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A great effort of research has been devoted in the last few years to developing new
anti-HBV therapies of finite duration that also provide effective sustained control of
virus replication and antigen production. Among the potential therapeutic strategies,
immune-modulation represents a promising option to cure HBV infection and the
adaptive immune response is a rational target for novel therapeutic interventions, in
consideration of the key role played by T cells in the control of virus infections. HBV-
specific T cells are severely dysfunctional in chronic HBV infection as a result of several
inhibitory mechanisms which are simultaneously active within the chronically inflamed
liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell
populations which can serve as antigen presenting cells (APC) but are poorly efficient
in effector T cell priming, with propensity to induce T cell tolerance rather than T cell
activation, because of a poor expression of co-stimulatory molecules, up-regulation of
the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of
immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic
cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells
(LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes
themselves. Additional regulatory mechanisms which contribute to T cell attrition in the
chronically infected liver are the high levels of soluble mediators, such as arginase,
indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of
inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as
CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review
will deal with the interactions between immune cells and liver environment discussing
the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B,
some of which are specifically activated in HBV infection and others which are instead
common to chronic inflammatory liver diseases in general. Therapeutic interventions
targeting dysregulated pathways and cellular functions will be also delineated.
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INTRODUCTION

Chronic HBV infections remain a major public health problem
worldwide (1). Currently, there are no curative treatments and
available therapies are effective in inhibiting HBV replication, but
are of limited efficacy on cccDNA and HBsAg concentrations,
thereby requiring long-lasting administrations to avoid the risk
of HBV reactivation at withdrawal (2–4). In the search for
more effective therapies, possible candidates are compounds
with direct anti-viral or immune modulatory activity. The latter
strategy is supported by the evidence of dysfunctional innate and
adaptive immune responses in chronic active hepatitis B (CHB),
which contribute to HBV persistence (5, 6). Recent studies
unveiled a number of altered regulatory mechanisms which are
key for the impairment of anti-viral immune responses in chronic
infections, involving different cellular populations of the immune
system, suppressive soluble mediators, up-regulation of co-
inhibitory molecules (7, 8). Most of these inhibitory mechanisms
take place within the liver which is a tolerogenic organ that
must prevent excessive immune responses against pathogens and
antigens derived from the gut, to protect the host against severe
immune-mediated damage (8). The tolerogenic properties of
the liver are further enhanced by chronic inflammation which
can trigger several regulatory mechanisms that make T cell
exhaustion in HBV infection particularly severe, allowing HBV to
acquire survival advantage over the immune system and to persist
in the infected host.

This review will elucidate the relationship between adaptive
anti-viral immune responses and the different virus- and host-
related mechanisms particularly active within the chronically
inflamed liver which favor HBV persistence. We will focus
on: (i) T cell dysfunction, including up-regulation of co-
inhibitory signaling pathways, metabolic alterations, apoptotic
cell death and phenotypic/functional heterogeneity of HBV-
specific T cells; (ii) the effect of the persistent exposure of
immune cells to high antigen loads; (iii) the features of the liver
environment, comprising tolerogenic antigen presenting cells
(APC), suppressive soluble factors, local induction of suppressive
regulatory cells; (iv) potential immune-therapeutic strategies
based on functional T cell reconstitution.

T CELL EXHAUSTION IN HEPATITIS B

During chronic HBV infections virus-specific T-cells appear
deeply exhausted (5). Both CD8 and CD4 T cells, up-regulate
co-inhibitory receptors which can inhibit the T cell function
upon cross linking of their corresponding ligands (9–16).
Overexpression of such co-inhibitory molecules was originally
described in exhausted T cells from LCMV-chronically infected
mice (17, 18), although up-regulation of inhibitory receptors is
known to play a physiological role in the contraction of effector
acute phase responses to avoid excessive immune pathology and
autoimmune disorders. Indeed, during acute, self-limited HBV
infection activated functional effector T cells display high PD-1
levels, as expression of activation, which tend to decrease during
the recovery phase (9, 19–22) (Figure 1). However, in the setting

of virus persistence, chronic antigen stimulation leads to the
sustained expression of inhibitory receptors in association with
T cell dysfunction (23). Liver-infiltrating HBV-specific T cells
show maximal up-regulation of PD-1 and to a lesser extent of
other co-inhibitory receptors, such as 2B4, LAG3, and CD160
(10, 11, 24) (Figure 1). On the other hand, overexpression of
several checkpoint ligands, such as PD-L1 and galectin-9, has
been observed on circulating and intrahepatic antigen-presenting
cells and on liver resident Kupffer cells (KCs), respectively
(14, 25, 26). Mechanistically, PD-1 engagement causes the de-
phosphorylation of the costimulatory receptor CD28 and of other
TCR-associated components, thereby leading to the attenuation
of the corresponding signaling and to up-regulation of inhibitory
genes (27–30). Moreover, PD-1 and CTLA-4 signalings also
intervene in T cell metabolism, by inhibiting glycolysis (31).

Exhausted HBV-specific T cells have also been depicted as
more prone to apoptosis, mediated by the up-regulation of
the death receptor TRAIL-2 and the pro-apoptotic mediator
BIM (32–34). They harbor dysfunctional mitochondria with an
abnormally elevated ROS content, have a poor capacity to use
oxidative phosphorylation but are instead strictly dependent on
glycolysis to meet cell energy demands (35, 36) (Figure 1).
The relevance of these metabolic defects to T cell exhaustion is
confirmed by the effect of mitochondria-targeted anti-oxidant
compounds in the reconstitution of the anti-viral T cell function
in vitro (36).

As described for CD8 T cells in cancer and in other viral
infections, also HBV-specific CD8 T cells from chronically
infected patients are not a functionally homogeneous population
of exhausted cells, because distinct T cell subsets with different
degrees of dysfunction have been identified (37, 38). Moreover,
different levels of exhaustion have been reported for T cell
subsets of different HBV antigen specificity. Higher expression
of exhaustion markers, associated with a lower expansion
capacity has been reported for polymerase-specific compared to
core-specific CD8 cells from chronic HBV patients with low
viral load (39, 40). Such heterogeneity has been associated to
variable levels of sensitivity to functional restoration treatments
in other models of T cell exhaustion (41–46). Thus, analysis
of CD8 T cell heterogeneity in individual chronic patients is
worth being investigated as a possible tool to identify those
patient populations that are more likely to respond to immune
therapeutic interventions.

