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Synopsis

-

In the present study, we aimed to examine whether SET domain-containing methyltransferases are up-regulated in
different classes of renal cell carcinoma. We immunoblotted against SET domain and quantified the expression of
these modular domains. Furthermore, we examined the expression of Rad51, the key protein that confers genomic
stability. There was enhanced expression of SET domain-containing histone methyltransferases in whole lysates of
all classes of renal carcinoma. In metastatic high grade clear cell carcinoma, this expression was more pronounced.
Though we could not demonstrate direct correlation, we showed that epigenetic modification by methylation is
associated with decreased genomic translation of Rad51.
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INTRODUCTION

Post-translational modifications of N-terminal histone by methyl-
ation can bring about significant epigenetic changes [1-5]. These
non-inheritable changes have significant impacts on the course
of cancerous lesions by affecting gene transcription in a positive
and/or negative way [5]. One of the constant findings in renal cell
carcinoma involves detection of different grades of methylation,
including mono-, di or trimethylation [6-8].

Histone methylation occurs at arginine and lysine residues
of the tail zones of histone H3 and H4 [9]. Coactivator-
associated arginine methyltransferase 1 (CARM1) and protein
arginine N-methyltransferase 1 (PRMT1) are key histone arginine
methylases that possess an S-adenosyl-L-methionine (AdoMet)
motif [10]. These histone arginine methylases, however, lack abil-
ity to methylate other amino acid residues such as lysine [11].

It has been demonstrated that renal cell carcinoma shows
significant lysine methylation [6-8]. Lysine methylation is
carried out by a novel class of enzymes that contains the modular
protein SET domain. The first SET domain-containing histone
lysine methylase that was reported is the mammalian Suv39hl,
which adds methyl group to histone H3 at Lys-9 [12]. Several

SET domain-containing proteins, namely Setl, Set2, Set7/Set9,
G9a and ESET, have now been shown to methylate numerous
lysine residues including Lys-4, Lys-9, Lys-27 or Lys-36 of
histone H3 tail [13-15].

Renal cell carcinoma has been reported to be methylated at
lysine residues of histones [6—8]. In the present study, we aimed
to examine whether SET domain-containing methyltransferases
are up-regulated in different classes of renal cell carcinoma. In
order to detect these enzymes, we immunoblotted against SET
domain and quantified the expression of these modular domains.
Furthermore, we examined the expression for Rad51, the key
protein that confers genomic stability [16]. We consistently
observed inverse relationships between the expression of SET
domain-containing proteins and the expression of Rad51 in
different classes of renal carcinoma.

MATERIALS AND METHODS

Studies were performed after obtaining explicit consent from pa-
tient families, institutional IRB permission for conducting studies
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with human tissues, and completely in strict adherence to Hel-
sinki guidelines.

Microscopic identification of renal cancer tissues
Fresh tissue sections were obtained from surgical samples (n
= 15in each group, both males and females, age range 24—
80 years), including low grade renal clear cell carcinoma, high
grade metastatic renal cell carcinoma (confirmed from history),
chromophobe carcinoma, papillary carcinoma and normal renal
tissues. Sections were stained with Giemsa and the diagnosis
was confirmed based on nuclear morphology by Fuhrman clas-
sification. Five randomly selected patients or subjects samples
were pooled randomly, thus generating three independent sets of
samples (triplicates). All triplicate samples were examined for
markers of histone methyltransferase activities. This approach
was adapted to ensure variability in the biological samples and
to examine the trend, given the small sample size.

Antibodies and chemicals

Numerous pilot experiments were conducted to assay the an-
tibody as well to optimize its concentration for immunodetec-
tion during western blotting. For all experiments, control experi-
ments were performed by eliminating the use of primary and sec-
ondary antibodies respectively. Antibodies were obtained from
Santa Cruz Biotechnology. All chemicals were obtained from
Sigma—Aldrich.

