TMZ. It may regulate the proliferation and 
mortality of TMZ induced cells (31). Researchers obtained 
the tumor infiltration data of immune cells by analyzing the 
gene methylation chip, and reported that cells with high 
infiltration rates in GBM tumor tissue may be potential 
targets for GBM treatments (32). Studies of SH2D4A 
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Figure 7 Bioinformatics analysis of TCGA dataset. (A) GSEA analysis. The GSEA analysis showed that genes with high expression in the 
SH2D4A phenotype were differentially enriched in the extracellular matrix tissue and cytokine-mediated signaling pathways. (B) KEGG 
analysis of DEGs. (C) Gene ontology analysis of DEGs. TCGA, The Cancer Genome Atlas; NES, normalized enrichment score; GSEA, 
Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; BP, biological 
process; CC, cellular component; MF, molecular function.
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in tumor progression are also ongoing. According to a 
study on the downregulation of SH2D4A in colon cancer, 
the downregulation of several genes on chromosome 8p, 
including SH2D4A, promotes cancer development and 
creates a cold TME with immune dysfunction and poor 
prognosis (33). Further, SH2D4A has been shown to 
promote the oncogenic progression of HCT15 and LoVo 
colorectal cancer cells (34). The role of SH2D4A in gliomas 
is not yet clear, but a recent study found that SH2D4A can 
stimulate the migration and proliferation of glioma cells (16).

TIMER was used to explore the association between 
SH2D4A and immune cell infiltration, and an inverse 
correlation was found between SH2D4A expression in 

tumor cells and the infiltration of CD8+ T cells in GBM. 
Tumor infiltration by CD8+ T cells is one of the key 
features of effective cancer immunotherapy (35). Therefore, 
the overexpression of SH2D4A in GBM may limit T cell 
infiltration, leading to unsatisfactory tumor killing.

According to multifactorial Cox analysis, the expression 
of SH2D4A in GBM patients can serve as a distinct 
prognostic factor. As a prospective cancer biomarker, 
SH2D4A expression patterns were observed to be linked 
with survival outcomes in the current investigation. We 
reaffirmed the prognostic significance of SH2D4A in GBM 
and the correlation between tumor grade and SH2D4A 
mRNA expression using data from the CGGA dataset. In 
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Figure 8 Immune infiltration analysis in relation to SH2D4A. (A) The lengths of the bars in the bar chart show the levels of the immune cell 
populations, and the percentage of immune cells in each GBM sample are denoted by various colors. (B) Hub gene expression and immune 
cell expression are correlated. (C) A correlation matrix for the proportions of 64 immune cells. ns, no significance; *, P<0.05; **, P<0.01. 
GBM, glioblastoma multiforme.
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summary, we analyzed the prognosis of GBM patients based 
on public datasets and immune infiltration, and found that 
SH2D4A may be an effective biomarker for predicting the 
prognosis of GBM patients. However, our analysis had a 
number of limitations. The bioinformatics analysis was only 
based on data from public datasets; thus, further in vivo or 
in vitro experiments need to be conducted to consolidate 

our research findings.

Conclusions

In addition to being a possible prognostic marker and 
therapeutic target for GBM, SH2D4A may also accelerate 
the progression of GBM.
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Figure 9 SH2D4A-related immune infiltration analysis. (A) The association between immune infiltration and SH2D4A. (B) Immune cell 
infiltration survival curve. (C) The association between SH2D4A copy number variation and the degree of immune cell infiltration. TPM, 
transcripts per million; GBM, glioblastoma multiforme.
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