Inhibitory checkpoint blockade has been widely studied as a
strategy for immune reconstitution in chronic HBV infection.
Many in vitro studies showed that PD-1/PD-L1 blockade, alone
or in combination with the manipulations of other pathways,
can induce variable levels of improvement of both T and B cell
responses, because high PD-1 levels have also been detected in
dysfunctional HBV-specific B cells from chronic HBV patients
(9–12, 14, 15, 24, 47–50). A reduction of the pro-apoptotic Bim
molecule expression and an increase in cytokine-producing CD8
T cells have been observed upon CTLA-4 blockade (15) and
manipulation of the 2B4 and Tim-3 pathways as well (14, 16).
All different checkpoint modulation approaches, however, are not
free of toxicities or immune-related adverse events, as reported
in cancer patients (51–54). Moreover, additional limitations to
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FIGURE 1 | Relationship between antigen persistence and anti-viral T cell responses in the liver. Priming of naïve CD8 T cells can occur in lymph nodes (LNs) or
within the liver. In the lymph nodes naïve CD8 T cells differentiate into functional effectors; after migration to the liver, if the majority of hepatocytes are infected and
express high antigen levels, virus-specific CD8 T cells undergo functional impairment or physical deletion. Some specific features of exhausted HBV-specific CD8 T
cells are the over-expression of multiple inhibitory receptors and pro-apoptotic molecules, CD3ζ chain down-regulation and various metabolic alterations (left panel).
If only a minor proportion of liver cells express limited amounts of viral antigens, virus specific CD8 cells can maintain efficient anti-viral activity and can promote virus
control and antigen clearance (right panel). This model of T cell activation derives form studies performed in mouse models of HBV infection, but no definitive
evidence is available in human infection to confirm that induction of functionally efficient effector CD8 T cells is driven by the amount of antigen (number of infected
hepatocytes and amount of antigen expressed by individual liver cells) and that decline of antigen can allow restoration of functionally efficient HBV-specific CD8 T
cell responses.

the in vivo use of checkpoint inhibitors is the wide heterogeneity
of T cell responses reported in vitro to this treatment (11),
and the lack of simple predictors to identify with some level of
accuracy those patients who could benefit from PD-1 blockade
either alone or in association with other costimulatory (for
example, CD137 or OX40 stimulation) (10, 48), or co-inhibitory
(CTLA-4 or TIM-3) (14, 15), pathway manipulation. The in vitro
study of HBV-specific T cell functionality cannot be widely
used to predict response to therapeutic immune modulation
in vivo because of its complexity and the need of a better
standardization of functional assays. A much simpler possibility,
which is being explored in different laboratories, consists in the
use of phenotypic panels, including exhaustion and memory
molecules, to study total, unfractionated T cells, in view of data
indicating that exhaustion can partially affect also the overall CD4
and CD8 T cell populations. In this regard, the downregulation
of CD3ζ and CD28 has been associated to functional defects

in total non-antigen-specific CD8 T cells in vitro and in vivo
in CHB patients with high viral load (55). Besides, a more
recent investigation confirmed the presence of both HBV-specific
and global T cell dysfunction mediated by multiple regulatory
mechanisms, including overexpression of PD-1 and CTLA-4 by
CD4 T cells (47). Moreover, additional studies have highlighted
also the unconventional γδ T cell role in HBV pathogenesis
both in acutely infected chimpanzees (56) and in acute and
chronic patients (57). Despite some controversial findings (58–
61), a recent report described innate-like phenotypes based on
the expression of Tbet/Eomes, and reduced PD-1, in association
with a functional alteration in circulating Vδ2 + γδ T cells during
ALT flares in CHB patients (57).

In spite of the multifaceted nature of the immune dysfunction,
an improvement of the virus-specific immunity has been
detected in nucleoside analog (NUC)-treated chronically infected
woodchucks upon the association of PD-L1 blockade with
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therapeutic DNA vaccination, leading to suppression of viral
replication and anti-WHs antibody seroconversion in two out
of three animals (62). In another study, a durable control
of viremia and antigenemia was induced in 2 of 11 WHV-
infected woodchucks when anti-PD-L1 was associated to NUC
treatment (63).

In a recent study in human HBV infection a single dose anti-
PD-1 (Nivolumab) was administered to NUC treated, virally
suppressed HBeAg negative chronic HBV patients who were
compared to NUC treated patients who received anti-PD-1 plus
therapeutic vaccination. Reduction of HBsAg titers was detected
only in a limited proportion of patients who received NUC
combined with anti-PD-1, with a total and persistent HBsAg loss
in only one of them. Remarkably, no severe adverse events were
reported, but, disappointingly, no additional effect was observed
on serum HBsAg concentrations as well as on strength and
quality of anti-viral T cell responses in the cohort of patients
treated also with therapeutic vaccination (64). Low dose and
short time administration of anti-PD-1 in this study don’t allow,
however, to draw definitive conclusions about possible future
applications of this potential treatment.

In summary, in vitro data support the concept that
only a proportion of patients should partially benefit from
check-point blockade because only a limited percentage of
patients respond in vitro and very rarely functional restoration
involves simultaneously all important anti-viral cell-mediated
immunological parameters. Moreover, in view of the multi-
factorial nature of T cell exhaustion pathogenesis in HBV
infection, the possibility to reconstitute T cell functionality with
a single intervention selectively focused on immune check-points
seems to be highly unlikely.

This conclusion is further reinforced by the recent finding
that PD-1 blockade doesn’t allow complete correction of the
specific epigenetic profiles which are associated with CD8 T
cell exhaustion (65, 66). This finding gives theoretical supports
to the concept that inhibition of the PD-1 pathway cannot
allow persistent and complete correction of T cell dysfunction
in chronic viral infections. Based on our present understanding
of HBV-specific T cell exhaustion, PD-1/PD-L1 blockade should
be likely seen as a possible adjuvant therapy to be used only
in a selected group of HBV infected patients to improve T cell
function and antigen responsiveness before the use of more
specific HBV antigen-based therapies, such as vaccination with
an appropriate antigenic composition. Moreover, the lack of an
epigenetic effect provides the rationale for combining checkpoint
blockade with epigenetic drugs, a therapeutic strategy already
tested in the setting of anti-tumor immunotherapy.

