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A B S T R A C T   

The present research explores linear as well as nonlinear radiation patterns based on the MHD 
non-Newtonian (Maxwell) nanofluid flow having Arrhenius activation energy. This study’s core 
focus is MHD properties in non-Newtonian fluid dynamics and boundary layer phenomena 
analysis. It initiates with time-dependent equations, employing boundary layer approximations. 
Extensive numerical computations, executed with custom Compact Visual Fortran code and the 
EFD method, provide profound insights into non-Newtonian fluid behavior, revealing intricate 
force interactions and fluid patterns. To check the stability of the solution, a convergence and 
stability analysis is performed. With the values of ΔY = 0.25, Δτ = 0.0005, and ΔX = 0.20; it is 
found that the model convergence occurs to the Lewis number, Le > 0.016 as well as the Prandtl 
number, Pr > 0.08. In this context, investigating non-dimensional results that depend on multiple 
physical factors. Explanation and visual representations of the effects of different physical 
characteristics and their resultant temperatures, concentrations, and velocity profiles are pro-
vided. As a result of the illustrations, the skin friction coefficient and Sherwood number, which 
are calculated, as well as Nusselt values, have all come up in discussion. Additionally, detailed 
representations of isothermal lines and streamlines are implemented, and it is pointed out that the 
development of these features occurs at the same time as Brownian motion. Furthermore, the 
temperature field for Maxwell fluid is modified due to the impression of chemical reaction as well 
as the Dufour number (Kr and Du). Our research demonstrates the superior performance of non- 
Newtonian solutions, notably in cases involving activation energy and nonlinear radiation. This 
paradigm shift carries significant implications. In another context, the interplay between Maxwell 
fluid and nonlinear radiation is notably affected by activation energy, offering promising appli-
cations in fields like medicine and industry, particularly in groundbreaking cancer treatment 
approaches.   
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Nomenclature 

Variables 
A Linear stretching constants, [s− 1] 
B Magnetic component, [Wbm− 2] 
C* Dimensional concentration, [mol m− 3] 
C Dimensionless concentration, [− ] 
cp Specific heat, [Jkg− 1K− 1] 
Cw Concentration at the surface, [mol m− 3] 
C∞ Concentration away from the surface, [mol m− 3] 
DB Coefficient of Brownian diffusion, [− ] 
DT Coefficient of thermophoresis diffusion, [− ] 
g Gravitational acceleration, [ms− 2] 
k Thermal conductivity, [Wm− 1K− 1] 
κ Boltzmann constant 1.3805 × 10− 23JK− 1 

qr Radiative heat flux, [kgm− 2] 
t Dimensional time, [s] 
T Fluid temperature, [K] 
Tw Temperature at the surface 
T∞ Temperature away from the surface 
u Velocity component in x direction, [ms− 1] 
U Non-dimensional velocity component, [− ] 
Uw Uniform velocity, [ms− 1] 
v Velocity component in y direction, [ms− 1] 
V Non-dimensional velocity component, [− ] 
Vw Uniform velocity, [ms− 1] 
x Cartesian x coordinate 
X Non-dimensional x coordinate 
y Cartesian y coordinate 
Y Non-dimensional y coordinate 

Parameters and Numbers 
AE Activation energy parameter, [− ] 
Cf Skin friction coefficient, [− ] 
Du Dufour number, [− ] 
Ec Eckert number, [− ] 
Gr Thermal Grashof number, [− ] 
Gm Mass Grashof number, [− ] 
Kr Chemical reaction parameter, [− ] 
Le Lewis number, [− ] 
M Magnetic parameter, [− ] 
Nb Brownian parameter, [− ] 
Nt Thermophoresis parameter, [− ] 
Nu Nusselt number, [− ] 
Nv Maxwell parameter, [− ] 
Pr Prandtl number, [− ] 
Ra Radiation parameter, [− ] 
Sh Sherwood number, [− ] 

Greek Symbols 
βC Mass distribution coefficient 
βT Heat distribution coefficient 
γ Temperature related parameter 
λ Relaxation time effect, [s] 
υ Kinematic viscosity, [m2s− 1] 
τ Dimensionless time 
ρ Fluid density, [kgm− 3] 
σ Stefan-Boltzmann constant 
θ Non-dimensional temperature 
θw Temperature differences 
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1. Introduction 

Non-Newtonian fluids defy Newton’s viscosity law, altering viscosity under force. For instance, ketchup thickens when agitated. 
These fluids find extensive use in engineering, applied science, and industry. Conventional fluid models fall short in representing the 
complexity of non-Newtonian fluids. This resulted in various academics referencing numerous models at various times [1,2]. Zhu et al. 
[3] mentioned earlier in their experiment that combining starch and polymer alters the viscosity peak to a higher frequency, allowing 
for high-speed polishing. Extensional viscosity has been previously observed by Finotello et al. [4] to have an influence on a fluid 
which is non-Newtonian with a given shear-thinning, where the viscosity is no longer constant throughout contact. Nonetheless, it is 
demonstrated that the Weber number (We), which has no dimensions and impact factor (B) predominate and distinguished between 
Newtonian and non-Newtonian fluids. Additionally, a comprehensive investigation demonstrated that greater viscosity dispersal of 
energy and extensional consequences are to blame for this outcome. Several academics continue to assess diverse effects and impacts 
from various vantage points. 

The creation of nanofluids, achieved by blending base fluids with minute metal nanoparticles, represents a remarkable scientific 
innovation. Common base fluids include water, oil, and ethylene glycol. Nanofluids hold great significance in heat transfer due to their 
exceptional properties. They have a higher coefficient of convective heat movement and better thermal conductivity than the basal 
fluid. Pordanjani et al. [5] emphasized that nano fluids typically exhibit superior heat transfer capability in energy systems compared 
to purified fluids because of it is employed with a metal oxide particle combination, while studies of performance have demonstrated 
that nano fluids are appropriate for usage in applications in industry. Using nano fluids also reduces the number of resources used, 
waste created, materials used, and harm done to the environment. However, Ramezanizadeh et al. [6] showed that understanding the 
rheological behavior of nanofluids is essential for determining whether or not they are acceptable for convective heat transfer ap-
plications as far as the thermal act of nanofluidic thermosyphons is extensively affected by the type of nanoparticles used. Moreover, 
the ability of small nanoparticle concentration to enhance heat and mass transport was established in tests by Ahmadi et al. [7] upon 
the thermal conduction of multiple nanofluids because of Brownian motion increases as temperature rises, thermal conductivity also 
rises. In addition, Maxwell did not enter the field as a consequence of his research into eccentric viscosity or eccentric springs, to return 
to the topic that made him famous, Maxwell fluids. In extensive studies dating back to 1866, he examined the properties of gases and 
fluids in general. Puri et al. [8] demonstrated that the term “non-Newtonian fluids” refers to a wide variety of liquids with rheological 
properties, such as paints, cosmetics and shampoo, lubricants, specific oils, blood, toiletries, preserves, melted butter, jellies, mud, and 
detergent. Non-Newtonian fluid models are often classified as differential, rate, or integral, as mentioned by Fetecau et al. [9] in a prior 
study. Maxwell fluids, a form of rate-type fluids, can explain the process of relaxation. Moreover, it is reasonable to anticipate precise 
results from Maxwell fluid. A mathematical investigation of the mass along with heat transmission in a Maxwell fluid was carried out 
by Khan et al. [10]. It is also demonstrated that the characteristics of thermal stratification and concentration stratification effect on 
temperature as well as concentration distribution. Farooq et al. [11] used BVPh 2.0 to investigate the motion of the MHD effect of 
Maxwell liquid on a surface that was extending in an exponential way. Fetecau et al. [12] observed the mathematical analysis of 
non-Newtonian (Maxwell) fluid flow that accounted for the porous effect, and the results showed that a porous medium delays steady 
state. Hayat et al. [13] explored the ferromagnetic impact of a Maxwell fluid movement adopting the discharge method. It is shown 
that velocity and concentration profiles significantly improve when elastic as well as thermophoresis variables are modified. In 
addition, Hosseinzadeh et al. [14] conducted experiments on a Maxwell fluid with a chemically radiative flow, taking nonlinear ra-
diation into account and concentrating on the direct impact of rise in Prandtl number on temperature and the Nusselt number. The 
Runge-Kutta technique was used by Shehzad et al. [15] to demonstrate how spontaneous convective Maxwell circulatory of fluid 
impacts a spinning disc that swings as a result of thermophoretic activity. Furthermore, Reza-E-Rabbi et al. [16] inspected that the 
presence of nano-sized particles in Maxwell fluids affects the temperature field of Casson fluid in their experiment. Some variables (Nt, 
Pr,Nb, Du, Le, and Sr) affect the fields of both fluids. One of the noteworthy outcomes is temperature profiles rise due to a surge of 
thermophoresis and Brownian parameter, whereas they decline due to an improvement of Casson fluid parameter. 

