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INTRODUCTION 
 

Endometrial cancer (EC) is one of the most common 

gynecologic malignancies, and the fourth most common 

cancer (about 4.8% of all cancers) in women [1]. EC 

affects mainly post-menopausal women [2]. The routine 

treatment for EC includes surgery, radiotherapy, 

chemotherapy, and hormonal therapy. When the disease 

is confined to the uterus, EC patients have a relatively 

good prognosis, with a 5-year survival rate of 95 %. 

However, when distant metastases are present at the 

time of diagnosis, the 5-year survival rate is only 17 %, 

and patients respond poorly to conventional therapies. 

Thus, it is critical to identify prognostic biomarkers for 

EC, and develop therapies that are more effective for 

patients with advanced forms of EC. 

 

Tumor microenvironment (TME), the site where the 

tumor is located, consists of immune cells, 

mesenchymal cells, endothelial cells, inflammatory 

mediators, and extracellular matrix (ECM) molecules 

[3, 4]. TME has a significant impact on tumor growth, 

chemoresistance, and clinical outcomes [5–9]; 

however, relatively little is known about the impact of 

TME on endometrial cancer. Infiltrating stromal and 

immune cells are the major components of TME, and 

play an essential role in cancer biology. The 

ESTIMATE (Estimation of STromal and Immune 

cells in MAlignant Tumor tissues using Expression 

data) algorithm uses gene expression data to estimate 

the levels of infiltrating stromal and immune cells, 

and tumor purity. The predictive ability of this 

method has been validated in large and independent 

datasets [6].  

 

Machine learning is a form of artificial intelligence 

that can automatically analyze patterns from sample 

data, and make corresponding predictions. Due to its 
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ABSTRACT 
 

Endometrial cancer (EC) is one of the most common gynecologic malignancies. To identify potential prognostic 
biomarkers for EC, we analyzed the relationship between the EC tumor microenvironment and gene expression 
profiles. Using the ESTIMATE R tool, we found that immune and stromal scores correlated with clinical data and the 
prognosis of EC patients. Based on the immune and stromal scores, 387 intersection differentially expressed genes 
were identified. Eight immune‐related genes were then identified using two machine learning algorithms. 
Functional enrichment analysis revealed that these genes were mainly associated with T cell activation and 
response. Kaplan-Meier survival analysis showed that expression of TMEM150B, CACNA2D2, TRPM5, NOL4, CTSW, 
and SIGLEC1 significantly correlated with overall survival times of EC patients. In addition, using the TIMER 
algorithm, we found that expression of TMEM150B, SIGLEC1, and CTSW correlated positively with the tumor 
infiltration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, and dendritic cells. These findings indicate that 
the composition of the tumor microenvironment affects the clinical outcomes of EC patients, and suggests that it 
may provide a basis for development of novel prognostic biomarkers and immunotherapies for EC patients. 
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accuracy and predictive performance, the machine 

learning algorithm is used in different fields, 

including medical diagnostics [10]. The commonly 

used machine learning algorithms include SVM, 

KNN, LASSO, and Random forest.  

 

Knowledge of the TME composition is critical to 

understand the interactions between cancer and 

immune cells, and the impact the immune system has 

on tumor behavior [11]. In this study, we used the 

ESTIMATE and TIMER (Tumor Immune Estimation 

Resource) [12] algorithms, to perform a 

comprehensive analysis of immune cells and genes in 

the TME of endometrial carcinoma, and to correlate 

the data to clinical outcomes and prognosis of EC 

patients. Our results indicate that the TME 

composition affects the clinical outcomes of EC 

patients, suggesting that it might provide a basis for 

development of new prognostic biomarkers and 

therapies, especially immunotherapies, for EC 

patients. 

 

RESULTS 
 

Immune and stromal scores correlate with EC 

clinical data and prognosis  

 

In total, data from 521 EC patients, and 19459 RNAs 

extracted from RNA-seq data according to ENSEMBL 

Genomes (hg38), were analyzed in this study. Based on 

the gene expression data, immune and stromal scores 

were calculated using the ESTIMATE algorithm 

(Supplementary Table 1). 