PERSISTENT T CELL EXPOSURE TO
HIGH VIRAL ANTIGEN
CONCENTRATIONS

The amount of antigen expressed by liver cells is believed to
influence the fate of effector CD8 cells but available data do not
allow to draw definitive conclusions on this issue.

In vitro studies have addressed the interplay between infected
hepatocytes and anti-viral T cells, showing the strengthening of
the T cell function as antigen expression increases, suggesting
that high viral antigen production is needed for efficient T-cell
activation within the liver (67). On the same line, an antigen
dose-dependent anti-viral T cell function increment has been
observed also in an infectious HCV-hepatoma cell co-culture
model, in which a cognate epitope expression threshold has been
investigated, indicating a peptide concentration range for effector
T cell activation (68). Also the effector:target ratio has been
shown to modulate the HCV-specific T cell function in an HCV
replicon system, with non-cytolytic mechanisms prevailing at
lower ratio values (69). However, as in vivo high antigen loads are
associated to co-inhibitory receptor/ligand overexpression, when
PD-L1 expressing hepatoma cells were used, recapitulating more
closely the liver environment, the T cell cytolytic activity resulted
significantly inhibited (68). Indeed, experiments performed in
animal models, evidenced a more complex T cell regulation in
the liver environment.

By exploiting a recombinant adeno-associated viral vector
system (rAAV8 transduction) to obtain selective antigen
expression in mouse hepatocytes in vivo, a threshold of antigen
in the liver was identified by the Bertolino’s group as a crucial
factor tuning T cell differentiation. In this model, persistent
cytotoxic T lymphocyte (CTL) function was maintained only
when less than 25% of hepatocytes were transduced, indicating
that low frequencies of antigen-expressing hepatocytes can elicit
a functional CD8 T cell response (70, 71). Conversely, when
antigen was expressed by a high percentage of hepatocytes,
virus-specific CD8 T cells became less responsive and over
time underwent T-cell exhaustion and deletion. The phenotypic
analysis of intrahepatic T cells isolated from mice treated
with high doses of rAAV revealed that T cell exhaustion
was associated with high levels of the inhibitory PD-1 and
Tim-3 receptors as well as with a deficiency in cytotoxic
activity and anti-viral cytokine production (71). Therefore,
these data suggest that the level of antigen expression and
the proportion of infected hepatocytes represent key factors in
driving the development of adaptive T cell responses in chronic
viral hepatitis.

These results are consistent with previous findings in a
transgenic mouse model where intrahepatic antigen presentation
triggered negative regulatory signals leading to a dysfunctional
differentiation of naïve CD8+ T lymphocytes. Indeed, naïve
HBV-specific CD8 T cells adoptively transferred into transgenic
mice with high intrahepatic HBV antigen expression displayed
proliferative responses but lacked the capacity to differentiate
into functional effector T cells. The mechanism of CD8 T cell
dysfunction involved PD-1 signaling and could be rescued by
CD40-dependent mDC activation (72, 73).

More recently, intrahepatic T cell differentiation was studied
in a HBV transgenic mouse system in which T cell priming
was restricted to the liver. In this model, naive CD8+ TCR
transgenic T cells specific for HBV core were injected into major
urinary protein (MUP)-core transgenic mice which exclusively
expressed a non-secretable version of the HBV core protein
in 100% of hepatocytes. Naïve T cells primed in the presence
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of high levels of HBV core antigen expressed proliferative
function but failed to differentiate into functionally competent
effector cells. Remarkably, even when CD8 T cell priming
occurred within a liver environment where HBV core antigen
expression, induced by injection with a low dose of a hepatotropic
adeno-associated viral vector (AAV) encoding the HBV core
protein, was limited to less than 5% of hepatocytes, effector
differentiation was not supported despite much lower levels of
antigen expression (74). These different T cell differentiation
fates observed in different experimental models may likely be
related not only to variable thresholds of antigen expression
within the liver in different infection/transfection models, but
may also depend upon TCR affinity which may restrict effector
priming to high affinity TCR/MHC interactions. The evidence
that a substantial reduction of hepatic antigen expression by more
than 15-fold in individual hepatocytes was still insufficient to
induce a functionally efficient effector CD8 T cell differentiation,
force some caution in predicting what antigen decline induced
by therapy can actually do on the T cell function in chronic
hepatitis patients. Future experiments in chronic patients treated
with anti-viral drugs able to diminish the antigen load are
mandatory to address this fundamental issue because no
evidence is available at present in natural HBV infection of
whether decline of antigen can actually cause functional T
cell improvement, and, if so, which magnitude of antigen
decline is required for induction of a biological effect. This
is particularly puzzling in a clinical setting where multiple
factors simultaneously contribute to T cell exhaustion and where
individual patients harbor a widely heterogeneous HBV-specific
CD8 T cell population comprising cells with different levels of
functional impairment and different degrees of affinity for target
cell recognition.

In another HBV-transgenic (tg) mouse model of therapeutic
vaccination, based on a heterologous vaccination strategy with
initial protein priming followed by recombinant Modified
Vaccinia Ankara virus (MVA) vector-boost, serum HBV antigen
levels have been reported to influence the immunological
responsiveness to therapeutic vaccination. Indeed, vaccine-
induced HBV-specific CD8+ T cell responses inversely correlated
with antigenemia levels before vaccination. In mice with
high antigen levels both HBsAg/MVA-S and HBcAg/MVA-core
immunization failed to induce envelope and core-specific CD8 T
cell responses in the spleen and in the liver, while vaccination in
mice with low or intermediate antigen levels allowed expansion
of anti-viral T cell responses and control of infection (75).
Interestingly, HBV-specific CD8 T-cells were induced efficiently
by therapeutic vaccination after RNAi-mediated suppression of
hepatic antigen expression in highly antigenemic mice which
were non-responsive to antigen stimulation before anti-viral
therapy (76). Although very promising, translation of this
therapeutic approach to the human natural infection may be
not so easy because antigenemia in chronic patients is generally
much higher and of longer duration than in this mouse
model and because exposure to high antigen loads is only one
of the multiple mechanisms of T cell inhibition which are
simultaneously in place after decades of infection in chronic
hepatitis patients.