Magnetohydrodynamics (MHD) studies electrically conducting fluids like salt water, liquid metals, and plasmas. This field, initi-
ated by Alfvén’s Nobel Prize-winning work, explores how magnetic fields influence fluid motion and induce electromagnetic- 
hydrodynamic waves [17]. Hussain et al. [18] presented an optimized model in which the magnetic field was decreased in 
response to a rise in perturbation caused by an upsurge in Hartmann number and a few waves number as a consequence of previous 
MHD research establishing an important fact. In addition, it has been reported that the flow becomes unstable when Re grows due to an 
increase in growth rate. In a previous study by Chen et al. [19], it has been looked at flow in the boundary layer of a viscoelastic MHD 
fluid across a extending sheet and came to the conclusion that the stronger the elastic characteristic, the more oscillating the phe-
nomenon, and the lower the strain parameter, the more viscous the behavior. In accordance with Khan and others [20], with the 
appearance of the Dufour, chemical reaction and Soret effect, which converts a nonlinear differential system into a linear one by 
utilizing a similarity variable, MHD convective flow was seen across a spinning cone. Jabeen et al. and Noor [21,22] used radiation, 
thermophoresis, as well as chemical reaction to investigate the flow of MHD around a stretchable plate. Maxwell fluid has a greater 
capacity of heat and mass transport than Newtonian fluids and some other non-Newtonian liquids, according to Jabeen et al.’s 

*Abbreviations 
EFD Explicit Finite Difference 
MHD Magneto-hydrodynamics 
PDE Partial Differential Equation  
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observations, it is pointed out that the thickness of the mass boundary layer decreases for Maxwell fluid, the values of Schmidt number, 
thermophoresis, chemical reaction factor, and Schmidt number increases. Akinshilo [23] investigated the effects of the radiative 
parameter, pressure gradient, Reynolds number, and magnetic Prandtl number on an MHD fluid flow, and a Runge-Kutta numerical 
solution of the fourth order supported the agreement. Henceforth, the increased radiation parameter results in a decrease in tem-
perature distribution, which has an impact on the electrically conducting wall. This is a noteworthy finding from the observation. In a 
recent study, Chabani et al. [24] utilized COMSOL to analyze the effects of Cu–TiO2 as an integrated nano fluid in a triangular field 
with a meandering obstacle using the Darcy-Brinkman-Forchheimer model and concluded that triangular obstructions can enhance 
thermal transfer, which is a major finding. Whereas, Reza-E-Rabbit et al. [25] utilized the explicit finite difference methodology and 
Compact Visual Fortran to examine the uneven MHD flow of Casson fluid in order to measure the impression of thermal radiation as 
well as chemical processes. A substantial comparison line between Maxwell and Casson fluid has been made, showing that the thermal 
and mass properties greatly improve, supporting earlier findings. Temperature rises with thermal relaxation and radiation parameter, 
as Kumar et al. [26] showed in their numerical investigation of MHD micropolar fluid using a modified flux model. Recent research 
conducted by Lou et al. [27] on a dual phase dusty MHD micropolar liquid that was subject to Lorentz and Coriolis forces revealed that 
the Nusselt number decreased as rotation, material factor, and dust element volume concentration increased. 

Our flow model incorporates heat radiation, vital in mixed convective flow with hydromagnetic effects. It finds applications in heat 
exchangers, gas turbines, combustion chambers, nuclear plants, steel forging, metal extraction, and glass production, prompting 
increased research on thermal radiation. Crane [28] studied boundary layer flow over a stretching surface. Understanding radiation’s 
impact on heat transfer is crucial across industries, especially at high temperatures, where fluid temperature profiles and heat 
transmission rates vary significantly. Research covers both linear and nonlinear radiation, with emphasis on boundary conditions with 
linear temperature fluctuations. Ghadikolaei et al. [29] explored the paraphernalia of nonlinear radiation while conducting an 
experiment with Casson fluid over a porous medium positioned at an incline. They demonstrated that the presence of Lorentz drag 
reduces fluid flow velocity by increasing the Hartman number and Casson fluid parameter. Using the RKF-45 method of numerical 
analysis, Gireesha et al. [30] also investigated the impact over the Jeffrey fluid in three dimensions. The research established that 
precise boundaries for the space- and temperature-dependent production or absorption of heat. Using Maxwell fluid, Ahmed et al. [31] 
investigated transmission characteristics the mass and heat of nanofluid in the survival of a magnetic field induced by a stretching 
cylinder. Chu et al. [32] studied nonlinear thermal radiation aspects of heat generation and absorption in nanofluids containing 
gyrotactic microorganisms comprising rate-type nanofluids. The authors’ key finding was that the heat transmission of the nanofluid 
has been significantly increased by the thermophoresis parameter, radiation parameter, Brownian motion constant, and surface 
heating parameter In a recent study, Gautam et al. [33] hypothesized a comparison of the nonlinear thermal radiation impact between 
bio-convective MHD Casson and Maxwell nanofluid, and the results demonstrated that the velocity of Casson fluid was significantly 
more dominant than Maxwell fluid. In a previous study, Ali et al. [34] demonstrated that for an MHD flow, both radiation and 
thermoelectric improve the heat transmission capability. One significant conclusion of the study reveals that the amount of Nanofluid 
flow declines as thermal radiation rises. 

