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An on‑chip wound healing 
assay fabricated by xurography 
for evaluation of dermal fibroblast 
cell migration and wound closure
Ghazal Shabestani Monfared1,3, Peter Ertl1* & Mario Rothbauer1,2*

Dermal fibroblast cell migration is a key process in a physiological wound healing. Therefore, the 
analysis of cell migration is crucial for wound healing research. In this study, lab-on-a-chip technology 
was used to investigate the effects of basic fibroblast growth factor (bFGF), mitomycin C (MMC), 
MEK1/2 inhibitor (U0126) and fetal calf serum (FCS) on human dermal fibroblast cell migration. The 
microdevice was fabricated consisting of microchannels, pneumatic lines and pneumatically-activated 
actuators by xurographic rapid prototyping. In contrast to current approaches in in vitro wound 
healing such as scratch assays and silicone inserts in wellplate format, which show high variability 
and poor reproducibility, the current system aims to automate the wounding procedure at high 
precision and reproducibility using lab-on-a-chip. Traumatic wounding was simulated on-chip on 
fibroblast cell monolayers by applying air pressure on the flexible circular membrane actuator. Wound 
closure was monitored using light microscopy and cell migration was evaluated using image analysis. 
the pneumatically controlled system generates highly reproducible wound sizes compared to the 
conventional wound healing assay. As proof-of-principle study wound healing was investigated in the 
presence of several stimulatory and inhibitory substances and culture including bFGF, MMC, U0126 
MEK1/2 inhibitor as well as serum starvation to demonstrate the broad applicability of the proposed 
miniaturized culture microsystem.

Mechanical trauma, burns and other diseases are attributed to the main cause of external or internal tissue 
damage and lesions generally known as  wounds1. The classic stages of wound healing include inflammation, 
proliferation and final tissue  remodeling2. Dermal fibroblast migration is a key step in the wound healing process. 
Activation of dermal fibroblasts occurs at the inflammatory stage of the wound healing  process2–4. Cytokines and 
growth factors such as platelet-derived growth factor (PDGF) and interleukin-1 beta (IL-1β) that are released as 
inflammatory response, attract fibroblasts into the wound  site4. Fibroblasts, originated from dermis and wound 
surrounding tissues, migrate along collagen matrices into the wound  bed5. Some fibroblasts differentiate into 
contractile  myofibroblasts2, that are responsible for wound  contraction6 via alpha smooth muscle actin (α-SMA) 
 expression7,8. Fibroblasts and myofibroblasts produce extracellular matrix (ECM), mainly collagen type I and III, 
which is necessary for cell ingrowth and wound  closure7. Transforming growth factor β (TGF-β) and vascular 
endothelial growth factor (VEGF) are necessary for fibroblast cell proliferation and new tissue  formation8,9. Apart 
from their role in ECM secretion, they also produce various growth factors and able to stimulate keratinocyte cell 
migration and proliferation. In diabetic patients, inhibition of fibroblast cell migration due to abnormal localiza-
tion of EGF and FGF receptors leads to lack of stimulation of wound healing signaling cascades. Moreover, Excess 
in TGF-β1 level dysregulates collagen synthesis and causes the formation of unwarranted  fibrosis7. Cell migration 
is an essential process in wound healing. Therefore, the analysis of cell migration is not only useful for study-
ing the mechanisms involved in cell motility but also to study the effects of bioactive substances as therapeutic 
intervention of impaired wound healing and chronic  wounds9. There are several in vitro methods that are used 
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for cell migration analysis including scratch assays, barrier assays and microfluidic-based migration assay based 
on cell depletion and wounding. Moreover, various in vivo models such as excision, Incision and burn models 
are used for studying wound  healing10. In excision and incision models, desired parts of healthy or damaged 
tissue are removed surgically to induce wounds in animals. The main applications of in vitro wound assays are: 
(1) analysis of collective cell migration, (2) analysis of skin cell migration for cutaneous wound closure studies, 
(3) discovering effects of ECM on cell migration, (4) studying the mechanism of cancer metastasis, and (5) drug 
 screening9. The principle of in vitro wound healing assays is to exclude or remove cells using mechanical, enzy-
matic or thermal methods. After creation of a cell-free area, cell migration into the cell-free gap is monitored 
over several hours and days. Cell culture condition, cell seeding density and wound size are the main parameters 
that can affect reproducibility of in vitro wound healing assay. The most common technique in wound healing 
assay is known as scratch assay. Scratch assay is widely used in different fields of research such as fundamental 
biology, drug screening, cancer metastasis, immunology and wound  healing9. The main tasks of this 2D assay 
are: (1) preparation of a cell monolayer in culture, (2) scratch the monolayer to create a cell-free area, and (3) 
microscopy and  imaging9. The main advantages of this assay are being inexpensive and simple to perform. How-
ever, lack of standardization of this technique leads to low reproducibility. Manual scratch performing causes 
variation in wound size and quality. Therefore, this assay has usage limitations for high throughput screening in 
large  scales11. The most important aspects in scratch performing is applied pressure in scratching and the angle 
of the scratching material. To improve the performance of wound healing assays several microfluidic approaches 
have been established over the years. The main principles of performing wound healing assay on-chips are to 
cultivate cells on microdevice platforms and creation of cell-free areas in the microfluidic channels using cell 
exclusion principles based on coverage of microchannel areas prior cell  seeding12, pillar and microchannel cell 
 retention13,14, enzymatic detachment of cells using laminar flow  patterning15–17 or mechanical cell ablation using 
integrated pressurized  actuators18,19.