In the setting of natural human HBV infection, a hierarchy of
T cell functional efficiency was described in different conditions
of HBV control in relation to serum HBsAg concentration (77).
For example, maximal T cell functional efficiency was observed in
the resolution phase of an acute self-limited hepatitis, associated
with complete control of infection and lack of HBsAg in the
serum, followed by intermediate levels of T cell functionality in
chronic inactive carriers with partial control of infection and
low levels of HBsAg, and finally maximal impairment of T cell
responses in chronic active hepatitis patients with high levels of
viremia and antigenemia (77).

Although level of antigen and duration of T cell exposure
to antigenic epitopes certainly affect T cell functionality and
responsiveness to exogenous stimulation, we must consider,
however, that the level of functional T cell efficiency is the
final result of the interplay between T cells and a wide range
of inhibitory mechanisms (Figures 1, 2). Thus, the presence
of a high antigen load in chronically infected hosts certainly
represents an important obstacle for curative immunotherapeutic
approaches but we must be aware that decline of antigen
alone is unlikely to be sufficient for successful recovery of
protective immune responses because multiple mechanisms
contribute simultaneously to T cell exhaustion in chronic HBV
infection (78).

THE LIVER ENVIRONMENT

A number of inhibitory mechanisms are active within the liver
making the intrahepatic environment highly tolerogenic. The
unique composition of the hepatic cell population, the expression
of inhibitory checkpoint ligands and the presence of soluble
regulatory mediators are some of the factors which contribute
to the tolerogenic nature of the liver, which is maximal in the
presence of chronic inflammation, irrespective of the etiology.
Therefore, most of the mechanisms which will be described in
this section are common to different chronic inflammatory liver
diseases and are not specifically expressed only in chronic HBV
infection (Figure 2).

Tolerogenic APC
Liver APC are not functionally mature as their counterparts
in other organs (79). Hepatic dendritic cells (HDCs) and
liver resident macrophages, known as KCs, which represent
conventional APC, but also non-professional, unconventional
APC, such as liver sinusoidal endothelial cells (LSECs), hepatic
stellate cells (HSCs), as well as the hepatocytes themselves,
contribute to immune tolerance, because they differ significantly
from cells present in the circulation or in secondary lymphoid
organs (80).

Hepatic dendritic cells show an immature phenotype, with
a lower expression of MHC and costimulatory molecules (i.e.,
CD40, CD86, and CD80), poor endocytotic capacity and low
IL-12 production, compared to their peripheral counterparts
(81, 82). As reported for HDCs, low level expression of co-
stimulatory and MHC class I and II molecules at the steady
state makes also KCs, LSECs, and HSCs poorly efficient in
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FIGURE 2 | Immunosuppressive circuits in the liver. Within the infected liver, persistent expression of viral antigens in concert with different immunoregulatory
pathways drive T cell differentiation toward exhaustion. Upon inflammation, IFN-γ stimulation activates immunosuppressive mechanisms that can be mediated by
soluble factors or require cell to cell contact. (A) Soluble factors: immunosuppressive cytokines, such as TGF-β and IL-10 can be produced by expanded regulatory
T cells (Treg) as well as by stellate cells (HSCs), dendritic cells (DCs) and Kupffer cells (KCs). In addition, a number of liver infiltrating cells, such as monocytes,
macrophages and dendritic cells, can release the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO), which causes either tryptophan depletion with
consequent dampening of T cell proliferation and function or the generation of toxic catabolites, such as kynurenines, which can cause T cell apoptosis and CD4
differentiation in Treg cells. Another key soluble mediator is represented by arginase, released by damaged hepatocytes and myeloid-derived suppressor cells
(MDSC), inducing arginine depletion. Lack of arginine determines CD3ζ downregulation and suppression of T cells proliferation. Moreover, the enzyme
cyclooxygenase-2 produced by activated KCs participates in the synthesis of the immunosuppressive prostaglandin E2 (PGE-2). (B) Contact-dependent
mechanisms: antigen-specific CD8 T cells can be killed by NK cells through NKG2D- and TRAIL-dependent lysis. Over-expression of inhibitory ligands (e.g., PD-L1,
Galectin-9) on liver endothelial sinusoidal cells (LSECs), dendritic cells, KCs, and stellate cells facilitates the triggering of T cell inhibitory pathways. In addition,
inflammatory monocytes recruited into the liver through ICAM-1 expression on LSECs can differentiate into myeloid-derived suppressor cells by a CD44-dependent
mechanism driven by activated stellate cells. Finally, Treg cell expansion and IL-10 production can be caused by pDCs and mDCs via the ICOS/ICOSL-mediated
interaction or IDO secretion.

T cell stimulation (83–88). They can also induce CD8 T cell
apoptosis by Fas-FasL interaction, as described for KCs following
reactive-oxygen species (ROS) production induced by FasL up-
regulation on their surface (80, 89), and for HSCs through
induction of intracellular signaling pathways triggered by PD-
L1 and B7-H4 crosslinking (90–93). Hepatocyte priming of CD8
T cells generally results either in clonal T cell deletion by BIM-
mediated apoptosis (90, 94), or in dysfunctional CD8 T cells
without effector functions (74), as already discussed in detail in
the previous section. HSCs and LSECs can also inhibit CD8 T
cell priming/activation through a TRAIL and ICAM-dependent

mechanism or through LSECtin-CD44 interaction, respectively
(95). Moreover, antigen presentation by all these cells is often
associated to the secretion of immune-regulatory mediators,
such as IL-10, TGF-β, prostaglandin E2 (PGE2), and to the
up-regulation of PD-L1 (87, 96–100).

High co-inhibitory molecule expression by HDCs can be
induced by the nucleotide-binding oligomerization domain
2 (NOD2) signaling, significantly more expressed in hepatic
plasmacytoid (pDCs) than in conventional or myeloid (mDCs)
dendritic cells, which is also responsible for their low IFN-α
secretion (101). The CD141+ subset of mDCs, which produces
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IL-12 and plays a central role in antigen cross-presentation
(102), have also been reported in healthy human livers to
express high levels of the tolerogenic molecules immunoglobulin-
like transcript 3 (ILT3) and ILT4 (103), which can inhibit T
cell activation through tyrosine-based inhibitory motifs (ITIMs)
contained in their cytoplasmic tails (104, 105).