Various scientific domains, including chemical engineering, food processing, geothermal resources, and oil emulsions, address 
mass transfer due to chemical reactions and activation energy. When different species’ concentrations change during a reaction, mass 
transfer occurs. Activation energy (AE) is the energy threshold for a specific reaction. Concentrations shift as reactions proceed. 
Logan’s work explores the origins and significance of the Arrhenius equation, a vital tool for understanding chemical kinetics. 
Moreover, the research employs the Buongiorno model theory [35] to integrate thermophoretic and Brownian dispersion. According to 
Rafiq et al. [36], activation energy augments the concentration profile of a fluid. The authors delve into the extensive research field 
that is activation energy. Zhang et al. [37] conducted experiments investigating the radiation as well as activation energy impacts of 
Maxwell fluid over a stretching plate. Khan et al. [38] also reported the influence of activation energy on linear thermal radiative 
Walter-B nanofluid. In addition, it is also found that a connection between the temperature profile, the activation energy, and the 
Weissenburg number. Researchers [39] presented a novel chemical species model that addressed the energy of the Darcy-Forchheimer 
nanomaterial flow through an impermeable cylinder and explained the effect of activation energy. Furthermore, Salawu et al. [40] 
discovered that, when using Maxwell nanofluid, activation energy research is crucial to the propagation of dual chemical mixes of 
energy as species transport, which will help chemical engineers and others avoid reaction blowup. Alsaadi et al. [41] examined the 
effect of nonlinear radiative heat flux utilizing Williamson fluid across a heated stretchable sheet. Additionally, Brownian diffusion has 
been incorporated into the mathematical model’s structure. The fluctuations of activation energy on Carneau fluid were discovered by 
Ijaz Khan and his peers [42]. The investigation utilized the discharge method, Brownian diffusion, and thermophoresis. The dominance 
of nonlinear thermal radiation as well as activation energy of Casson fluid is previously explored by Reza-E-Rabbit et al. [43]. 
Additionally, it is found that the role of magnetism in controlling heat transport. Whereas author’s significant finding nder the in-
fluence of activation energy it is observed that nonlinear radiation had a considerable impact on the mass transmission down the wall, 
revealing the fluid’s substantial action relative to a Newtonian one motivates the current study. Therefore, Li et al.’s recent study [44] 
examined the impact of activation energy together with chemical reaction on the magnetohydrodynamic (MHD) fluid flow caused by 
the compression of Casson by Darcy-Forchheimer via porous media in a horizontal channel. As the thermal relaxation parameter 
increases, the temperature dynamics of the hybrid Williamson nanofluid mixture show a declining trend. Meanwhile, an increase in the 
Weissenberg number leads to an augmentation in the density of microorganisms and concentration profiles within the fluid domain. 
Sreedevi et al. [45], using the similarity transformation method, shed light on the complex interplay of variables in this intricate 
system. Employing the finite element method, Chandra Sekar Reddy [46] confirmed that an increase in the nanoparticle volume 
fraction enhances the velocity of the hybrid nanofluid. Moreover, it was observed that the temperature of the hybrid nanofluid rises 
with increasing Biot number values. Reddy et al. [47] explored the influence of an updated Fourier’s heat flux on thermal transport in a 
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hybrid nanoliquid. Their Galerkin finite element study found that adding 0.03 vol fraction of magnesium oxide nanoparticles boosts 
heat transfer by 4.2 %–15.8 %. In another work [48], the authors investigated temperature and concentration effects on heat and mass 
transmission in a Maxwell hybrid nanofluid. They transformed equations using similarity reductions, showing that rising thermal 
relaxation parameter values decrease temperature fluctuations. The finite element method was employed to solve these equations. 
Additionally, Reddy et al. [49] analyzed heat and mass transfer in a hybrid nanoliquid flow over a stretching or shrinking surface, 
accounting for factors like chemical reactions, suction, slip effects, and thermal radiation. Their research revealed that an increased 
volume fraction of nanoparticles raises the temperature of the hybrid nanoliquid in both unsteady and steady scenarios. It is also found 
in another work [50] by introducing single-walled carbon nanotubes at a volume fraction of 0.05 in the base fluid increases the heat 
transfer rate by 6.2 %–15.6 %. Santhi et al. [51] used the finite element approach and observed that as the volume fraction of both 
nanoparticles increases, the temperature of the hybrid nanoliquid rises in both stable and unstable scenarios. Furthermore, Prabha-
vathi et al. [52], employing the variational finite element method, provided a numerical solution for the magnetohydrodynamic 
(MHD) boundary layer heat and mass transfer in nanofluids over a vertical cone saturated by a porous medium. They focused on 
Al2O3-water and Cu-water-based nanofluids with volume fractions of 1 % and 4 %. In their study, Zeeshan et al. [53] explored the 
magnetohydrodynamic transport of Casson nanofluid flow around a porous stretching cylinder, finding that as the chemical reaction 
parameter increased, the nanoparticle concentration distributions decreased, exhibiting a divergent pattern in comparison to the 
activation energy parameter. Arain et al. [54] investigated the unsteady flow in rotating circular plates containing Reiner-Rivlin 
nanofluid situated at a finite distance, revealing that as the Peclet number values increased, the microorganism profile decreased, 
whereas an increase in the bioconvection number led to a rise in the microorganism profile. In their experiment, Ali et al. [55] 
examined the flow of a two-dimensional non-Newtonian Oldroyd-B fluid through the upper horizontal paraboloid surface (UHPS) and 
found that increasing the paraboloid surface thickness parameter decreased the local skin friction coefficient. 

The current work was motivated by earlier scholarly attempts to understand how activation energy affects time-dependent 
emission Maxwell nano fluid motion on a stretched sheet. Reza-E-Rabbi et al.’s work [25] has undergone rigorous analysis, but the 
proposed study is elaborated on this work. Previously, the implications of temperature and mass parameters, as well as a comparison 
between Maxwell and Casson fluid, had been investigated; however, no research has been done on the impact of linear and nonlinear 
radiation. The current investigation will focus on the impacts of thermal radiation that is both linear and nonlinear, as well as the 
influence of activation energy on Maxwell fluid. Thermal radiation was the focus of this investigation due to its significant contribution 
to the advancement of cancer treatment. Thermal radiation, specifically nonlinear radiation, generates high temperatures and has a 
substantial effect on industrial processes and cancer treatment technology. At the beginning of every chemical reaction, activation 
energy is essential. To initiate a chemical reaction or to break a chemical bond, a minute amount of activation energy is required. This 
quality applies more to the chemical and pharmaceutical industries. Again, this extension is prompted by the incomplete nature of the 
authors’ work, which prevents them from investigating Brownian diffusion, the thermophoresis parameter on the isotherm, and the 
streamline. In addition, the proposed study’s analysis is based solely on Maxwell fluid, and its determination of activation energy is a 
completely original research endeavor. The detection of heat radiation for both linear and nonlinear patterns, as observed via graphical 
representation, will be one of the most important findings of this investigation. Furthermore, Table 1 represents the contrast of the 
present investigation with the earlier published works. 

2. Applications 

The influence and impact of heat radiation in both linear and nonlinear patterns as well as Arrhenius activation energy are the 
primary focus of this current investigation. As a result, the thermal radiation factor has the potential to be effective for both medical 
and industrial uses. The main aspects of industrial purposes are laser cutting, additive manufacturing, such as 3D paints, surface 
modification of materials, heat treatment of metals, and drying of materials where thermal radiation helps to soak the moisturizer and 
leaves it dry. These are just a handful of the regions that are most useful for industrial purposes. Additionally, hyperthermia therapy, 
which employs heat to treat cancer, has the potential to be used in medical settings, or more specifically in the treatment of cancer. 
High-intensity laser beams, a type of nonlinear radiation heat the tumor, thermally harming cancer cells and causes cell death. 
Additionally, carbon nanotubes can be employed to induce hyperthermia using nonlinear thermal radiation. The tumor is filled with 
carbon nanotubes, which are then heated by non-linear thermal radiation, such as infrared radiation, causing the tumor to become 

Table 1 
Comparison with previous work based on literature review analysis.  

Authors NNF LR NLR NF AAE 

Reza-E-Rabbi et al. [43] ✓ ✓ × ✓ ×

Ijaz et al. [42] ✓ × ✓ ✓ ×

Alsaadi et al. [41] ✓ × × ✓ ✓ 
Salawu et al. [40] ✓ × × ✓ ✓ 
Khan et al. [39] ✓ × × ✓ ✓ 
Rafiq et al. [36] ✓ × × ✓ ✓ 
Chu et al. [32] ✓ × ✓ ✓ ×

Ahmed et al. [31] ✓ × ✓ ✓ ×

Present work ✓ ✓ ✓ ✓ ✓ 

*Abbreviation: NF-nanofluid; NNF-non-Newtonian fluid; LR-linear radiation; NLR-nonlinear radiation; AAE-Arrhenius activation energy. 
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overheated. Also, the use of radiotherapy and thermo-radiotherapy assists in the treatment of cancer by destroying the DNA of cancer 
cells and preventing them from proliferating and regenerating new cells. 