In the current work, the aim was to use a rapid prototyped multiplex wound healing-on-a-chip based on 
xurography of commercial polydimethylsiloxane (PDMS) silicone sheets as an automated, miniaturized and 
highly reproducible and controllable method for investigation of stimulatory and inhibitory agents and culture 
conditions on fibroblast cell migration and wound healing (see Fig. 1). As shown in Fig. 1A–C the multi-
layered lab-on-a-chip consists of a total of five individual layers that results in 2 × 4 microfluidic channels. The 
microfluidic cell culture chambers are separated by micro structured pneumatic channels that are used for cell 
depletion using pressurized air (pneumatic layers). As shown in Fig. 1D,E the wounding protocol consists of a 
pre-wounding phase where human dermal fibroblasts (HDF) are grown to confluent monolayers, a wounding 
phase where the circular pneumatic actuator creates a wound defect in the monolayers and a final post-wounding 
phase that allows for fibroblast regeneration and wound closure. After initial biophysical and biological char-
acterization, as proof-of-principle study for the application of the proposed multi-layered lab-on-a-chip device 
the impact of basic fibroblast growth factor (bFGF), mitomycin C (MMC), MEK1/2 inhibitor (U0126) and FCS 
concentrations was investigated on human dermal fibroblast cell migration and wound closure.

Results
Physical characterization of the rapid prototyped wound healing-on-a-chip devices.  In order 
to analyze cell migration using the on-chip wound healing microdevices, membrane deflection and wound area 
was initially characterized physically. The wound healing microdevice used consisted of one top and one bot-
tom glass slide where three PDMS layers were bonded in between forming the fluidic and pneumatic compart-
ments. Each circular deflection area located in the center the middle of a microchannel was investigated using 
a fluorescent dye displacement study as shown in Fig. 2. To stimulate the membrane deflection and select the 
optimal pressure for cell depletion thus wound creation, the microchannels were filled with 10 μg/mL fluores-
cein solution and images were taken using a fluorescent microscope while application of increasing air pressure 
up to 5 bar applied through the pneumatic layers to stimulate the depletion method in the wounding process. 
(Note: higher pressure resulted in bubble formation because PDMS is gas permeable.) As shown in Fig. 2A and 
Video S1 fluorescent intensity in the circular wound area decreased with increasing air pressure applied to the 
membrane. Applying air pressure on the wounding area resulted in displacement of the fluorescein solution 
and change in the fluorescence intensity. The flexible membrane was deflected by applying pressure through 
actuators, until no change in intensity was observable. This indicated a complete removal of the underneath 
fluorescent liquid. A series of six representative plot lines were analyzed to illustrate the dynamics of fluores-
cence intensity changes in the wound area as a function of pressure thus membrane deflection in more detail. In 
addition, four units that were connected to a single pneumatic line were further investigated for differences in 
pressure thus membrane deflection, however, an overall relative standard deviation (RSD) of 5.9% was observed 
with the dye displacement method indicating homogenous pressure distribution along the pneumatic lines. For 
more detailed investigation of the optimal pressure needed to displace all fluorescent liquid thus cells in the 
wound area, the standard deviation of the mean fluorescence pixel intensity over the maximum cell-free area 
were measured (see Table 1). The reference refers to the maximum wound area that can be actuated based on 
the circular design constraints. This area has been used in ImageJ to analyze how the pixel intensities within the 
reference change when pressure is applied, and the standard deviation was calculated. The closer this deviation 
is to the reference value of 0.5 (non-fluorescent wound area), the lower the number of fluorescent pixels in the 
cell-free area. Figure 2B for instance shows that the displacement diameter between an applied pressure of 4 bar 
and 5 bar did not change, however, 4 bar pressure showed a higher amount of fluorescent pixel in the cell-free 
area. Consequently, the contact of the membrane with the culture surface is not at maximum. Therefore, 5 bar 
actuation pressure was chosen as optimal pressure for complete membrane deflection and thus best wound crea-
tion based on this physical characterization method in all subsequent experiments.
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Figure 1.  Schematic illustration of the wound healing-on-a-chip microdevice. (A) Structure of five different 
layers used in fabrication of the wound healing microdevice. (1) Drilled glass slide, (2) PDMS pneumatic layer, 
(3) PDMS middle layer, (4) PDMS microchannel layer and (5) glass slide. During assembly layers 1, 2 and 3 
as well as layers 4 and 5 were bonded initially prior to complete assembly to ensure optimal alignment of the 
layers and connections. (B) 2D structure of the microdevice including inlets, outlets and pneumatic lines. (C) 
Actual photograph of the microdevice consisting of eight microchannels filled with pink dye featuring two 
individually addressable pneumatically-activated actuator ports. (Scale bar = 10 mm). (D) Close up view of a 
single microchannel with defined circular wound actuators with a diameter of 1.4 mm located in the center of 
the microchannels. (Scale bar = 500 µm). (E) Illustration of the on-chip cell depletion procedure including a pre-
wounding stage for monolayer growth, a wounding stage where pressure is applied on the flexible membrane 
and a final analytical post-wounding stage where the cell migration of fibroblasts into the wounded cell-free area 
created by membrane deflection is analyzed over time. (Scale bar = 500 µm).
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Biological  characterization of  the  rapid prototyped on-chip wounding procedure.  Standard 
scratch assays are state-of-the-art for cell migration and wound healing studies in multi-well plates. To compare 
the reproducibility of wound area between the conventional scratch assay format and our on-chip wounding 
fabricated by rapid prototyping, 20 individual experiments were performed, and wound areas were analyzed 
from microscopic images using ImageJ software. The wound area variation in different experimental setups are 
shown in Fig. 3. The average wound area for scratch assay (Fig. 3A) was calculated to be 1.80 ± 0.35 mm2 from 
equally selected areas in each scratched well plate. (Note: Individual scratches showed hundreds of micrometers 