 

Based on the clinical data extracted from TCGA-CDR 

(Supplementary Table 2) and using Wilcoxon signed-

rank test, we found that both immune and stromal 

scores of grade 3 (G3; n=319) and high-grade (n=11) 

EC were significantly lower compared to grade 1 (G1; 

n=96) and grade 2 (G2; n=119) groups (p=0.03, 

p=0.04). In addition, the scores of high grade patients 

were lower than the scores of grade 3 patients 

(p=0.03, p=0.04) (Figure 1A, 1B). Based on a 

classification by the International Society of 

Gynecological Pathologists, the clinical outcomes of 

grade 1 and grade 2 patients are better than grade 3 

and high grade patients, and the high grade patients 

have even worse prognosis than the grade 3 patients 

[13]. As shown in Figure 1C and 1D, the immune and 

stromal scores were associated with the EC 

pathological subtype: endometrioid endometrial 

adenocarcinoma had higher immune and stromal 

scores than serous endometrial adenocarcinoma. In 

addition, when we compared the immune and stromal 

scores between patients with a new tumor event (n= 

115) and without new tumor event (n= 370) after 

initial treatment, patients without a new tumor  

event had higher immune and stromal scores, although 

this did not reach a statistical significance  

(Figure 1E, 1F). 

 

According to TCGA-CDR, a progression-free interval 

(PFI) is defined as the time until patients develop a 

new tumor event, including recurrence of disease and 

distant metastasis [14]. To determine whether there is 

a correlation between the immune and stromal scores, 

the overall survival (OS) time, and the PFI of EC 

patients (Figure 2A–2D), EC patients were classified 

into a high score group (n(stromal group) =243, 

n(immune group)= 242), and a low score group 

(n(stromal group) =242, n(immune group)= 243) 

based on the median of scores, and Kaplan–Meier 

survival curve was used to analyze the correlation. We 

found that the high immune score positively 

correlated with both OS (p=0.01) and PFI (p=0.04) 

(Figure 2A, 2C), and the high stromal score positively 

correlated with OS (p=0.042) (Figure 2B).  

 

Identification of differentially expressed genes 

(DEGs)  
 

To identify the immune-related and stromal-related 

genes, differential analysis by using “limma” package 

was performed (Supplementary Table 3). 552 genes 

were upregulated in the high immune score group 

(purple circle in Figure 3A), and 690 genes were 

upregulated in the high stromal score group (red circle 

in Figure 3A). At the same time, 164 genes were 

downregulated in the high immune score group 

(purple circle in Figure 3B), and 43 genes were 

downregulated in the high stromal score group (red 

circle in Figure 3B). 387 intersection genes were 

selected for further analysis (overlap zone in Figure 

3A, 3B). 

 

Enrichment analysis of intersection genes 

 

Using the “clusterProfiler” R package, 711 Gene 

Ontology (GO) terms and 36 Kyoto Encyclopedia of 

Genes and Genomes (KEGG) terms were indicated 

(Supplementary Table 4). The results showed the top 10 

biological processes GO terms, cellular component GO 

terms, molecular function GO terms (Figure 4A), and 

the top 20 KEGG pathway terms (Figure 4C). The 

correlation between the intersection genes and the top 5 

biological processes, including T cell activation, 

regulation of lymphocyte activation, regulation of T cell 

activation, leukocyte adhesion, and positive regulation 

of cell activation is shown in Figure 4B. The KEGG 

analysis showed that the intersection genes were 

associated with immune responses, especially T cell 

responses. 
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Analysis of protein-protein interactions (PPI) among 

intersection genes 

 

PPI network with 384 nodes and 1784 edges was 

constructed using the STRING website (Figure 5A). 

Using the MCODE software we found modules in the 

network; modules including at least 10 nodes were 

selected (Figure 5B, Module 1; Figure 5C, Module 2). 

GO and KEGG analyses of module 1 (Figure 5B) by 

ClueGo are shown in Supplementary Figure 2A and 2C. 

Likewise, GO and KEGG analyses of module 2 (Figure 

5C) by ClueGo are shown in Supplementary Figure 2B 

and 2D. The results demonstrated that the module 1 was 

mainly enriched in leukocyte migration (59.84%; 

Supplementary Figure 2A), Toll-like receptor signaling 

pathway (40%), and chemokine signaling pathway 

(40%; Supplementary Figure 2C). Module 2 was mainly 

enriched in T cell co-stimulation (72.28%; 

Supplementary Figure 2B) and cell adhesion molecules 

(40.54%; Supplementary Figure 2D). 

 

Identification of TME associated genes based on 

machine learning 
 

To identify the TME associated genes, we performed 

two different machine learning algorithms, LASSO 

 

 
 

Figure 1. Relationship between immune and stromal scores and EC clinical and pathological data. (A, B) Distribution of immune 
and stromal scores of EC grades. (C, D) Distribution of immune and stromal scores of EC pathologic type, including endometrioid cancer, 
serous cancer and mix type. (E, F) Distribution of immune and stromal scores of new tumor event after initial treatment of EC. 
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algorithm and Random forest algorithm. By LASSO 

algorithm, 12 genes were identified (Figure 6B); by 

Random forest algorithm, 50 genes were identified 

(Figure 6A). The ROC curve of LASSO 

(Supplementary Figure 1A, AUC:0.753) and Random 

forest test (Supplementary Figure 1B, AUC:0.960) was 

used. An overlap between the above two groups 

identified 8 TME associated genes (AQP4, 

ARHGAP36, CACNA2D2, CTSW, NOL4, SIGLEC1, 

TMEM150B and TRPM5) (Figure 6C). 