In chronic HBV patients hepatic and peripheral dendritic cells
have been reported by several studies to be functionally impaired,
with a possible inhibitory effect of viral antigens on their function
(106–112). However, this concept is still widely debated (113)
because other studies did not observe any significant alterations
of the DC function (114, 115).

Among the possible DC defects in chronic hepatitis B,
a reduced production of the immunoregulatory cytokine
osteopontin (OPN) has been described and suggested to
represent a potential cause of TH1 response impairment (116).
Impaired DCs maturation and function in chronically HBV-
infected patients has also been associated with an altered
expression of innate sensors, such as TLRs (117–120).

Although most studies on DCs in chronic HBV infection
have been performed on peripheral cells, a recent report shows
alterations in frequency and basal activation status of DC subsets
from both blood and liver of chronic HBV patients compared
to healthy controls. In addition, also a defective up-regulation
of maturation markers upon TLRs triggering was reported in
this study, but only circulating DCs displayed a significant
impairment of cytokine production in response to TLR agonist
stimulation (118). The poor effect on the NK cell cytolytic
function by TLR9 ligand stimulation of HDCs was related to
reduced OX40L expression as well as to high plasma IP-10
and HBV antigen levels (121). Mechanistically, HBV particle
internalization can block pDCs IFNα production by inhibiting
TLR9 signaling, through down-regulation of TLR9 transcription
(122), which can also be indirectly caused by TNFα and IL-10
production induced by HBsAg on monocytes (123).

Also KCs have a role in the induction of tolerance to HBV.
This is supported by the observation in a mouse model of
HBV infection that earlier HBV clearance in older mice was
accompanied by a severe reduction in KC numbers, concomitant
with a sharp induction of TNFα-producing Ly6C+ monocytes,
followed by the proliferation of IFNγ+TNFα+ CD8 T cells.
Instead, younger mice, which failed to clear the virus, maintained
high frequencies of IL-10-secreting KCs (124).

Functional skewing of the T cell response toward a TH2
profile can also be supported by macrophages with a predominant
M2-like phenotype, known to be potent immune suppressor
cells (125), detected at high frequencies in a humanized mouse
model of persistent HBV infection (126). The evidence that
KCs and liver infiltrating macrophages show up-regulation of
the CD86 co-stimulatory molecule, which is known to drive
T cell differentiation toward a functional TH2 profile (127),
detected by immunohistochemistry staining of liver biopsies
from chronic HBV patients, further support this finding (128).
A direct interaction between HBsAg and KCs with HBsAg uptake,
was documented both in vitro and in ex vivo isolated KCs from
CHB patients (129). In vitro exposure to HBV antigens preferably
induced TGF-β, rather than pro-inflammatory cytokine secretion

by primary rat KCs (130); moreover, HBV antigen interaction
with TLR2 on KCs caused T cell inhibition through IL-10
secretion (131, 132) and TLR2 knockout or KC depletion resulted
in enhanced HBV elimination and improved CD8+ T cell
responses in mice (131). This inhibitory effect mediated by HBV
proteins was further documented by more recent studies showing
that HBV protein uptake by intrahepatic macrophages from CHB
patients can favor anti-inflammatory over pro-inflammatory
functions and can ultimately promote hepatocyte infection (133).

Despite these tolerogenic features, the liver environment
must ensure a fine tuning of divergent functions to guarantee
tolerance to antigens introduced through the gut, but also
to initiate efficient immune responses needed for pathogen
control. For example, in case of liver inflammation KCs secrete
pro-inflammatory cytokines and can mediate full CD8 T cell
differentiation (83, 134), while the propensity of hepatic DCs
toward immunogenicity or tolerance has been associated to their
lipid content and metabolism. Indeed, high lipid content can
make HDCs able to secrete high levels of pro-inflammatory
cytokines and to efficiently activate T or NK cells, while low lipid
content is associated with tolerance induction (135).

Overall, many pieces of evidence indicate a preferential anti-
inflammatory response induction by antigen-presenting cells in
chronic HBV infection, suggesting the possibility of a direct
innate immunity inhibition by the virus itself (119), which has
also been reported to be poorly sensed by innate immunity
sensors, behaving as a stealth virus (136). Interference of viral
proteins with innate signaling pathways (119) represents another
theoretical reason why reduction of antigenemia may be relevant
in the perspective of therapeutic strategies for CHB based on
functional immune reconstitution. In addition to novel direct
anti-viral agents acting at different levels of the HBV life cycle
(see below in the “Perspectives for novel therapeutic strategies”
section), stimulation of pathogen recognition receptors, such as
TLRs and Retinoic acid-Inducible Gene I (RIG)-like receptors
(137) represents a possible strategy, currently under evaluation,
to increase the efficiency of anti-viral immune activation.

Dendritic cells manipulation has also been proposed. Indeed,
administration of HBV peptide-loaded DCs was reported to elicit
functional HBV-specific CD8 cells and to reduce the viral load
in Hepato-HuPBL mice (138) and a targeted antigen delivery
to DCs was proven to efficiently induce local immunity to
hepatotropic viruses in mice (139). Interestingly, in the context
of cancer immunotherapy, PD-L1 silenced DCs were used for a
DC vaccine that induced potent T cell responses (140). Finally,
IL-2 administration could recover dysfunctional HBV-specific
CD8 cells originated by an inefficient hepatocyte priming in HBV
transgenic mice (74).

Soluble Factors
As a result of its peculiar cell population, the liver
microenvironment is enriched in soluble factors with
immunosuppressive function (Figure 2A). Not only the
immunoregulatory cytokines IL-10 and TGF-β are preferentially
secreted over other pro-inflammatory cytokines by several types
of hepatic cells (i.e., dendritic cells, macrophages/monocytes,
LSECs) (141), but also an abundance of other regulatory
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mediators has been detected within the liver. Indeed, constitutive
expression by different liver infiltrating cells (e.g., dendritic
cells, regulatory myeloid cells) (141, 142), of tryptophan-
2,3-deoxygenase (TDO), or Indoleamine 2,3-dioxygenase
(IDO) which are tryptophan-degrading enzymes, can lead to
tryptophan depletion and the formation of toxic metabolites,
such as kynurenines (143, 144). These factors have been shown
to constrain T and NK cell proliferation (145) and to induce T
cell apoptosis (143, 144).