Figure 2.  Characterization of membrane deflection and selection of optimal pressure for on-chip cell depletion. 
(A) Florescent images of a single pressurized membrane actuator at applied pressure range 0–5 bar pressure. 
(Scale bar = 200 µm). (B) Fluorescent intensity line profiles of the membrane deflection pattern in the wound 
area with increasing actuation pressure.

Table 1.  Standard deviation analysis based on fluorescence pixel intensity inside the circular wound area of 
1500 µm2.

Pressure (bar) Standard deviation

0 1.98

1 7.29

2 5.37

3 2.68

4 1.79

5 0.53

Reference (no fluorescence) 0.50
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of variations within a single wound due to the manual scratching procedure with pipette tips.) In contrast, the 
wound healing-on-a-chip devices even though rapid prototyped using xurography, which is known to be not 
as precise as photolithographic microfabrication, still outperformed the scratch assay with an average wound 
area of 1.51 ± 0.03 mm2. Also, RSDs for scratch assay and the pneumatic on-chip cell depletion were 19% and 
2%, respectively. Moreover, channel to channel variations accounted for 2.4% RSD for eight channels on two 
individually tested microdevices (n = 2). Overall, these characterizations prove that the reproducibility of wound 
sizes within the chip is excellent and well suited for screening with approx. 9–10-fold decrease in overall RSD 
compared to manual scratch assays.

Another known drawback of the scratch assay is that the manual interference will cell monolayers by a pipette 
tip does not only interact with the cell monolayers but also damages the underlying surface coatings and plastic 
surfaces. To investigate the effects of wounding on surface coating stability for both scratching and the on-chip 
procedure, 5 µg/µl fluorescent fibrinogen was used as surface coating and visualized by fluorescent microscopy. 
To compare the surface coating stability between scratch assay and on-chip wounding, fluorescent images were 
taken from the wound areas after wounding as shown in Fig. S1. Again, the microdevice outperformed the scratch 
assay. As shown in Fig. S1A pneumatic trauma at 5 bar pressure using the proposed on-chip depletion method 
did not interfere with the cell culture surface. This means that the surface coating remains intact after membrane 
deflection using 5 bar pressure loads, a pressure that has already been proven to directly contact the bottom 
channel surface (see also Fig. 2). In contrast, using a plastic pipette tip during scratching heavily interfered with 
the protein surface coating which was removed completely from the defect area (Fig. S1B).

To evaluate the impact of pneumatic on-chip cell depletion method on cell viability and cell removal efficiency, 
fibroblast cells were fluorescently labelled using either a calcein-AM/ethidium viability assay or Alexa Fluor-
labelled phalloidin staining for visualization of f-actin. To study the wound closure and cell migration rate for 
HDFs, a cell monolayer was established in the microchannels and cell depletion was performed (Fig. S2A). After 
creation of a cell-free area using a single actuation cycle at an optimal actuation pressure of 5 bar, cell migration 
towards the center of the wound was observed. Lowering the pressure resulted in incomplete cell depletion that 
required repetitive wounding (3–4 cycles, data not shown). In general, with the present automated cell deple-
tion method cells are forcefully removed at high precision from the confluent cell layer by pneumatic membrane 
deflection with a low amount of debris remaining inside the wound area. Only a small number of viable cells is 
pushed from the surface towards the wound edge and stays on top of the cell raft before reattachment and migra-
tion towards the center as shown in Video S2. HDF cells showed 100% viability after 16 h of wound healing. For 
a better visualization, fluorescent f-actin staining was performed with 50% wound closure after 16 h (Fig. S2C). 
After confirmation of good fibroblast viability, next wound healing parameters including wound area, wound 
diameter, migration rate and wound closure percentage were investigated in more detail over time for wounded 
HDF monolayers cultivated under standard conditions in fibroblast culture medium. Time-lapse images were 
taken every 4 h as shown in Fig. 4A and analyzed with ImageJ revealing that after 20 h of time-lapse imaging only 
a small around 200 µm sized wound defect was visible. Figure 4B shows that the average wound area measured 
every 4 h decreased gradually over time as a consequence of fibroblast proliferation and cell migration into the 
cell-free area. For instance, after a healing period of 12 h and 20 h fibroblasts already achieved around 56% and 
89% wound closure, respectively. The average wound diameter (technical triplicates for n = 4) over the whole 
defect as shown in Fig. S3 was also measured at each selected time point and gradually decreased over time, 
however, manual wound diameter measurements underestimated changes in wound closure with higher standard 
deviation compared to automated wound closure analysis using thresholding. Also, the average cell migration 
rate was calculated based on the linear regression created from each average measurement over time. By divid-
ing the slope from this line equation, the average cell migration rate during wound healing was calculated as 