The primary application of Arrhenius activation energy is in the development of hyperthermia therapy, which is a key component 
of cancer treatment. Additionally, it is used in dosimetry, which counts the total amount of heat that a cancer cell has absorbed and 
monitors the temperature range at which cancer cells are most vulnerable to dying from heat-induced cell death during hyperthermia 
therapy. In drug formulation, stability testing, and drug development, Arrhenius activation energy is probably employed additively. 
Most likely plays vital role in food preservation. Numerous industrial processes use the Arrhenius activation energy, notably those 
involving chemical reactions and material deterioration. Some of these include the kinetics of chemical reactions, polymer breakdown, 
corrosion, and heat processing. Key industrial applications include laser cutting, additive manufacturing (including 3D printing), 
surface modification of materials, heat treatment of metals, and drying processes that utilize thermal radiation for moisture removal. 
These are among the primary settings suited for industrial use. Furthermore, hyperthermia therapy harnesses heat for medical pur-
poses, particularly in cancer treatment. Nonlinear radiation, like high-intensity laser beams, is employed to raise tumor temperatures, 
causing thermal damage to cancer cells. This effect can also be achieved using carbon nanotubes within the tumor, which heat up 
through non-linear thermal radiation, such as infrared radiation, resulting in the overheating of the tumor. 

3. Methodology 

This continuing project uses numerical simulation for tracking the implication of linear together with nonlinear radiation in 
addition to the Arrhenius activation energy. In their earlier studies, Reza-E-Rabbi et al. [43] failed to observe heat radiation in a 
nonlinear pattern. Thus, new addition to the ongoing research is the measurement of the Arrhenius activation energy as well as heat 
radiation in nonlinear pattern. Since the entire project is built on numerical simulation, we used the EFD (Explicit Finite Difference) 
method to implement strategic stages to reach our goal. Meanwhile, while stability and converging tests are also done, the structure’s 
overall accuracy improves. The following are a few steps that structure the entire work from beginning to end.  

⁃ The basic principle of fluid mechanics has been used to produce a set of fundamental equations such as continuity, diffusion 
balance, energy and momentum equations  

⁃ Because of the use of several types of dimensionless variables, the generated equations are dimensionless.  
⁃ Utilizing the EFD approach, the suggested equations are quantitatively resolved.  
⁃ A complete set of stability especially convergence requirements has been developed to guarantee that the solution converges.  
• The numerical data is collected using the Visual Fortran software program, and by using the Tec plot software, the numerical data is 

evaluated and a graphical representation is created.  
• Finally, in the section covering outcomes and discussion, the velocity, concentration, temperature, streamline, and isothermal 

profiles are shown, along with distinct flow fields. In addition, a brief comparison of Maxwell and non-Newtonian liquids has been 
presented. It has been investigated here how physically various parameters behave. 

4. Mathematical analysis 

On the behavior of unstable 2D incompressible non-Newtonian magnetized (MHD) motion of Maxwell liquid, the impact of 
nanoparticles, thermal radiation, and arousing energy impact were studied. Here, it is considered the fluid velocity and the stretching 
constant A. is the force that produces a magnetic area in the path of a fluid. When time (t) exceeds zero, the fluid’s temperature T and 
concentration C increase both near to and far from the wall (Fig. 1). 

Fig. 1. Physical Configuration of the flow.  
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4.1. Continuity equation 

Due to the concept of mass conservation, the continuity equation for an incompressible fluid has the vector form q (u, v), where v 
and u are the fluid’s velocities. The Cartesian coordinate states that, 

∂v
∂y

= −
∂u
∂x

(1)  

4.2. Momentum equation 

Newton’s Second Law, which correlates a fluid component’s acceleration or rate of shifting momentum to the total force acting on 
it, is reflected in the momentum equation. Momentum equation is another name for the Navier-Stokes equation for an incompressible 
fluid. 

∂q
∂t

= υ∇2q − (q.∇)q + F −
1
ρ∇p 

Along with the Maxwell fluid term, the model has now considered buoyancy force and magnetic force, which are the body forces. 
As a result, the pressure gradient term becomes less accurate. In addition, the viscosity of Maxwell fluids produces. Now, by combining 
these and boundary layer estimations, the above-mentioned equation in the x direction becomes, 

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= gβT(T − T∞) −
σB2u

ρ + gβC(C
∗ − C∞) − α

(

u2∂2u
∂x2 + 2uv

∂2u
∂x∂y

+ v2∂2u
∂y2

)

+ υ ∂2u
∂y2 (2) 

The u and v values along the x and y axes here reflect the velocity components. Also, the impact of the relaxing period shown by α. 

4.3. Energy equation 

The energy equation precisely maintains the fluid’s energy balance. The vector form of an incompressible nano fluid’s energy 
equation is expressed as 

∂T
∂t

=
1

(
ρcp
)

f

[

∇.(κ∇T)+ (∇c.∇T)
(
ρcp
)

pDB +
(
ρcp
)

p(∇T.∇T)
DBDT

T∞

]

+ φ 

The viscous dissipation conception, the boundary layer estimation, and the heat radiation for the Maxwell nanofluid all modify the 
aforementioned equation, as shown below. 

∂T
∂t

=
κ

ρCP

∂2T
∂y2 −

(

u
∂T
∂x

+ v
∂T
∂y

)

+ λ

[

DB

(
∂C
∂y

∂T
∂y

)

+
DT

T∞

(
∂T
∂y

)2
]

+
DmKT

CSCP

∂2C∗

∂y2 −
1

ρCP

∂qr

∂y
+

υ
CP

(
∂u
∂y

)2  

Here in the above equation, at constant pressure the specific heat has been obtained by Cp. Thermophoresis and Brownian diffusivity 
are respectively defined by DB and DT. κ represents the thermal conductivity. Besides, the Rosseland diffusion for radiative qr = − 4σ′

3ks
∂T4

∂y 

where, ks stands for mean absorption coefficient. Alongside σ՛ is the Stefan Boltzmann constant. The nonlinear radiation term can be 

deducted as − ∂qr
∂y = 16σ′

3kS

((
∂T
∂y

)2
T2 + T3∂2T

∂y2

)

, now the equation turns into, 

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
κ

ρCP

∂2T
∂y2 + λ

[(
∂T
∂y

∂C∗

∂y

)

DB +
DT

T∞

(
∂T
∂y

)2
]

+
DmKT

CSCP

∂2C∗

∂y2 +
1

ρCP

16σ′

3kS

(

T3∂2T
∂y2 +T2

(
∂T
∂y

)2
)

+
υ

Cp

(
∂u
∂y

)2
(3)  

4.4. Concentration equation 

The concentric equation for the nano fluid is ∂C∗

∂t + q.∇C∗ = ∇DT
∇T
T∞

+ ∇DB∇C∗

Now, using the boundary layer approximation theory in presence of activation energy concentric equation becomes 

∂C∗

∂t
=

DT

T∞

∂2T
∂y2 −

(

u
∂C∗

∂x
+ v

∂C∗

∂y

)

+ DB
∂2C∗

∂y2 − σ2(C∗ − C∞)
P
(

T
T∞

)n

e

(
Ea
KT

)

(4) 

Initial border circumstances included by 
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t ≤ 0,C∗ = C∞, u = Ax, T = T∞, v = 0 ∨ x, y
t > 0, T = T∞, u = 0,C∗ = C∞, v = 0 for x = 0
C∗ = Cw, u = Ax = Uw,T = Tw, v = 0 for y = 0
C∗→C∞, u = 0, v = 0,T→T∞, as y→∞

(5) 