The shortage of another essential amino acid, i.e., L-arginine,
causing T cell arrest in the G0/G1 phase and CD3ζ chain down-
regulation, is due to an excess of arginase derived from damaged
hepatocytes (146) and other liver-infiltrating cells (147). In HBV-
infected patients the latter mechanism was demonstrated both
in acutely and in chronically infected subjects and could be
corrected in vitro by T cell transfection of CD3ζ or replenishment
of the amino acid arginine required for its expression (19, 55).

Interestingly, a granulocytic subset of myeloid-derived
suppressor cells (gMDSC), which release arginase I upon
degranulation, was demonstrated to be expanded in CHB
patients with high HBV replication levels without liver necro-
inflammation, highlighting the capacity of these cells to contain
tissue damage by limiting arginine supply to T cells (148).

Local Induction of Regulatory Cells
In addition to HSCs, KCs, and macrophages, the liver is
enriched in populations of regulatory cells, such as myeloid
derived suppressor cells (MDSCs) and regulatory T cells (Tregs),
that can promote tolerance by producing immunosuppressive
cytokines (IL-10 and TGF-β) and by expressing high levels of co-
inhibitory ligands, such as PD-L1 and Galectin-9 (Figures 2A,B).
Importantly, the direct contact between circulating T cells and
resident regulatory cells is favored by the slow blood flow in
liver sinusoids and by the unique liver architecture, which is
characterized by the presence of sinusoidal wall fenestrations
which facilitate cell to cell contact (85).

Myeloid Derived Suppressor Cells
Myeloid cells play a key regulatory role within the liver
contributing to the outcome of immune responses, thanks
to their functional plasticity. In fact, they can differentiate
from monocytes into macrophages, monocyte-derived dendritic
cells or myeloid suppressor cells. During liver inflammation,
inflammatory monocytes can be recruited into the liver as a
result of ICAM-1 (CD54) expression on LSECs (141). They can
subsequently differentiate into myeloid-derived suppressor cells
by a CD44-dependent mechanism driven by activated stellate
cells (141), as shown by the possibility to prevent acquisition
of the suppressive phenotype by blocking CD44-mediated
interaction between monocytes and HSCs (149). During
prolonged hepatic inflammation, MDSCs inhibit immune
responses through different mechanisms, including IL10 and
TGF-β secretion, as well as production of arginase 1 and reactive
oxygen species (ROS) (150). Expansion and suppressive function
of MDSCs was reported to be modulated by cysteine-rich
protein 61 (CCN1), a multifunctional protein highly expressed
in impaired cholangiocytes and hepatocytes. This has been

described in primary biliary cholangitis (PBC) but it may likely
represent a general mechanism of MDSC modulation shared by
chronic liver inflammations of different etiology (151).

As already mentioned, the immunosuppressive function of
MDSCs was described in chronic HBV infection where gMDSC
could dampen HBV-specific T cell responses in a arginase-
dependent manner, documenting the capacity of expanded
arginase-expressing gMDSCs to regulate liver immunopathology
(148). A recent study in chronically HBV infected patients
with high levels of HBsAg revealed the capacity of MDSCs
to promote immune dysfunction through the induction of
regulatory T cells, primarily via TGF-β and IL-10 dependent
signaling pathways. Interestingly, a year tenofovir treatment did
not result in the immune restoration of the regulatory MDSC
and Treg populations (152). In addition, circulating MDSCs were
significantly expanded in patients with HBV-related acute-on-
chronic liver failure (ACLF) and closely associated with disease
progression and severity. In this setting, CD3ζ chain expression
was decreased in T cells and negatively correlated with MDSC
frequency (153).

Monocyte differentiation within the liver can also be driven
by TLR-9 signaling toward the acquisition of anti-viral protective
properties through the formation of inflammatory monocyte
aggregates, called iMATEs, where virus-specific CD8 cells can
expand upon OX40- and CD28-mediated signaling initiated by
inflammatory dendritic cells of monocyte origin (154). This
unique iMATEs structure, which, however, seems to be generated
selectively in the mouse liver, can contribute to chronic virus
infection control. iMATE formation induced by systemic TLR-
9 treatment has also been reported to induce effector CD8 T cell
expansion and control of tumor growth in a murine hepatoma
model (155).

Such functional plasticity of MDSCs represents a unique
challenge for future therapeutic interventions in the setting of
chronic liver disease (156). Indeed, all these results suggest that
a therapeutic regiment that either blocks MDSC suppressive
functions and Treg amplification or supports iMATES formation
facilitating CD8 T cell proliferation might represent a potential
strategy to cure HBV-related liver disease. However, further
studies of this unique regulatory cell population are needed to
better characterize its real therapeutic potential.

Treg Expansion
During viral infection, regulatory T cells are recruited into the
inflamed liver and compete with effector CD8 T cells for IL-2,
limiting the amplification of virus-specific T cell responses (8).
Both mDCs and pDCs have been described to promote Treg
proliferation through a mechanism mediated by STAT3 signaling
(102, 157–159). Specifically, the expansion of Treg cells, which
can inhibit T cell responses either by direct cell-cell contact or by
secretion of suppressive cytokines, can be caused by plasmacytoid
dendritic cells (pDCs) through an IL27-based circuit which can
lead to PD-L1 expression and subsequent Treg proliferation (158,
160). pDCs further foster T cell tolerance by stimulating IL-10
producing Tregs via an ICOS/ICOSL-mediated interaction (102,
159). In parallel, mDCs can also promote Treg expansion and
T cell apoptosis as a result of the cross-talk with HSCs, leading
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to PD-L1 up-regulation and IDO induction, and subsequent
generation of immunosuppressive kynurenine compounds (161–
163). Recent findings highlighted a novel OX40L + DC subset
able to selectively expand Tregs, which plays an essential role in
Treg homeostasis maintenance under inflammatory conditions;
indeed, co-culture of DCs from GM-CSF treated mice and
CD4+ T cells induced an increase in Treg proliferation in an
OX40L dependent manner (164). Treg cell expansion can be
also stimulated by LSECs and IFN-γ activated stellate cells in
a PD-L1 independent manner (141, 161). LSECs are the major
liver cells responsible for TGF-β dependent hepatic FoxP3+ Treg
induction, thanks to their unique capacity to secrete TGF-β
and to bind exogenous LAP/TGF-β to their membrane through
the anchor molecule GARP. By this mechanism, LSEC-induced
Tregs have been reported to become functional suppressor cells
in a mouse model of autoimmune encephalomyelitis (165).
Beyond this tolerogenic role, LSECs have been recognized as
a population that can efficiently stimulate naïve CD8 T cells
to differentiate into a liver-primed memory T cell population
providing protection and contributing to clearance of viral
infections (8, 166).