Isolation of nuclear fraction

Tissues from cores of cancer masses were washed in PBS and
suspended in 1 ml of PBS in 1.5 ml microfuge tubes and ini-
tially spun for 30 s at 1000 g. Thereafter, the cell suspensions
were incubated in NP-40 (Calbiochem) and triturated repeatedly
with a micropipette, and centrifuged for 15 min at 3000 g. The
supernatant, the cytosolic fraction, was decanted, and the pellet
fraction was washed once with NP-40-PBS, and recentrifuged
for five more minutes. The pelted fragment, representative of
the nuclear fraction, was carefully collected and stored in the
refrigerator until further examination.

Real-time PCR

Total RNA was extracted after homogenization of cells and tis-
sues using RNeasy mini kit (Qiagen Sciences). Total RNA (1 ng)
was reverse transcribed with the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). The cDNA reaction was
diluted to 1:10 for use as the template for real-time RT-PCR.
For quantitative real-time PCRs (QPCRs), TagMan Gene Expres-
sion Assays primers and probes specific to Rad51 or mixed lin-
eage leukaemia 5 (MLLS5) were used for expression analyses and
GAPDH primers and probes (Applied Biosystems) were used
as internal controls. Analyses were performed using the MX400
Multiplex Quantitative PCR system (Stratagene). The cycling
conditions were as follows: one cycle of 2 min at 50°C, one
cycle of 10 min at 95°C, 40 cycles of denaturation (15 s at 95°C)
and annealing/extension (1 min at 60°C). All quantitative PCR

reactions were carried out in triplicate and repeated at least twice.
The ACt for mRNA expression was calculated relative to the Ct
(threshold cycle) of GAPDH mRNA. Relative mRNA expression
was calculated using the formula 2 (-A ACt). Primers and probes
for all analyses are available upon request.

Western blotting

Protein lysates were prepared from dissected cellular mass us-
ing lysis buffer [1% (v/v) Triton X-100 and 1% (v/v) NP-40
(Calbiochem), dissolved in deionized PBS], and supplemented
with proteases inhibitors cocktail (Roche Diagnostics) for half
an hour on ice bucket. Cell lysates were mixed with a vortex
and centrifuged at 20,000 rpm at 4°C for 15 min. Supernatants
were collected and protein concentration was confirmed using the
Bradford assay (BioRad Protein Assay kit, USA) prior to loading
gels. Proteins were added to sample buffer [Laemmli with 5%
(v/v) 2-B-mercaptoethanol and 5 % (v/v) bromophenol blue] and
boiled for 5 min at 100°C. Samples were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
at 100 V and proteins were transferred onto polyvinylidene flu-
oride (PVDF) membranes overnight in the cold and visualized
by enhanced chemiluminescence (ECL). For immunostaining,
membranes were blocked with 5 % (w/v) non-fat dry milk in PBS
containing 0.5 % (v/v) Tween 20 and incubated for an hour with
specific primary antibodies. After washing with PBS-Tween 20,
membranes were incubated with horseradish peroxidase (HRP)-
conjugated specific secondary antibodies (Santa Cruz Biotech-
nology), usually diluted at a 10-fold level (in comparison with
the primary) for an hour. Proteins were then detected using ECL
reagent (GE Healthcare Life Sciences) as a substrate prior to
developing with X-ray in a dark room. For assay of loading con-
trols, membranes were stripped using a mild protocol of washing
and reprobed with the housekeeping protein GAPDH.

Quantification of image intensities

The gels were scanned with Metamorph image analysis software
without any alteration to the gamma settings. Image intensities
were surrogates as reflective of protein expression levels and
means were compared.

Statistical analyses

Data were analysed using ANOVA and considered statistically
significant when the P values were less than 0.05. Statistical
analyses were performed using Office Excel 2010.