Now the dimensionless variables are 

U =
u

Uw
,V =

v
Vw

,X =
xUw

υ ,Y =
yUw

υ , τ =
tU2

w

υ , θ =
T − T∞

Tw − T∞
,C =

C∗ − C∞

Cw − C∞
, θw =

Tw

T∞
(6)  

now using the dimensionless variables from equation (6) and the non-dimensional parameters mentioned below, the above equations 
(1)–(5) have been converted to equations (7)–(11) as, 

∂U
∂X

+
∂V
∂Y

= 0 (7)  

∂U
∂τ =Grθ+GmC −

(

V
∂U
∂Y

+U
∂U
∂X

)

− Nv
(

V2∂2U
∂Y2 +U2∂2U

∂X2 + 2UV
∂2U

∂X∂Y

)

− MU +
∂2U
∂Y2 (8)  

∂θ
∂τ =Pr− 1

[
1+Ra{1 + (θw − 1)θ}2

] ∂2θ
∂Y2 −

(

U
∂θ
∂X

+V
∂θ
∂Y

)

+Nb
(

∂C
∂Y

∂θ
∂Y

)

+ Nt
(

∂θ
∂Y

)2  

+Du
∂2C
∂Y2 +Pr− 1 Ra{1 + (θw − 1)θ}2

(
∂θ
∂Y

)2

+ Ec
(

∂U
∂Y

)2

(9)  

∂C
∂τ +U

∂C
∂X

+V
∂C
∂Y

=Nt(NbLePr)− 1 ∂2θ
∂Y2 + (LePr)− 1∂2C

∂Y2 − Kr(γθ + 1)ne

(

− AE
γθ+1

)

C (10) 

Additionally, the relevant boundary conditions are 

τ ≤ 0,V = 0,C = 0,U = 0, θ = 0 for all X,Y
τ > 0, θ = 0,V = 0,C = 0,U = 0, for X = 0
V = 0,C = 1,U = 1, θ = 1, for Y = 0
θ = 0,V = 0,C = 0,U = 0 as Y→∞

(11)  

here the dimensionless parameters used as, Maxwell parameter, Nv =
λU2

w
υ ; magnetic parameter, M = σB2υ

ρU2
w
; thermophoresis parameter, 

Nt =
λDT(Tw − T∞)

T∞υ ; thermal Grashof number, Gr =
gβT(Tw − T∞)υ

U3
w

; mass Grashof number, Gm =
gβC(Cw − C∞)υ

U3
w

; Brownian parameter, Nb =

λDB(Cw − C∞)

υ ; Dufour number, Du = DmkT
CsCpυ; Prandtl number, Pr = υ

α; radiation parameter, Ra =
16σ′T3

∞
3kSλ ; Eckert number, Ec =

U2
w

CP(Tw − T∞)
; Lewis 

number, Le = α
DB

; Arrhenius activation energy parameter, AE = EA
kT∞

; chemical reaction parameter, Kr =
υK(Cw − C∞)

p− 1

U2
w

. 
For the existing study, the skin friction, Nusselt as well as Sherwood number can be expressed as underneath 

Cf =
1

2
̅̅̅
2

√ Gr− 3/4Nv
(

∂U
∂Y

)

Y=0
; Nu=

1̅
̅̅
2

√ Gr− 3/4
(

∂θ
∂Y

)

Y=0
; Sh=

1̅
̅̅
2

√ Gr− 3/4
(

∂C
∂Y

)

Y=0 

The stream function ψ along with the velocity component associated with it satisfy the continuity equation in the following way: 
U = ∂ψ

∂Y,V = − ∂ψ
∂X 

5. Numerical computation 

In the previous section of our mathematical investigation, we performed multiple computations to arrive at the dimensionless 
governing equations (7)–(10) and associated boundary conditions. In addition, the nonlinearity of the aforementioned equations 
makes it difficult and time-consuming to solve the boundary condition related time dependent partial differential equations (PDEs) 
analytically. Carnahan solved the differential equations by estimating derivatives with finite differences utilizing Finite Difference 
Methods (FDM), a class of numerical techniques utilized in numerical analysis to solve such models. The “Explicit Finite Difference 
Method” (EFDM) represents a numerical approach employed in the resolution of partial differential equations (PDEs), notably within 
the realms of computational mathematics, physics, and engineering. In instances where attaining analytical solutions proves chal-
lenging or unattainable, the EFDM method is frequently utilized to provide approximations. In the application of the Explicit Finite 
Difference Method, the spatial and temporal dimensions of a given PDE are discretized into a grid, and at each grid point, values are 
iteratively updated using explicit mathematical expressions. This method derives its name from its “explicit” nature, as it directly 
computes the solution at a particular time step based on the values from the preceding time step. Using finite differences, transform 
nonlinear partial differential equations (PDE) into a system of linear equations that can be solved by matrix algebraic techniques. This 
investigation employs an explicit finite difference method. Grid squares are formed within the border layer by intersecting appearances 
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that placed perpendicular to the axes X also Y (Fig. 2). Unlike the Y axis, which is determined differently, the X axis is equivalent to 
extending surface. During calculation, each PDE is renewed into a set of finite difference equations. The process depicted in the figure 
below consists of constructing a mesh or network of distinct components. 

In the current work, the altitude of the plate is represented by the numerical values X (=100) and Y (=25). Additionally, the grid 
space is represented by m (=100) and n (=200). Hence equations (7)–(10) becomes 

Vi,j − Vi,j− 1

ΔY
=

Ui− 1,j − Ui,j

ΔX
(12)  

U′
i,j =Ui,j +Grθi,jΔτ+GmCi,jΔτ − NvΔτ Ui+1,j − 2Ui,j + Vi− 1,j

ΔX
(
Ui,j
)2

− 2NvΔτUi,jVi,j
Ui+1,j+1 + Ui− 1,j− 1 − Ui+1,j− 1 − Ui− 1,j+1

4ΔXΔY

− NvΔτ
(
Vi,j
)2Ui,j− 1 − 2Ui,j + Ui,j+1

(ΔY)2 − MUi,jΔτ+Ui,j+1 + Ui,j− 1 − 2Ui,j

(ΔY)2 Δτ −
(

Ui,j − Ui− 1,j

ΔX

)

Ui,jΔτ −
(

Ui,j+1 − Ui,j

ΔY

)

Vi,jΔτ (13)  

θ′
i,j = θi,j +Δτ

[

Pr− 1
[
1+Ra

{
1 + (θw − 1)θi,j

}3
]
(

θi,j+1 − 2θi,j + θi,j− 1

(ΔY)2

)

+Nt
(

θi,j+1 − θi,j

ΔY

)2
]

+Δτ
[

Du

(
Ci,j+1 − 2Ci,j + Ci,j− 1

(ΔY)2

)

+Pr− 1 Ra
{

1 + (θw − 1)θi,j
}3
(

θi,j+1 − θi,j

ΔY

)2

− Ui,j

(
θi,j − θi− 1,j

ΔX

)]

+Δτ
[

Ec
(

Ui,j+1 − Ui,j

ΔY

)2

− Vi,j

(
θi,j+1 − θi,j

ΔY

)

+Nb
(

Ci,j+1 − Ci,j

ΔY
θi,j+1 − θi,j

ΔY

)]

(14)  

C′
i,j =Ci,j +Nt(PrNbLe)− 1

(
θi,j+1 − 2θi,j + θi,j− 1

(ΔY)2

)

Δτ+(PrLe)− 1

(
Ci,j+1 − 2Ci,j + Ci,j− 1

(ΔY)2

)

Δτ − Kr
(
γθi,j + 1

)ne

(

− AE
γθi,j+1

)

Ci,jΔτ

− Ui,j

(
Ci,j − Ci− 1,j

ΔX

)

Δτ − Vi,j

(
Ci,j+1 − Ci,j

ΔY

)

Δτ (15)  

Also, the boundary conditions, 

Un
i,0 = 1, Tn

i,0 = 1,Cn
i,0 = 1

Un
i,0 = 0, Tn

i,L = 0, Tn
i,L = 0 where,L→∞ 

i = mesh points along X axis; j = mesh points along Y axis 
n = time value also, τ represents the time value and expressed as, τ = nΔτ,n ∈ N. 
Although the Explicit Finite Difference Method (EFDM) is a valuable numerical tool for tackling partial differential equations, it 

does come with certain limitations and constraints. Due to the requisite use of small time increments and fine-grained spatial 

Fig. 2. Grid spacing of finite difference method [43].  
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discretization to ensure stability, EFDM can become computationally demanding when addressing large-scale problems or complex 
systems. Additionally, EFDM is subject to stability considerations, particularly concerning the choice of time step. 