Also HSCs can function as tolerogenic regulators in the liver,
by enhancing TGF-β-dependent Treg generation and inhibiting
TGF-β dependent Th17 differentiation, via a retinoic acid (RA)-
mediated mechanism (167). HSCs have been associated with
the production of TGF-β and all-trans retinoic acid (ATRA),
both important for Treg differentiation (168). In particular,
generation of FoxP3+ Tregs have been reported to occur in
the presence of DCs and low concentrations of TGF-β in an
ATRA-dependent manner, since blocking experiments of RA-RA
receptor interaction inhibited HSC-induced FoxP3 expression
(169). Furthermore, a recent report indicates that HSCs from
HBV patients with advanced liver fibrosis play an important role
in modulating the intrahepatic Treg population via a PGE2/EP2
and EP4 pathway (170).

T Cell Killing by NK Cells
NK cells are highly enriched within the liver where they exert
a key role in anti-viral control but can also exert a regulatory
effect with possible inhibition of adaptive immune responses
(32, 34) (Figure 2B). Initial studies performed in LCMV-infected
mice demonstrated that T cells are susceptible to NK-cell-
mediated killing (171, 172). The elimination of activated T
lymphocytes by NK cells can be mediated by NKG2D- and
TRAIL-dependent mechanisms, as demonstrated in vitro (34,
173–175) and in LCMV infected mice in vivo (172). Moreover,
regulation of T-cell responses by a direct perforin-dependent NK-
cell-mediated elimination of CD4 T cells leading to the loss of
help for CD8 T cells was observed in the same murine model of
chronic viral infection (171).

In this negative modulation of T cell responses by NK
cell killing, the NK cell NCR1 (NKp46)-receptor may have an
important role and inhibition of NCR1 ligand expression on T
cells by type I IFN signaling can protect T cells from NK cell
killing allowing T cell evasion from NCR1 mediated NK cell
attack (176).

In chronic HBV patients NK cells are more pathogenic than
protective because defective in cytokine production but efficiently
able to express cytolytic function (32, 34). Moreover, apoptosis
of HBV-specific CD8 T cells up-regulating the death-inducing
receptor TRAIL-R2 can be caused by TRAIL-positive NK cells
in chronically infected HBV patients (34). By these mechanisms
NK cells can deeply impair T cell responses, protecting the host
from fatal immunopathology during viral infections but also
diminishing the anti-viral activity of effector T cells, thereby
contributing to the exhausted T cell phenotype of chronic
infections. Thus, therapeutic strategies aimed at promoting the
protective over the pathogenic and inhibitory effects of NK cells
may represent potential options to treat chronic HBV infection.

PERSPECTIVES FOR NOVEL
THERAPEUTIC STRATEGIES

Immune reconstitution of functionally efficient T cell responses
can be crucial for the cure of chronic HBV infection. An
efficient strategy to improve the HBV-specific T cell function
should probably target multiple mechanisms, because the
protective anti-viral T cell response is affected by multiple factors
simultaneously during chronic infections. Decline of antigen
can allow correction of a single inhibitory mechanism and is
expected for this reason to be insufficient alone for successful
immune restoration. It thus represents only a part of the overall
functional reconstitution strategy which should be put in place to
cure HBV infection. Instead of currently available NUCs, which
are poorly effective in diminishing HBV antigen concentrations,
new and more efficient antivirals should be employed in the
future, once clinically available, to reduce more rapidly and
more efficiently the antigen load and the number of infected
hepatocytes. They include RNA interference (RNAi) molecules,
which can directly target HBV mRNAs, allowing reduction in
HBsAg serum titers (177), HBV capsid assembly inhibitors and
nucleic acid polymers (NAPs), as HBsAg release inhibitors (178–
180). Since decline of antigen alone is expected to be insufficient,
additional mechanisms should be targeted to further improve
T cell responsiveness. Immune checkpoint blockade represents
a possibility, but also metabolic and epigenetic modulations
are very promising. In addition, recent studies performed in
a transgenic mouse model of neonatal HBV infection, which
closely recapitulates the immunological events occurring in the
early immune tolerant phase of chronic HBV infection, indicate
that IL-2, rather than checkpoint blockade, can improve defective
T cell responses (74). As predictable, IL-2 treatment induced
functional improvement only of HBV-specific CD8 T cells from
immune-tolerant, but not immune-active chronic HBV patients.

In the perspective of a therapeutic correction of T
cell exhaustion, a crucial limitation is represented by the
incomplete information we have on level and quality of T cell
functional reconstitution which is needed to achieve control of
chronic HBV infection.

In order to address this issue, the optimal comparator to
define level and quality of the T cell response to be restored for
control of infection would be represented by patients able to
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resolve an acute infection spontaneously. However, one major
limitation to the definition of the immune parameters in these
subjects is represented by the heterogeneity of T cell reactivities in
relation to the time elapsed from the initial exposure to the virus,
which is generally undefined. Certainly the study of adult-onset
infections with known duration evolving either toward resolution
or chronicization would be crucial for the identification of T cell
features associated to virus control. Nonetheless, the paucity of
clinically overt acute HBV infections nowadays and the much
greater rarity of those chronically evolving make such a study
hardly feasible. In addition, difficult recruitment of a significant
control patient cohort is further compounded by technical curbs
due to patients’ HLA heterogeneity, as most of the studied T
cell epitope specificities are mainly limited to the HLA-A∗02
restriction, which is only prevalent in the Caucasian population.