Figure 3.  Wound area measured from scratch assay and on-chip depletion method. Each bar represents a single 
wound area measurement from a single experiment. (A) Wound areas from 20 independent scratch assay were 
measured. (B) Wound areas from 20 different experiments of on-chip depletion method.
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shown in Fig. 4C. The overall average cell migration rate for HDFs was calculated to be 27 μm/h. Moreover, the 
cell migration within 20 h was also split in three individual time windows (0–4 h, 8–16 h and 16–20 h) to get a 
better understanding of migrational dynamics. The cell migration analysis showed that the migration rate and 
speed of cell movement increases over time from 18 µm/h in the first 4 h after wounding, 21 µm/h between 8 
and 16 h and finally peaking at 40 µm/h until the end of experiment. Additionally, no significant change in the 
speed of migration was observed in the first 12 h of wound closure. The cell migration rate significantly increased 
from 8–12 h to 16–20 h time frames (N = 6, p < 0.002, difference between means = 26.13 ± 6.396). As shown in 
Fig. 4D, in contrast to migration rate wound closure significantly changed already during the first 12 h of healthy 
wound healing. This increase of cell migration speed can be attributed by the fact that the traumatic wounding by 
membrane deflection does not only deplete the wound area from cells but also exerts high shear from the wound 
edges to the lateral portions of the monolayer influencing cell–cell as well as cell–matrix interactions within the 
first hours of wound healing, where the fibroblasts need to reestablish thorough cell-surface interactions prior 
accelerating migration into the defective cell-free area.

Figure 4.  On-chip evaluation of wound closure and cell migration of wounded fibroblast monolayers 
maintained under standard culture conditions and complete culture medium. (A) Time-lapse images of the 
wound defect at 0, 4, 8, 12, 16 and 20 h post-wounding. The wound edges where the membrane interfaced the 
microchannel surface are highlighted with dashed lines. (Scale bar = 200 µm). (B) Analysis of average wound 
area as a function of cultivation time. (n = 4). (C,D) Average cell migration rate of four hour intervals for three 
individual time windows including 0–4 h, 8–12 h and 16–20 h post-wounding (C), and wound closure at three 
selected time-points including 4, 12 and 20 h post-wounding (D). Data is expressed as mean ± SD. Data sets 
were tested with unpaired student’s t-test with 99% confidence level, ns non-significant, **p < 0.01, ***p < 0.001, 
****p < 0.0001.
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Effect of bFGF, MMC, U0126 and FCS on cell migration and wound closure using rapid proto‑
typed wound healing-on-a-chip approach.  As final proof-of-principle study for screening of stimula-
tory or inhibitory effects of bioactive compounds on wound closure, dermal fibroblast monolayers were estab-
lished inside wound-healing-on-a-chip devices. For all presented experiments, HDFs from the same batch and 
similar passage number (between 3 and 4 passages) were used with standard HDF growth medium as untreated 
control condition. After establishment of confluent, individual channels on a single device were treated or pre-
treated with selected compounds. Two model compounds were selected based on either stimulative or inhibitory 
activity on cell migration/proliferation. Basic human fibroblast growth factor (bFGF) promotes the migration 
of fibroblasts and stimulates collagenase synthesis was chosen as stimulant. Clinical studies reported that the 
level of bFGF is decreased in chronic diabetic  wounds7, and bFGF treatment accelerates wound and improves 
cell  migration20. As inhibitory agent Mitomycin C was selected because this compound is known as an anti-
cancer drug that causes DNA crosslinking to prevent cell proliferation very  effectively9 with high dosages 
around 300 µM arresting cell cycle in G0/G1  phase7. Also MMC can inhibit dermal fibroblast cell proliferation 
in a dose and time dependent  manner9. Wounding was performed by application of 5 bar air pressure through 
the pneumatic control layers and again phase contrast images were taken from all defect sites at selected time 
points. A conventional scratch assay was performed prior to the on-chip wound healing assay to confirm that 
the selected concentrations show the expected inhibitory or stimulatory effects and no inactivation occurred 
during shipping and storage of the compounds. To perform such a standard scratch assay, HDF cell culture 
was established in a 24 well plate and the scratch assay was performed using a plastic pipette tip. Cell migration 
was monitored using live cell imaging in selected intervals as shown in Fig. S4. Wound area measurement and 
wound closure analysis as shown in Fig. S4B showed that wound closure is accelerated in presence of 100 ng/
mL bFGF compared to cell to the untreated control. Pre-treatment of cells with 30 µM Mitomycin C (MMC) 
for 1 h prior to scratching completely inhibited fibroblast migration and wound healing. As a comparative study 
wound defects inside microfluidic chips were subjected to similar concentrations of MMC and bFGF after 24 h 
of monolayer establishment. After wounding again wound closure was monitored using live-cell microscopy as 
shown in Fig. 5A where bFGF improved wound healing quality whereas MMC inhibited wound closure similar 
to the scratch assay results. As shown in Fig. 5B,C wound area and wound diameter changes were insignifi-
cant between bFGF treated and control group at 4 h post wounding (p > 0.1). However, bFGF significantly pro-
moted the wound closure and migration speed at 20 h compared to the control (p = 0.0009, difference between 
means 11.87% ± 2.457). Again, bFGF promoted the HDF cell migration and wound closure compared to the 
control with a difference of 11.87% ± 2.457. Also, average cell migration rate of HDFs treated with bFGF being 
32 μm/h led to significant increase of the migration distance after 20 h of wound healing with relative difference 
of 152.2 μm ± 23.06 (p < 0.0001). Similar analysis was performed to investigate the effect of mitomycin C (MMC) 
on HDF cell migration and wound closure, where the fibroblast monolayers were pre-treated for 40 min with 
30 µM MMC after 24 h of culture establishment. In contrast to the stimulatory effect of bFGF, MMC significantly 
inhibited wound closure at 20 h with difference of − 36.57% ± 6.484 wound area closure upon 40 min pretreat-
ment with compared to the control (p < 0.001). The average cell migration rate of HDFs treated with MMC was 