 

 
 

Figure 2. Kaplan-Meier (KM) survival curve of EC patients based on their immune/stromal scores. Patients were classified into 
high immune/stromal scores groups and low immune/stromal scores groups. (A) The KM curve of overall survival (OS) time of high and low 
immune score group. (B) The KM curve of OS time of high and low stromal score group. (C) The KM curve of progression-free interval (PFI) 
time according to immune scores. (D) The KM curve of progression-free interval (PFI) time according to stromal scores. 
 

 
 

Figure 3. Differentially Expressed Genes (DEGs) selected (A, B) Venn diagram of differentially expressed genes (DEGs) base on immune and 
stromal score. (A) shows the commonly upregulated DEGs and (B) shows the commonly downregulated DEGs. 
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Predictive signature construction and survival 

analysis 

 

Multivariate Cox regression analysis performed by 

“survival” R package was subsequently used to 

construct a predictive signature using the above 8 TME 

associated genes. The risk score of the prognostic 

signature was then calculated according to the formula: 

1
risk score

n

i
i xi


    (β stands for the regression 

coefficient) [15]. By Kaplan-Meier survival analysis, 

we found that this 8-gene signature was associated 

with OS (p<0.0001) (Figure 7A); this was validated 

by the ROC curve (AUC of 3 year: 0.756, AUC of 5 

year: 0.797) (Figure 7B).  

 

We also analyzed the association between the 8 genes 

and OS using the Kaplan-Meier survival analysis. We 

found that the high levels of TMEM150B (p=0.037), 

CACNA2D2 (p=0.0098), TRPM5 (p=0.031) and NOL4 

(p=0.0018) negatively correlated with OS (Figure 7C–

7G), while the high levels of CTSW (p=0.0029) and 

SIGLEC1 (p=0.043) positively correlated with OS 

(Figure 7H). 

 

Immune cells infiltration analysis 
 

To determine whether there is a correlation between 

tumor infiltration with immune cells, and immune-

related gene expression, the tumor infiltration with six 

types of immune cells (CD4 + T cells, CD8 + T cells, B 

cells, neutrophils, macrophages, and dendritic cells) was 

analyzed by TIMER (Supplementary Table 5). Figure 8 

shows the correlation between the immune cell 

infiltration and the expression of prognostic genes. The 

expression of CTSW positively correlated with the 

infiltrating levels of B cells (partial.cor=0.586, p=5.44e-

28), CD4+ T cells (partial.cor=0.499, p=1.08e-19), 

 

 
 

Figure 4. Enrichment analysis of microenvironment related differentially expressed genes (DEGs). (A) the top 10 of 
biological processes GO terms, cellular component GO terms, molecular function GO terms; (B) The correlation between intersection 
genes and top 5 biological processes GO terms; (C) KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of immune-related 
DEGs. 
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macrophages (partial.cor=0.329, p=8.02e-09), and 

dendritic cells (partial.cor=0.434, p=7.95e-15). SIGLEC1 

was associated with infiltrating levels of B cells 

(partial.cor=0.537, p=5.322e-23), CD4+ T cells 

(partial.cor=0.525, p=5.39e-22), macrophages (partial.cor 

=0.364, p=1.43e-10), neutrophils (partial.cor=0.332, 

p=5.89e-09), and dendritic cells (partial.cor=0.368, 

p=8.66e-11). Similarly, TMEM150B was associated with 

infiltrating levels of B cells (partial.cor=0.447, p=1.41e-

15), CD4+ T cells (partial.cor=0.438, p=4.56e-15), and 

dendritic cells (partial.cor=0.411, p=2.68e-13) (Figure 8). 

DISCUSSION 
 

Tumor microenvironment (TME) plays a critical role in 

tumor development, progression, and responses to 

therapies, especially immunotherapies. However, the 

role of TME differs in different types of cancer. 

Although endometrial cancer is one of the most 

common gynecological cancers, the composition of 

the TME, and its correlation with EC prognosis 

remain poorly understood compared to other 

malignancies. 