Even more important, still unknown, is whether the maximal
improvement of T cell responses that a given chronic patient
can reach after long-term exposure to HBV and its antigens is
sufficient for complete and durable HBV cure. In the lack of
definitive data ruling out the possibility that T cell functional
defects derived from decades of T cell/virus interplay are
only partially and insufficiently reversible by therapeutic T cell
correction strategies, an alternative possibility to overcome T
cell exhaustion is represented by the in vitro generation and
expansion of functionally efficient, genetically engineered HBV-
specific T cells for adoptive transfer to chronically infected
patients. To this purpose, autologous T cells of HBV-unrelated
specificity have been engineered to express HBV-specific TCR
able to recognize HLA/peptide complexes in a HLA restricted
manner (TCR-redirected T cells) or chimeric antigen receptors
(CAR) composed of synthetic antibody fragments, combined
with costimulatory domains, such as the CD28 and the CD3 zeta
molecules, that allow the receptor to recognize viral antigens on
infected cells in a HLA independent way, without the need of
antigen processing (181–184). Thus, an important advantage of
CAR T cells over TCR-redirected T cells is that CAR T cells can
be used in all patients, irrespective of their HLA profile, while
TCR-redirected T cells can only be used in patients with the
appropriate HLA haplotype and can recognize only individual
epitopes generated by intracellular antigen processing.

Potential problems related to these T cell transfer approaches
are the possible risk of severe liver damage and the possible
inhibitory effect on transferred effector T cells of the tolerogenic
liver environment. To reduce cell lifespan and limit the risk
of uncontrolled proliferation with progressive liver damage, a
transient expression of the modified TCR has been developed
by mRNA electroporation (185). Moreover, combination of
checkpoint blockade and CAR T cell therapy (186), as well as
shRNA knockdown of PD-1 in TCR-redirected T cells (187)
have been used to prevent immunosuppressive mechanisms
mediated by inhibitory co-receptors (188). In addition, CAR T
cells have recently been further engineered by over-expressing
the canonical AP-1 transcription factor c-Jun to render them
resistant to exhaustion. These cells showed different chromatin
accessibility, enhanced expansion and functional capacity, and
improved anti-tumor activity in five different tumor mouse
models in vivo (189).

In summary, T cell modulation remains a promising
therapeutic strategy to cure chronic HBV infection, but the proof
of concept that it can actually work in this clinical context
still remains to be provided. A number of different elements
contribute to the complexity of its practical application: first of
all, the still partial knowledge of the immunological correlates of
protection in HBV infection. The functional efficiency of HBV-
specific T cell responses is certainly essential for a final and
persistent control of infection, but we don’t know whether a
selective improvement of the T cell function can be sufficient
to cure infection. This uncertainty raises the issue of which
other effectors of the immune system should be modulated
in combination with a functional T cell reconstitution, in
consideration of the evidence that also intracellular innate
responses and NK cells are defective in chronic HBV infection
(32, 190). This opens in turn a series of additional questions.
In particular, the number of different therapeutic interventions
to be used simultaneously or sequentially in order to restore a
functional immune system, considering that T cell dysfunction
per se is multifactorial and may require for its correction the
coordinated application of different therapeutic approaches. This
is particularly relevant in consideration of the fact that available
therapies are easy to take and almost totally free of side effects
and that chronic HBV patients under therapy feel absolutely
well (191). This implies that new therapies should be easy to
take, free of important side effects, and highly effective against
the virus in a short time. In light of these considerations, all
different strategies exposing the patient to the risk of a strong
stimulation of T cells of HBV-unrelated specificity (i.e., epigenetic
therapies, checkpoint inhibition) or of extensive and severe
liver damage (i.e., therapeutic vaccines) or the combination of
different approaches may be ethically problematic. This concern
may also apply to the adoptive T cell transfer of genetically
engineered T cells which is also technically very complex for a
wide application in the clinical practice.

FINAL REMARKS

A number of specific drugs able to intervene on the different steps
of the HBV life cycle and on different mechanisms involved in
the pathogenesis of T cell exhaustion are now available and under
clinical evaluation. In a first step of therapy, new direct anti-viral
drugs acting on HBV replication, antigen production and liver
inflammation may be needed to make immune therapies more
effective, because their efficacy in improving the T cell function
is believed to be affected by the negative regulatory mechanisms
triggered by the exposure to high antigen quantities and by the
environment of the chronically inflamed liver. This initial step
of anti-viral therapy may be also essential to diminish the risk
of severe liver pathology which may follow a strong activation
of anti-viral effector T cells induced when the percentage of
infected liver cells is elevated. Assuming that decline of antigen
and control of liver inflammation may be insufficient for optimal
restoration of anti-viral T cell functions, the possible choice for a
second step of therapy to further overcome T cell exhaustion is
in principle between checkpoint blockade, metabolic correction
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and epigenetic modulation strategies. On one hand, correction
of mitochondrial and proteasomal defects in chronic HBV
infection by the use of mitochondrial targeted anti-oxidants
and polyphenolic compounds seems to be comparably or
even more efficient than PD-1/PD-L1 blockade in functional
T cell restoration in vitro with very limited effects on T
cells of HBV-unrelated specificity (192). On the other hand,
epigenetic modulators are expected to be highly effective
on T cell responses given the massive transcriptional down-
regulation detected in exhausted HBV-specific CD8 cells (36),
but their use in vivo may be precluded by their potentially
severe side effects.

Once T cell exhaustion is maximally corrected and
responsiveness to antigen stimulation is optimally reacquired,
effector T cell responses will likely need to be boosted in a
third step of therapy by vaccines containing not only HBsAg
and HBcAg but also polymerase, in consideration of its
high immunogenicity and the severe level of exhaustion of
pol-specific CD8 T cells reported in chronic HBV infection
(39, 40).

Finally, an important goal for future research will be also to
develop reliable predictors of response to immune therapies to be
used in individual patients. Indeed, it is becoming increasingly
clear that chronic patients are a heterogeneous population
with variable levels of T cell functionality, which can probably
confer propensity to respond more or less efficiently to immune
modulation (37, 38). Identification of cell-mediated immunologic
profiles predictive of response to immune modulation will be
pivotal for the success of immune therapies because we can

predict that only a proportion of chronic HBV patients will take
advantage from immune modulation.

Thus, the possible scenario that recent research results allow
to depict for a near future would be a therapy for chronic
hepatitis B with new direct anti-viral compounds started after an
immunological characterization of individual treated patients to
predict their likelihood of responsiveness to immune therapies
aimed at functional T cell reconstitution. Only patients predicted
to be immunologically responsive will receive this second
step of therapy based on immune modulation (i.e., metabolic
or checkpoint modulators) and therapeutic vaccination, either
sequentially or simultaneously.
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