Figure 5.  Screening of stimulatory and inhibitory effects of bFGF and Mitomycin C using the wound-healing-
on-a-chip. (A) Representative phase contrast images of dermal fibroblast monolayers at 0, 4 and 20 h post-
wounding. The wound edges are highlighted with dashed lines. (Scale bar = 200 µm). (B,C) Comparison of 
wound closure and migration distance of dermal fibroblast monolayers treated with 100 ng/mL bFGF or 30 µM 
MMC at 0, 4 and 20 h post-wounding. Data is expressed as mean ± SD. Data sets were tested with unpaired 
student’s t-test with 99% confidence level, ns non-significant, **p < 0.01, ***p < 0.001, ****p < 0.0001. (control 
n = 5; bFGF n = 6; MMC n = 6).
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also significantly decreased to 7 μm/h with an overall decrease in the migration distance at 20 h with a difference 
of − 247.8 μm ± 43.29 compared to the untreated controls (p < 0.001).

Next the effect of serum depletion on HDF cell migration and wound closure on-chip was investigated because 
starvation is frequently used for cell cycle synchronization affects expression and production of  collagen21 and 
reduces the level of expression of a-Smooth Muscle Actin (α-SMA) due to absence of growth factors such as 
TGF-β9,21. For the current on-chip study, therefore the fibroblast growth medium was exchanged with starva-
tion medium or FCS-reduced medium containing 5% FCS (low FCS) 24 h prior to wounding. Completely sup-
plemented HDF growth medium containing 10% FCS was used as proliferative control condition. As shown 
in Fig. 6 wound defect closure improved significantly in the presence of any serum condition in cell culture 
medium compared to the starvation group. The average wound closure after 20 h of wound healing for starva-
tion, FCS-reduced and the untreated control samples were calculated to be 64%, 82% and 89%, respectively, with 
both treatment groups a significant decrease (p = 0.0014, difference between means − 29.8% ± 6.2 for starvation 
and p = 0.0079, difference between means − 26.1% ± 7.1 for 5% serum supplementation). Similarly, cell migra-
tion distances and speed increased proportionally with serum increase with 28, 23 and 11 μm/h for the control, 
FCS-reduced and starvation groups, respectively. Even though fibroblasts cultures can proliferate and migrate 
at reduced serum levels, cell migration is heavily affected even at 5% serum content.

In a final set of experiments, the role of activation of ERK signaling in cell migration was investigated. ERK 
phosphorylation can be inhibited using specific MEK inhibitors such as  U012622. ERK activation after wound-
ing promotes keratinocyte and epithelial cell  migration9,23, however, the ERK pathway is involved in the wound 
healing process through promotion of cell proliferation but not cell  migration24. To investigate the effect of 
inhibition of MEK1/2 on HDF cell migration and wound closure, similarity to MMC cells were pre-treated 
with 10 µM U0126 for 24 h prior to wounding. After wounding using the depletion method, the wound closure 
was monitored using a microscope and images were taken at selected time points. Wound area measurements 
showed that treatment with U0126 did not have significant effect on wound closure rate compared to the control 
as shown in Fig. 7A,B. The average cell migration rate of HDFs treated with specific MEK1/2 inhibitor U0126 
at a concentration of 10 μM was calculated to be 25 μm/h being very similar to the migration rate of 28 µm/h 
for untreated dermal fibroblasts which is also reflected by similar fibroblast migration distance (see Fig. S5). 
Therefore, the wound closure analysis in this experiment showed that treatment with U0126 at a concentration 
of 10 μM for 20 h did neither affect wound closure nor cell migration rate significantly by 0.11 ± 0.23 (p > 0.1; 
see Fig. 7B for migration rate). Increasing U0126 concentration to 20 µM significantly inhibited wound closure 
(p < 0.01) by almost 45%. When analyzing cell density and proliferation in more detail at the wound edges, U0126 
pretreatment selectively inhibited cell proliferation (p < 0.0001) independently of the concentration as shown in 
Fig. 7C reducing overall initial fibroblast density from 125 ± 3 to 95 ± 3 cells/mm2 and 90 ± 1 cells/mm2 directly 
after wounding at 0 h for 10 µM and 20 µM U0126, respectively. Over the next 20 h of wound closure cell prolif-
eration was inhibited by both concentrations by 26% and 32.5% of total cell count for 10 µM and 20 µM U0126.