RESULTS

Increased expression of SET3 domain-containing
methyltransferase in whole lysates of all classes of
renal carcinoma

In comparison with control renal tissues, all classes of renal car-
cinoma, namely clear cell carcinoma, chromophobe carcinoma,
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Figure 1 Increased expression of SET domain-containing proteins
in whole lysates of different classes of renal cell carcinoma in
comparison with control renal tissues

Representative western blots are shown. Quantitative estimates
showed highly significant difference between the means (P <0.0001,
ANOVA, Tukey’s HSD post-hoc test).

papillary carcinoma and metastatic clear cell carcinoma, showed
enhanced expression of monomethyl-transferase enzymes con-
taining SET3 domains. These proteins are the major classes of
enzymes that facilitate transfer of one to several methyl residues
on lysines in different classes of histones including H3. Repres-
entative western blots of the whole lysates are shown in Figure 1.
Quantitative estimates of protein expression showed high levels
of difference when the means were compared between the differ-
ent groups (1.46+0.12 compared with 3.2140.48 compared with
2.4940.38 compared with 2.91+0.23 compared with 3.78+0.34,
control renal tissues compared with clear cell carcinoma com-
pared with chromophobe carcinoma compared with papillary
carcinoma compared with metastatic clear cell carcinoma re-
spectively, P < 0.001, ANOVA).

Increased expression of SET3 domain-containing
methyltransferase in nuclear extracts of all classes
of renal carcinoma

In comparison with control renal tissues, all classes of renal car-
cinoma, namely clear cell carcinoma, chromophobe carcinoma,
papillary carcinoma and metastatic clear cell carcinoma, showed
enhanced expression of monomethyl-transferase enzymes con-
taining SET3 domains within the nuclei, indicating significant
presence of histone monomethyl transferases within the nuclei of
carcinomatous tissues. Representative western blots of the nuc-
lear extracts are shown in Figure 2. Quantitative estimates of
protein expression were as follows: (1.2140.07 compared with
2.7140.18 compared with 2.5640.24 compared with 2.554+0.12
compared with 2.81+0.29, control renal tissues compared with
clear cell carcinoma compared with chromophobe carcinoma
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Figure 2 Increased expression of SET domain-containing proteins
in nuclear fractions of different classes of renal cell carcinoma
in comparison with control renal tissues

Representative western blots are shown. Nuclear fractions were eluted
by differential centrifugation. Quantitative estimates showed highly sig-
nificant difference between the means (P <0.0001, ANOVA, Tukey’s
HSD post-hoc test).

compared with papillary carcinoma compared with metastatic
clear cell carcinoma respectively, P < 0.001, ANOVA).

Decreased expression of Rad51 in all classes of
renal carcinoma

In comparison with control renal tissues, all classes of renal car-
cinoma, namely clear cell carcinoma, chromophobe carcinoma,
papillary carcinoma and metastatic clear cell carcinoma, showed
significantly decreased expression of Rad51 which plays a ma-
jor role in maintaining genomic stability. Representative western
blots of the whole lysates are shown in Figure 3(A). Quantit-
ative estimates of protein expression showed high levels of dif-
ference when the means were compared between the different
groups (1.1240.09 compared with 0.514+0.03 compared with
0.4340.03 compared with 0.440.02 compared with 0.38+0.05,
control renal tissues compared with clear cell carcinoma com-
pared with chromophobe carcinoma compared with papillary
carcinoma compared with metastatic clear cell carcinoma re-
spectively, P <0.001, ANOVA). To assess the mRNA levels of
Rad51 in normal renal tissue and tumours, we performed RT-
PCR experiments to measure the mRNA expression of Rad51
using the same tissue samples in western blot experiments (Fig-
ure 3A). Consistently, we found the mRNA expression of Rad51
was significantly down-regulated in renal tumours (clear cell car-
cinoma, chromophobe carcinoma, papillary carcinoma and meta-
static clear cell carcinoma) compared with human normal renal
tissues (Figure 3B).