6. Stability and convergence analysis 

Because the EFDM was attempted to wrap up the model, a study of stability and convergence is now required to assess whether or 
not the model will be complete. For a particular mesh size, we could satisfy the potential stability criterion for the remaining work as 
follows. Additionally, the absence of excludes equation (12) from applying the stability and convergence test. Using the dimensionless 
C, U and θ procedure of stability and convergence test starts. An assumption is made by considering eiαXeiβY which is the known term at 
time τ = 0 of Fourier expansion and here i =

̅̅̅̅̅̅̅
− 1

√
. 

Now the Fourier expansion of C, U and θ for any time τ can be expressed as equation (16) and for Δτ Fourier extension for C’, U’ and 
θ’ can be depicted as equation (17) 

U : D(τ)eiαXeiβY

θ : E(τ)eiαXeiβY

C : F(τ)eiαXeiβY

⎫
⎬

⎭
(16)  

Again,
U′ : D′(τ)eiαXeiβY

θ′ : E′(τ)eiαXeiβY

C′ : F′(τ)eiαXeiβY

⎫
⎬

⎭
(17)  

now sequentially substituting the value of (16), (17) into (13) - (15) and considering U, V as constants the results are underneath, 

D′ =D+(1+Nv)

(

(1 − cos αΔX)U2 2Δτ
(ΔX)2 +(cos βΔY − 1)V2 2Δτ

(ΔY)2

)

+(cos βΔY − 1)2Δτ 

− (1+Nv)
(

2UVΔτ
eiα(X+ΔX)

{
eiβ(Y − ΔY) − eiβ(Y+ΔY)

}

4ΔYΔX

)

+(GrE+GmF − M)Δτ

+(1+Nv)
(

2UVΔτ
eiα(X− ΔX)

{
eiβ(Y+ΔY) + eiβ(Y − ΔY)

}

4ΔYΔX

) (18)  

E′ =E

[

1+
2Δτ
(ΔY)2Pr− 1

[
1+Ra{1 + (θw − 1)θ}3

]
(cos βΔY − 1)+NbC

(
eiβΔY − 1

)2 Δτ
(ΔY)2

]

+E

[

Pr− 1 Ra{1 + (θw − 1)θ}3 Δτ
(ΔY)2

(
eiβΔY − 1

)2
− U

Δτ
ΔX
(
1 − eiαΔX) −

Δτ
ΔY

V
(
eiβΔY − 1

)
]

+

[

Du
2Δτ
(ΔY)2 (cos βΔY − 1)

]

F + D

[

Ec
Δτ

(ΔY)2 U
(
eiβΔY − 1

)2

] (19)  

F′ =E

[

(cos βΔY − 1)Nt(Nb Pr Le)− 1 2Δτ
(ΔY)2

]

− F
[
U

Δτ
ΔX
(
1 − e− iαΔX)+V

Δτ
ΔY
(
eiβΔY − 1

)]

+F

[

1+
2Δτ
(ΔY)2(Pr Le)− 1

(cos βΔY − 1) − ΔτKr(1 + γθ)ne

(

− AE
1+γθ

)
]

(20)  

Subsequently, we can rewrite equations (18)–(20) as, 

D′ = A1D + A2E + A3F
E′ = A4D + A5E + A6F
F′ = A7E + A8F

⎫
⎬

⎭
(21)  

where, 

A1 = 1+Nv

[

(1 − cos αΔX)U2 2Δτ
(ΔX)2 +(cos βΔY − 1)V2 2Δτ

(ΔY)2

]

− V
(eiβΔY − 1)

ΔY
Δτ − Nv

[

2UVΔτ
eiα(X+ΔX)

{
eiβ(Y − ΔY) − eiβ(Y+ΔY)

}

4ΔYΔX

]

− U
(1 − e− iαΔX)

ΔX
Δτ

+Nv
[

2UVΔτ
eiα(X− ΔX)

{
eiβ(Y − ΔY) − eiβ(Y+ΔY)

}

4ΔYΔX

]

− MΔτ+ 2Δτ(cos βΔY − 1)
(ΔY)2 

F. Ahmed et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e24098

11

A2 =Gr; A3 =Gm; A4 =Ec
Δτ

(ΔY)2 U
(
eiβΔY − 1

)2  

A5 = 1 +
2Δτ
(ΔY)2 (cos βΔY − 1)Pr− 1

(
1+Ra{1 + (θw − 1)θ}3

)
− U

Δτ
ΔX
(
1 − eiαΔX) − V

Δτ
ΔY
(
eiβΔY − 1

)

+
Ra
Pr

{1 + (θw − 1)θ}3 Δτ
(ΔY)2

(
eiβΔY − 1

)2
+

Δτ
(ΔY)2 NbC

(
eiβΔY − 1

)2
+ Ntθ

(
eiβΔY − 1

)2 Δτ
(ΔY)2  

A6 =Du
2Δτ
(ΔY)2 (cos βΔY − 1); A7 = Nt(Pr NbLe)− 1 2Δτ

(ΔY)2 (cos βΔY − 1)

A8 = 1 +
2Δτ
(ΔY)2(Pr Le)− 1

(cos βΔY − 1) − ΔτKr(1 + γθ)ne

(

− AE
1+γθ

)

−
Δτ
ΔX

U
(
1 − e− iαΔX) −

Δτ
ΔY

V
(
eiβΔY − 1

)

now representing equation (21) 
⎡

⎣
D′

E′

F′

⎤

⎦=

⎡

⎣
A1 A2 A3
A4 A5 A6
0 A7 A8

⎤

⎦

⎡

⎣
D
E
F

⎤

⎦;∴η′ = T′η  

where, 

η′=

⎡

⎣
D′

E′

F′

⎤

⎦,T′ =

⎡

⎣
A1 A2 A3
A4 A5 A6
0 A7 A8

⎤

⎦ and η=

⎡

⎣
D
E
F

⎤

⎦

It is challenging enough for various research value of T′.Consequently, not a large step Δτ→0 is being taken to determine the matrix’s 
eigenvalues. Besides, we end up here with considering A2→0,A3→0,A4→0,A6→0,A7→0, consequently the matrix T′ re-casted as 

T′=

⎡

⎣
A1 0 0
0 A5 0
0 0 A8

⎤

⎦

So considering the values of T′ as A1 = λ1,A5 = λ2,A8 = λ3, these eigenvalues could not surpass unity in modulus that is 

|A1|≤ 1, |A2|≤ 1, |A3|≤ 1 (22)  

Choosing a=Δτ, b = U
Δτ
ΔX

, c = |− V|
Δτ
ΔY

, d =
2Δτ
(ΔY)2, e =

2Δτ
(ΔX)2, f =

2Δτ
ΔXΔY

are obtained (23) 