Discussion
To conclude a microfluidic wound-healing-on-a-chip device was successfully rapid prototyped using xurography 
as a miniaturized and automated platform for dermal fibroblast migration and wound closure analysis. Even 
though xurography does not show high fabrication resolution compared to photolithography or CNC techniques, 
highly reproducible circular wound areas were created on fibroblast cell monolayer by membrane deflection via 
pneumatic layers. To monitor cell migration, wound areas were monitored using microscopes and cell migration 
was evaluated by image analysis. Human dermal fibroblasts were chosen for the wound healing analysis because 
they are present in all wound healing phases and have a major role in the cutaneous wound  healing4. Moreover, 
fibroblast cell migration is a key step in a healthy wound healing process. To analyze the chip functionality and 
for screening the effect of compounds on cell migration, cell depletion chip in combination with human dermal 
fibroblast cells were used. This study proved the functionality of the wound healing microdevice for wound 
healing analysis. The current comparative study demonstrated that the wound healing chip provides a highly 
reproducible system compared to standard wound healing assays by ten-fold reduction of RSD which indicates 
uniform, controllable and highly repeatable wound size creation using this automated chip-based method. In con-
trast to enzymatic detachment using laminar flows, the current system does not require any exchange of medium 
to perform wounding and can consequently be used also in the presence of biomolecules and biochemical agents. 
In the current proof-of-principle study both stimulatory as well as inhibitory effects of bioactive substances were 
successfully analyzed. Furthermore, the proposed microfluidic chips are easily integrated in automated cell cul-
ture as well as cell analysis systems and facilitate application of fluid flow and shear. For generation of flow the 
current system can be tilted periodically on a tilting plate to generate long-term flow needed for cell types such 
as endothelial cells that require shear obviating the need for tubing, syringe pumps and/or flow controllers. The 
current system aimed to automate the wound defect and cell depletion process completely by applying a defined 
pressure, whereas conventual methods require user manipulation. Integration of oxygen and impedance sensors 
are planned for future studies to further automate cell analysis.

Methods
Chip design and  fabrication.  The original layers structure was published  previously19 and adapted to 
hold eight individual culture chambers with two addressable pneumatic lines. The wound healing microdevice 
consists of three PDMS layers: a top layer with pneumatic structure, a middle plane layer and bottom layer 
with microchannel networks. The original design consisted eight pneumatic ports which was changed and 
reduced to two ports. The design was adapted as each pneumatic port was connected to four wounding areas. 
With this design simultaneous wounding was performed for four channels, with each time pressure application 
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through each pneumatic port. PDMS foil with 250 µm thickness (MVQ Silicones GmbH, Germany) was cut into 
76 × 26 mm designed structures using a cutting plotter machine using xurography as previously  optimized9,25. 
After removal of one protection plastic layer from PDMS foils, the foils were placed on cutting stage, position 

Figure 6.  Effect of serum starvation on on-chip HDF cell migration and wound closure. (A) Representative 
phase contrast images of wound defects at 0, 4 and 20 h. The wound edges are highlighted with dashed 
lines. (Scale bar = 200 µm). (B,C) Comparison of wound closure and migration distance of dermal fibroblast 
monolayers in the presence of 10%, 5% and 0% serum supplement at 0, 4 and 20 h post-wounding. Data is 
expressed as mean ± SD. Data sets were tested with unpaired student’s t-test with 99% confidence level, ns non-
significant, **p < 0.01, ***p < 0.001, ****p < 0.0001. (Control n = 5; bFGF n = 6; MMC n = 6).
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and size of the structures were adjusted using CutStudio software and the structures were cut to specific designed 
patterns. Two microscope glass slides were used on top and bottom of the microdevice. Structures were drilled 
on the top glass slides using a drill press machine. Drill needles with a head of 1 mm diameter were used to 
drill the holes. The glass slides were further cleaned using ultrasound bath in three steps with 2% Hellmanex III 
solution, isopropanol and DI water. After cleaning, the slides were air dried and kept in a 70 °C oven to dry com-
pletely. The glass slides and PDMS foils were bind to each other using a plasma cleaner machine. Each two layers 
were treated with plasma for surface activation and then carefully aligned on top of each other. After binding, the 

Figure 7.  Effect of U0126 ERK inhibitor on on-chip human dermal fibroblast cell migration and wound 
closure. (A) Representative phase contrast images of wound defects up to 20 h for dermal fibroblast monolayers 
treated with 10 µM and 20 µM U0126. The wound edges are highlighted with dashed lines. (Scale bar = 200 µm). 
(B) Comparison of wound closure of dermal fibroblast monolayers in the presence of 10 µM and 20 µM U0126 
up to 20 h post-wounding. Data is expressed as mean ± SD. Data sets were tested with unpaired student’s t-test 
with 99% confidence level, ns non-significant, **p < 0.01, ***p < 0.001, ****p < 0.0001; (control n = 6; U0126 
n = 4). (C) Comparison of cell number in defined wound areas of dermal fibroblast monolayers in the presence 
of 10 and 20 µM U0126 at 0 and 20 h. Data is expressed as mean ± SD. Data sets were tested with unpaired 
student’s t-test with 99% confidence level, ns = non-significant, **p < 0.01, ***p < 0.001, ****p < 0.0001; (control 
n = 4; U0126 (10 µM) n = 3; U0126 (20 µM) n = 4).
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layers were pressed and baked for one hour at 70 °C in the oven. First, the pneumatic layers (layer 2 and 3) were 
bonded to the top glass slide (layer 1) and the microchannel (layer 4) to the bottom glass slide (layer 5). After 
one hour baking, the glass-pneumatic structures were bind to the middle PDMS membranes and baked for one 
hour at 70 °C in the oven. In the last step, the glass-pneumatic-middle layer were bind to the glass-microchannel 
layers. The microdevice consists of eight microchannels with 2.5 mm width, 8.5 mm length 0.25 mm height. The 
volume of each microchannel was estimated to be 7 µL. The surface area of each microchannel was calculated to 
be 26.5 mm2 and each defined circular wound area was estimated to be 1.5 mm2. After building the microdevice, 
polymer tubes were glued to the ports on top of the glass slides using epoxy glue. Additionally, by optimizing 
the cell cultivation conditions on chip, the polymer ports were replaced by PDMS reservoirs. To cast reservoirs, 
silicon curing agent and silicon elastomer base were mixed with 1:10 ratio. After degassing the silicon mixture 
using a vacuum pump, the mixture was poured into reservoir forms and baked for one hour at 70 °C. A 6 mm 
biopsy puncher was used to remove the reservoirs structures. Reservoirs were bind to the top of the microdevice 
using plasma technology and baked for one hour at 70 °C in the oven.