Unaltered levels of expression of mixed lineage
leukaemia 5 in all classes of renal carcinoma

All classes of renal carcinoma, namely clear cell carcinoma,
chromophobe carcinoma, papillary carcinoma and metastatic
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Decreased expression of Rad51 in whole lysates of different classes of renal cell carcinoma in comparison

(A) Representative western blots are shown. Quantitative estimates showed highly significant difference between the
means (P < 0.0001, ANOVA, Tukey’s HSD post-hoc test). (B) The mRNA expressions of Rad51 were analysed by real-time
PCR. Columns, mean of three independent experiments; bars, S.E. *, P <0.05; **, P <0.01.

clear cell carcinoma, showed similar expression levels of MLL5
to control renal tissues. Representative western blots of the
whole lysates are shown in Figure 4(A). Quantitative estim-
ates of protein expression were as follows (1.4240.04 com-
pared with 1.5140.12 compared with 1.484-0.22 compared with
1.440.23 compared with 1.38+0.35, control renal tissues com-
pared with clear cell carcinoma (CCC) compared with chromo-
phobe carcinoma compared with papillary carcinoma compared
with metastatic CCC respectively, P > 0.05, ANOVA). Moreover,
the mRNA expression of MLLS was not altered in renal tumours
compared with normal renal tissue (Figure 4B).

DISCUSSION

The results of the present study show that renal cancer cells have
the potential to modify histone core domains to regulate nuc-
lear processes. Specifically, we demonstrate that up-regulation
of SET domain is associated with down-regulation of expres-
sion of Rad51, a key regulator of genomic stability [16]. Rad51

plays an important role in DNA repair [17-19]. We first demon-
strated enhanced expression of SET domain-containing histone
methyltransferases in whole lysates of all classes of renal car-
cinoma, namely clear cell carcinoma, chromophobe carcinoma
and papillary carcinoma. In metastatic high grade clear cell car-
cinoma, this expression was more pronounced. This was also
the condition when we specifically examined the translocation
of these proteins in the separated nuclear fraction. We did not
examine sarcomatoid variants of renal cell carcinoma due to lack
of availability of adequate samples in our case series.

To examine whether there is a global up-regulation of his-
tone methyltransferases, we examined the expression of MLLS,
a methyltransferase that is increased in expression in many leuk-
aemic conditions [20]. MLLS5 expression remained unaltered,
and is comparable to the control renal tissues in all classes of
examined renal carcinoma tissues.

The SET domain is a conserved 130-150 amino acids pro-
tein span which was originally identified as a common element
in chromatin regulators with different activities: the suppressor
of position-effect variegation, Su(var)3-9, the PcG protein En-
hancer of Zeste [E(z)], and trithorax (TRX) [21]. It has been
demonstrated that SUV39H1, the mammalian homologue of
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Figure 4 Unaltered expression of another methyltransferase, MLL5, in whole lysates of different classes of renal cell
carcinoma and control renal tissues
(A) Representative western blots are shown. Quantitative estimates showed no significant difference between the means
(P> 0.05, ANOVA, Tukey’s HSD post-hoc test). (B) The mRNA expressions of MLL5 were analysed by realtime PCR.
Columns, mean of three independent experiments; bars, S.E.

Su(var)3-9, methylates lysine 9 of histone H3 [12,21]. This modi- performed data analysis and statistical analysis. All authors read
fication creates a binding site for HP1 and thus can contribute to and approved the final manuscript.
the progress of a heterochromatin domain [22,23]. Whereas the
histone—methylase activity of SUV39H1 was critically depend-
ent on the SET domain, additional protein domains were also FUNDING
required. The authors declare that they received no funding for this study.
Preliminary evidence has provided support for this hypothesis
that the histone tails undergo distinct posttranslational modific-
ations that may constitute a ‘histone code’ [24, 25] and have
influence on the binding of specific chromatin-associated pro-
teins. Though we could not demonstrate direct correlation, we
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