Here, the numbers a, b, c, d, e, and f are real and positive. Considering V and U are respectively positive and negative. For A1,A5,A8, 
βΔY = nπ and αΔX = mπ the greatest modulus appears where n, m ∕= even integers. Using the conditions mentioned in equations (22) 
and (23), the following equations may be obtained as, 

A1 = 1 − 2
[

d −
Nv
2

{

U2e+V2d +
fUV

4

}

+
Ma
2

+ b+ c
]

A5 = 1 − 2
[

b+ c − dNtθ − dNbC +
d
Pr

{
1+ 2Ra{1 + (θw − 1)θ}3

}]

A8 = 1 − 2
[

b+ c+
d

Pr Le
+

a
2

Kr(1 + γθ)ne

(

− AE
1+γθ

)
]

here, − 1 is the maximum bound negative value of A1, A5, A8. As a result, the following are the stability postulates 

2Δτ
(ΔY)2 +U

Δτ
ΔX

−
Nv
2

{
UV
4

2Δτ
ΔXΔY

+V2 2Δτ
(ΔY)2 +U2 2Δτ

(ΔX)2

}

+
MΔτ

2
+V

Δτ
ΔY

≤ 1  
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U
Δτ
ΔX

− Nb
2Δτ
(ΔY)2 C + V

Δτ
ΔY

+
2Δτ
(ΔY)2Pr− 1

{
1 + 2Ra{1 + (θw − 1)θ}3

}
− Nt

2Δτ
(ΔY)2 θ ≤ 1

U
Δτ
ΔX

+ V
Δτ
ΔY

+
2Δτ
(ΔY)2(Pr Le)− 1

+
Δτ
2

Kr(1 + γθ)ne

(

− AE
1+γθ

)

≤ 1  

here, with initial values of fundamental phenomena with ΔX = 0.20, Δτ = 0.0005, ΔY = 0.25 The present work’s convergence criterion 
would be the following Le ≥ 0.016 and Pr ≥ 0.08. 

7. Results and discussion 

This section examines a concise report of a physical event. Earlier in this project, for the mathematical analysis, we employed the 

Fig. 3. Influence of magnetic parameter M on velocity U.  

Fig. 4. Influence of Eckert number (Ec) on velocity profile U.  
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explicit finite difference method; presently, we employ Visual FORTRAN software for the numerical analysis. In addition, the stimulus 
of various considerations on the profiles of concentration, temperature, and dimensionless velocity is explored in this ongoing study. 
The effect of the parameters Cf, Sh and Nu, i.e., skin friction, Sherwood, Nusselt number, is visually evaluated as a response. In 
addition, the contour isothermal line and streamline are graphically represented. The competent parameters are M = 4, 6, 8, Pr = 0.71, 
1.00, 1.38, Ra = 2, 4, 6, AE = 1, 4 7, Ec = 0.01, 0.05, 0.09, Du = 0.50, 0.70, 0.90, Nt = 0.50, 1.50, 2.50, and Nb = 0.30, 1.30, 2.50. 

The effect of the magnetic parameter M upon dimensionless velocity profile for fluids that are Newtonian and Maxwell are rep-
resented graphically in Fig. 3. The figure exhibits the development of the Maxwell fluid’s velocity profiles. Newtonian fluid, however, 
exhibits the same phenomena. The velocity profile grows throughout the initial phase of the magnetic parameter, as seen in the 
illustration. This implies that in the presence of a magnetic parameter, the boundary layer velocity profile, which reduces as the 
induced Lorentz force increases, increases. As a consequence, an increase in Lorentz force will restrict the fluid path and reduction the 
fluid velocity. This observation is supported by the published paper of Reza-E-Rabbit et al. [25], in which the authors illustrated the 
impressions of magnetic constraint on a non-Newtonian fluid. Variations in the magnetic constraint, conversely, have no discernible 

Fig. 5. Impact of Du (Dufour number) on Temperature outline.  

Fig. 6. Stimulus of thermal radiation (Ra) on the temperature outline.  
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effect on the wideness of the hydrodynamic boundary layer. 
Fig. 4 illustrates the impact of Ec upon the velocity profile, which influences linear radiation more than nonlinear radiation. Ac-

cording to physical behavior, increasing Ec generates a progressive increase throughout velocity distribution. The Eckert number is the 
relationship involving the kinetic energy and the boundary layer’s temperature difference of the flows, and it is often used to char-
acterize heat transfer inefficiency. In accordance with the in recent times issued article of Kumar et al. [56], authors made similar 
observations as this ongoing study and obtained similar results. 

Next Fig. 5 demonstrates the implication of the Dufour number upon the temperature profile. Temperature profile grows as the 
Dufour number increases in this graph. Due to the presence of Dufour number energy, which generates heat flux, the temperature 
profile is increased. This is happening for both fluids, with the Maxwell fluid’s Dufour number developing a little bit more than the 
Newtonian fluid’s. The published work of Biswal et al. [57] validates an analogous phenomenon observed in Casson fluid. 

Fig. 6 illustrates the manner in which the thermal radiation parameter affects the temperature profile, showing how it gradually 
drops as the thermal radiation value rises. This pattern holds true for both linear and nonlinear radiation. Greater Ra values pre-
dominate in conductivity. As a consequence of enhanced radiation, the temperature rises. Moreover, Ra accelerates the variation in 
heat flux. The resulting finding is validated by earlier Miroshnichenko et al. [58] comparable occurrences for Ra over concentration 

Fig. 7. Impacts of chemical reaction (Kr) on temperature profile.  

Fig. 8. Impression of Eckert number (Ec) on temperature profile.  
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lines. 
Fig. 7 investigates the consequence of chemical reaction parameter upon temperature profile and illustrates a reverse phenomenon 

for nonlinear radiation, as the chemical reaction constraint rises, the temperature profile for both radiations steadily rises. This in-
creases the likelihood of fluid particle collisions, which increases the likelihood of a temperature rise due to an increase in Kr. As 
exemplified in Fig. 8, as the Eckert number (Ec) rises, so does the temperature profile for both radiation. The fluid’s coefficient of 
expansion (Ec) rises as a result of frictional heating. The Eckert number is the result of the product of the kinetic energy and the specific 
enthalpy difference between the fluid and the wall. Consequently Eckert number rises, work is conducted against the viscous fluid 
stresses, work is carried out against the strains of the viscous fluid, and kinetic energy is transformed into internal energy. As a 
consequence, a growth in Ec causes an upturn in the temperature outline. 

Fig. 9 depicts the implication of Prandtl numbers upon the temperature profile for Maxwell and Newtonian flow. From the defi-
nition of Prandtl number, it is evident that liquids with a high Pr will have a low thermal diffusivity, as shown in the figure. Except for 
Maxwell fluid, which has a swiftly decreasing density, the difference between two fluids is negligible. This Maxwell fluid phenomenon 

Fig. 9. Impact of Prandtl number (Pr) on the Temperature Outline θ.  

Fig. 10. Impression of Activation Energy on Concentration Profile with linear and nonlinear radiation.  
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is remarkable for the development of cancer treatment, a novel field of study. This is also supported by a study by Deepthi et al. [59], in 
which a related occurrence was noted. Fig. 10 observes the impacts of AE on linear and nonlinear radiation concentration profiles. The 
presence of AE explains why nonlinear radiation is relatively more concentrically distributed. The temperature control mechanism 
must be as strong to withstand this as the energy requires of starting a chemical reaction using the available reactants. Consequently, 
the activation energy of nonlinear radiation has already been calculated utilizing the concentration profile. The second observation 
was made when the activation energy grew exponentially and mass transmission began. This phenomenon is utilized extensively in 
nuclear reactions, industrial processes, and medical reasoning. 