Chip characterization (actuation and surface coating stability).  To select a suitable pressure for 
wounding and stimulating the membrane deflection, microchannels were filled with 10 μg/mL fluorescein solu-
tion in DI water. Then a pneumatic pump was connected to pneumatic activated actuators and by opening the 
valve, air pressure was applied on the membrane. 1–5 bar pressure were applied to the membrane respectively 
and pictures were taken at each step using the fluorescent microscope. Images were taken while the membrane 
was deflected under 1–5 bar of air pressure. Further image analysis of the fluorescent intensity was done using 
ImageJ software by transforming images to 8-bit gray scale, combination into a stack and thresholding (min 0 
to max 28, dark background selected) prior to deflection area calculation (measure function). For generation 
of line profiles, a linear region of interest was placed on a stacked image and plot profiles were analyzed (Plot 
Profile function).

To evaluate the stability of the surface coating, a well from a 48 well plate and a microchannel on the wound 
healing chip were coated with fluorescent conjugated fibrinogen for 4 h. Mechanical wounding was performed 
on chip by the depletion method via pressure application and the scratched assay was performed using a plastic 
pipette tip. Images were taken using a fluorescent microscope before and after wounding for comparative studies.

Cell culture and bioactive compound preparation.  Pooled primary human dermal fibroblasts derived 
from juvenile foreskin (HDFp.05.C; lot# EB1104281; > 3 donors) were purchased from a commercial supplier 
(CELLnTEK).Cells were weekly split enzymatically and maintained incubated at 37 °C and 5%  CO2 using either 
complete growth medium (DMEM high glucose, 10% FCS, 1% Antibiotics; Gibco), starvation medium (DMEM 
high glucose, 1% Antibiotics) or FCs-reduced growth medium (DMEM high glucose, 5% FCS, 1% Antibiotics). 
All methods were carried out in accordance with internal ethical as well as safety and scientific guidelines and 
regulations on working with commercial human cell lines. Bioactive compounds including bFGF, U0126 and 
mitomycin C stocks (Sigma Aldrich—Merck) were prepared according to the manufacturers’ description. After 
preparation of stock solutions, they were further diluted in HDF growth medium to reach the desired concentra-
tion. In brief, U0126 was prepared as 1 mM DMSO stock diluted to 10 μM working solution. Mitomycin C was 
prepared as 1 mM stock in deionized  H2O and diluted to a final concentration of 30 μM. bFGF was adjusted to 
5 μg/mL in Tris buffer and diluted to 100 ng/mL working solution.

For on-chip wound healing experiments, prior to surface coating, the microchannels were rinsed twice with 
70% EtOH and DPBS respectively. The microchannels were filled with 0.09% collagen I solution (collagen type 
I in DPBS) and incubated for 2 h at 37 °C. HDF cells were washed twice with DPBS and treated with trypsin for 
3–5 min until detached. The HDF growth medium was added to the cells and the suspension was centrifuged 
at 170 rcf for 5 min. The cell pellet was resuspended in the fresh medium and cell number was determined. The 
cell concentration was adjusted to 600 cells/μL. After removing the coating solution, the microchannels were 
filled with the cell suspension until the reservoirs were filled to the top. The chips were then incubated at 37 °C, 
5%  CO2 for cell adhesion. The next day medium was changed to HDF growth medium, starvation medium, 
FCS-reduced medium or medium containing hβFGF. For screening the effect of compounds on cell migra-
tion, HDF cells were treated with 30 μM mitomycin C for 40 min or U0126 10 μM for 24 h, prior to wounding. 
After medium change or pre-conditioning, the reservoirs were sealed with PCR plate tapes to prevent medium 
vaporization and contamination. To have a consistent comparison between different conditions, HDF cells from 
comparable passage were used. For pneumatic wounding, 72 h after seeding, wounding on chip was performed 
using cell depletion method. The pressure of the pneumatic system was set to five bars. Then pneumatic pump 
was connected to pneumatic activated actuators using a plastic connector. By opening the valve, air pressure was 
applied on the flexible membrane which was pressed on the cell monolayer. Circular cell-free areas were induced 
mechanically within 10 s of membrane compression. After wounding, the pneumatic pump was disconnected 
from the pneumatic activated actuators.