Activation Energy’s impact on the concentration profile of Maxwell and Newtonian fluids are illustrated in Fig. 11 by the increase in 
the concentric profile caused by the activation energy parameter AE. The Arrhenius activation energy equation’s final term states that a 
boost in activation energy induces a decrease in activation energy; as a consequence, the concentration profile for both fluids rises. 
Sabir et al. [60] previously studied the impacts of AE and discovered a comparable effect on the concentration profile for 
non-Newtonian fluid. Figs. 12 and 13 depict the chemical reaction parameter Kr, which demonstrates a slight inhibition of the 

Fig. 11. Influence of Activation Energy (AE) on Concentration Profile for both fluid.  

Fig. 12. Stimulus of Kr (Chemical reaction) on Concentration Outline for both fluids.  
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chemical reaction along the concentration curve. Clearly, the concentration profiles of both fluids, as well as linear and nonlinear 
radiation, decrease as the chemical reaction parameter increases. Non-linear radiation is, however, considerably superior to linear 
radiation. 

Figs. 14–17 depicts the contour design-generated streamline in both flood view and line view. As the moving particle is ultimately 
considered, the streamline is frequently derived from the motion of massless fluid particles whose velocity is tangent to every path 
point. Physically, an isotherm is depicted on a graph by a curve connecting points of equal temperature. Figs. 15 and 17 depict the 
impact of p-radiation on isothermal lines. A particular observation from Fig. 17 reveals that rapid energy development of fluid causes 
molecules to heat up for strong thermophoresis parameters (Nt = 0.50, 1.5, 2.50), leading to an increase in the wideness of the thermal 
boundary layer and a comparison line for both linear and nonlinear radiation. Figs. 18–21 similarly depicts the flood view as well as 
line view of streamlines and the isothermal line in the presence of the Brownian motion constraint (Nb). Increasing the Brownian 
parameter raises the isothermal line. 

Figs. 22–24 provide a thoughtful study of the fluctuation in skin friction (Cf), Nusselt number (Nu), and Sherwood number (Sh) in 
response to variations in the radiation parameter (Ra). The information clarifies how radiation affects both Maxwell fluid systems and 

Fig. 13. Impact of (Kr) on the Concentration Profile with linear and nonlinear radiation.  

Fig. 14. Advanced visualization of Streamlines for various Nt.  
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non-Newtonian fluid systems, highlighting the unique impacts of radiation. 
Skin friction (Cf), an important fluid dynamics parameter, responds significantly to fluctuations brought on by radiation. The 

fundamental physical phenomena is that heat transmission at the fluid-solid interface is accelerated by thermal radiation, especially 
nonlinear radiation. The fluid’s surface friction is significantly altered when the radiation parameter (Ra) rises, which is visible as a 
shift in Fig. 22. This phenomena has significant ramifications for several technical applications, including aerospace, where reducing 
skin friction is critical for lowering drag and improving overall performance. With implications for reducing drag and aerospace 
applications, the results show that thermal radiation, in particular nonlinear radiation, has a significant influence on skin friction. The 
Nusselt number (Nu), which can be seen in Fig. 23, responds to changes in the radiation parameter somewhat more subtly. This 
mismatch is explained by the fact that the Nusselt number mainly describes convective heat transfer, which is less strongly influenced 
by radiation than skin friction. When radiation only plays a minor part in heat transport, such in the cooling systems of electronic 
devices, Nu, which measures the temperature differential across a boundary layer, is frequently more pertinent. The results show that 
the Nusselt number is less sensitive and has a less significant impact on heat transfer processes, even if radiation still has an impact. In a 
variety of industrial applications where precise control of heat and mass transport is crucial, these discoveries have real-world 
applications. 

Fig. 15. Streamlines as Line view for various Nt.  

Fig. 16. Advanced visualization of Isothermal Line for Various Nt.  
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The mass transfer-related Sherwood number (Sh) turns out to be the most responsive to changes in the radiation parameter (Ra). 
This increased sensitivity results from the strong relationship between temperature fluctuations in the medium and mass transfer 
mechanisms. The physical explanation is that heat radiation affects the concentration gradients, which in turn affects the mass transfer 
rates. The Sherwood number, which is more impacted by radiation impacts and is shown in Fig. 24, is particularly relevant in situations 
where it is crucial to regulate the spread of species. For example, in trash incineration procedures, radiation-induced temperature 
increases lead to larger Sherwood numbers, which imply improved mass transfer rates. This is necessary for effective waste man-
agement and combustion. The results show that the Sherwood number is strongly influenced by radiation, which makes it important in 
situations like waste combustion where improved mass transfer is necessary. 

8. Validation of the outcomes 

Fig. 25 depicts a validity check using the published work of Ali et al. [34] and Reza-e-Rabbi et al. [43]. The results have been 
validated in the Nusselt number region as well as taking Ra at values 1,2, and 3 via a bar illustration. It indicates that the most recent 
outcomes are very in line with prior ones. 

Fig. 17. Isothermal line view for various Nt.  

Fig. 18. Streamlines with Advanced visualization for various Nb.  
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9. Conclusions 

The aim of this inquiry is to scrutinize the influence of activation energy in conjunction with nonlinear radiation on the flow 
characteristics of a Magnetohydrodynamic (MHD) Maxwell fluid and a nanoscale non-Newtonian liquid diffusing over a stretched 
sheet. Several relevant dimensionless parameters are harnessed to facilitate this pursuit. Numerical computations are carried out 
employing the explicit finite difference (EFD) technique. Additionally, we undertake a stability analysis and convergence tests to 
ascertain the robustness and reliability of the solution. Subsequently, a series of experiments is scheduled to investigate the impact of 
various parameters on the concentration, velocity, and temperature profiles. As a result, we present isothermal and streamlined 
profiles. The accumulation of multiple observations enables us to draw the following conclusions:  

➢ In the presence of a magnetic field, the Lorentz force becomes more pronounced, yet it imparts a more pronounced reduction in 
fluid flow velocity, especially when applied to non-Newtonian fluids, which display heightened susceptibility to this phenomenon. 

Fig. 19. Line view for various Nb.  

Fig. 20. Isothermal line (flood view) for various Nb.  
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➢ The Dufour number, a chemical reaction-related parameter, amplifies the temperature profile in Maxwell fluids compared to 
Newtonian fluids, showing a clear bias toward linear radiation effects rather than nonlinear ones in the temperature profile.  

➢ Kr decelerates concentration field changes while promoting nonlinear radiation effects in the temperature profile, whereas the 
Arrhenius activation energy for nonlinear radiation and Maxwell fluids exhibits an overall increase in both profiles. 

Fig. 21. Line view for various Nb.  

Fig. 22. Variation in the skin friction caused by Ra.  

Fig. 23. Variation in the Nusselt number caused by Ra.  
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➢ The Nusselt number reveals sensitivity to linear radiation, whereas the skin friction coefficient and Sherwood number profiles 
exhibit a responsive behavior to nonlinear radiation in the presence of M, Du, Kr, and Ra.  

➢ The combined influence of thermophoresis and Brownian motion parameters enhances both streamlines and isothermal lines, 
culminating in an improved response to nonlinear radiation. 

The prospective uses of this theoretical examination extend to a broad spectrum of non-Newtonian fluids, encompassing diverse 
types such as Casson, Bingham, micropolar, and third- or fourth-grade fluids. These applications stand to gain by integrating the 
intricacies of exothermic/endothermic reactions, the involvement of microorganisms, quadratic convection, exponential heat gen-
eration, and assorted other phenomena. Furthermore, the forthcoming prospects entail exploring this analysis through an array of 
advanced methodologies, including the utilization of exponential stretching sheets, inclined stretching sheets, double stretching 
sheets, and cylindrical surfaces. It is noteworthy that empirical calculations always possess the potential to challenge and invalidate 
any theoretical conjecture. 
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