Scratch assay.  To prepare samples for the scratch assay, wells from 24 well plates were coated with 0.1% gel-
atin solution (gelatin in DI water) and incubated for 2 h at 37 °C. After removing the coating solution HDF cells 
were seeded with cell density of 5000 cells/cm2 on the well plate. Well plates were incubated at 37 °C, 5%  CO2 
until a confluent monolayer of cells in each well is formed. The medium was changed to HDF growth medium, 
medium containing hβFGF the next day or cells were treated with 30 μM mitomycin C prior to scratching. 72 h 
after seeding, scratch assay was performed by manual scratching. Cell-free areas were created by mechanical 
removal of the cells from the cell monolayer, using a plastic pipette tip.
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Live-dead and phalloidin staining.  To evaluate viability after wounding or during wound healing, the 
cells were stained with calcein AM and Propidium iodide (PI) with the volume ratio of 1:1000 in basal DMEM 
medium. The cells were incubated with the staining solution at 37 °C, 5%  CO2 for 40 min. After staining, the 
cells were washed twice with DPBS and covered with basal DMEM medium for fluorescent imaging. By choice, 
phalloidin and Hoechst 33342 staining was performed 24 h after wounding as an end point staining. Cells were 
washed twice with DPBS and incubated with Triton X-100 fixation solution for 10 min. Then, the cells were 
stained with phalloidin and Hoechst with the volume ratio of 1:1000 and 1:2000, respectively. The cells were 
incubated with the staining solution in DPBS for 30 min which was followed by fluorescent imaging.

Microscopy.  After wounding, the wound closure was monitored using live cell microscope incubation sys-
tem (CellVivo) or manually using a live-cell cell culture microscope IX81 (Olympus). Samples were positioned 
on the microscope stage and the light intensity was adjusted. 4× magnification objective was selected for obser-
vation of the wounded area. Coarse and fine focus knobs were used to bring the specimen into optimal focus. 
The brightness of the image was adjusted, and pictures were taken in phase contrast mode. Live cell incubation 
system and microscope was used for time lapse and fluorescence imaging. The sample was positioned on the 
microscopic stage. The sample was covered with the cover plate connected to the  CO2 supply. Substitutivity, 
medium containing 10% HEPES was used. Temperature and  CO2 level were adjusted to 37 °C and 5% using the 
environment control chamber. The image setting was set to the phase contrast mode and imaging positions were 
selected manually. The specimen was brought into focus using focus knobs. After position confirmation and 
focus adjustment, the desired interval between time lapse imaging and number of imaging cycles were selected 
in the image acquisition section. By pressing start key, time lapse imagining with defined intervals was started. 
For fluorescent imaging, first the specimen was brought into focus using focus knobs. The setting was changed 
to fluorescent mode with multichannel imaging techniques depending on fluorescent dyes color. DAPI, FITC 
and/or TRITC channels were selected, and fluorescent intensity was adjusted by changing the exposure time.

Image analysis of cell-free areas using  ImageJ software.  To analyze the images taken by micro-
scopes, the pictures were exported in JPG format. After opening the images in Image J software, the unit for 
distance measurement was changed from pixel to micrometer. This change of the scale was applied to all images 
prior to image analysis by drawing a free line over the scale bar and selecting the “Set Scale” key into desired unit.

To measure the cell-free area, the wound edges were cleared using “Find Edges” and “Sharpen” keys. The color 
threshold of images was also adjusted to “black and white” format using “Image Adjust” key. After threshold selec-
tion, the wound edges and cell covered areas appeared in white color and the cell-free area appeared in black. By 
selecting “Analyze Particle” key, the percentage of wound area was measured. Substitutivity, the wound area was 
selected manually using “Polygon selection” from the task bar. Additionally, wound diameters were measured by 
using the “Freehand selection” tool, after scale setting and color threshold adjustment for three lines per wound 
sample. The measurement results were exported as Excel files for further analysis. The established formulas are 
used for cell migration and wound closure quantification. The wound width was measured at desired timepoints 
and average widths were calculated. By subtraction of final wound width W(t2) from initial wound width W(t1), 
the change in wound width between selected timepoints was calculated. Additionally, by division of this number 
by the duration of cell migration ( �t ). This number was then divided by 2, since the cell migration occurs from 
both wound edges as shown in Eq. (1).

The wound areas were measured, and the average wound size was calculated at desired time points. Final 
wound area A(t) was subtracted from initial wound area A(t0) and this number was divided by the initial wound 
area as shown in Eq. (2).

To quantify the wound size reproducibility and be able to compare the wound size reproducibility between 
conventional scratch assay and wound healing assay-on-chip, wound areas were measured from 20 wounds. 
From 20 single measurements, the average wound size (X̄) and standard deviation (SD) were calculated. The 
relative standard deviation was reported in a percentage value for each series of experiments as shown in Eq. (3).

Statistical analysis.  For statistical analysis, data sets were tested for significance using GraphPad Prism 
software (Version 6.0). The data are presented as the mean ± standard deviation (SD). Unpaired student’s t-test 
with confidence interval of 99% used for analysis of differences between groups. Two-tailed p values were calcu-
lated, and differences were considered significant at p < 0.01. For unbiased automated image analysis of wound 
closure, the thresholding tool of ImageJ was used prior to analysis of wound closure and cell migration.

Data availability
Data is available upon email request.
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