 

 
 

Figure 5. Protein-protein interaction (PPI) network of microenvironment related genes. (B) module 1 and (C) module 2 are the top 
two modules (>10 nodes) in the PPI network (A). The color of nodes associate with the log(FC) value, and the size reflects the combine score. 
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In this study, we performed a comprehensive analysis 

of immune cells and genes in the TME of endometrial 

carcinoma, and related the data to clinical outcomes 

and prognosis of EC patients. Using the ESTIMATE 

algorithm, we first analyzed the correlation between 

the immune/stromal scores and the clinical EC 

characteristics obtained from TCGA-CDR. The 

ESTIMATE algorithm is a widely accepted and 

reliable algorithm that has been used in various 

cancers, including glioblastoma [16], breast cancer 

[17], prostate cancer [18], colon cancer [19], and 

cutaneous melanoma [20]. Using the ESTIMATE 

algorithm, our data demonstrate that the immune and 

stromal scores positively correlate with clinical 

outcomes of EC patients.  

 

The pathogenetic types of endometrial cancer include 

endometrioid endometrial adenocarcinoma, serous 

endometrial adenocarcinoma, and mixed serous and 

endometrioid endometrial adenocarcinoma. Patients 

with serous endometrial adenocarcinoma often have a 

relatively poor prognosis [21–23]. In our study, we 

found that the immune and stromal scores of 

endometrioid endometrial adenocarcinoma were 

significantly higher than in serous endometrial 

adenocarcinoma, suggesting that the high concentration 

of immune cells in the TME of endometrioid 

endometrial adenocarcinoma might represent one of the 

mechanisms contributing to the good prognosis of this 

type of EC cancer. In addition, by analyzing the 

correlation between the immune scores and tumor 

recurrence, our data show that high immune score 

patients have longer progression-free interval and 

overall survival rates, indicating that the TME 

composition affects the clinical outcomes of EC 

patients.  

 

Next, we analyzed differentially expressed genes 

(DEGs) in EC, by dividing patients into high score and 

low score groups, based on the median immune/stromal 

scores. Our data show that DEGs are involved in TME, 

and specifically regulate T cell functions. Furthermore, 

analysis of the PPI network indicated enrichment 

clustered in T cell functions, including T cell migration, 

differentiation, co-stimulation, and receptor signaling. 

We speculate that these TME associated genes might 

affect the development of endometrial cancer by 

affecting the T cell functions. 

 

 
 

Figure 6. Selection of microenvironment related prognostic genes. (A) Random forest and (B) Lasso (Least Absolute Shrinkage and 
Selector Operation) algorithms were preformed to further select microenvironment related prognostic genes. (C) Venn diagram analysis 
between the genes selected by Random forest algorithm and Lasso algorithms. 



www.aging-us.com  3378 AGING 

 
 

Figure 7. Survival analysis of microenvironment related prognostic genes. (A) Kaplan-Meier (KM) survival curve of 8 
microenvironment related prognostic signature. (B) ROC (receiver operating characteristic) curve of 8 microenvironment related prognostic 
signature. (C–G) Kaplan-Meier (KM) survival curve of microenvironment related prognostic genes. 
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Because of its accuracy and predictive performance, 

the machine learning algorithm has been used in 

different fields, including medical diagnostics [10]. 

 

Since complex models and highly significant 

relationships can be extracted from large amounts of 

data, the machine learning can be highly predictive 

for specific cancers [24, 25]. LASSO algorithm [26] 

and Random forest (RF) algorithm [27] can be used 

for classification and regression; thus, they were 

particularly well-suited in our study to identify the 

prognostic TME-related genes. Using this approach, 

eight immune-related genes were identified; high 

levels of TMEM150B, CACNA2D2, TRPM5, and 

NOL4 showed a negative correlation to OS, while 

high levels of CTSW and SIGLEC1 showed a positive 

correlation to OS in EC patients. These genes have 

been reported to be involved in carcinogenesis and 

development of various cancers. TMEM150B 

regulates autophagy and cell death by encoding an 

autophagy regulator [28]. CACNA2D2, the auxiliary 

subunit of α2δ2, induces cell proliferation and 

angiogenesis by increasing the expression of vascular 

endothelial growth factor to promote tumorigenesis 

[29]. NOL4 (nucleolar protein 4) is a novel 

methylation target in cervical cancer, and has been 

suggested as an early detection and risk prediction 

biomarker in cervical cancer [30]. However, most of 

the identified genes have not been previously linked 

to EC. Our data indicate that they could serve as 

potential prognostic biomarkers for EC. 

 

To investigate the impact of TME infiltration with 

immune cells on the prognosis of EC patients, we 

calculated the degree of infiltration of six immune cell 

types by using TIMER algorithm, and correlated the 

data with the expression of the identified  immune 

genes. SIGLEC1 (CD169) is a novel biomarker of 

tumor-associated macrophages [24]. A previous study 

found that the density of CD169+ macrophages was 

positively associated with the abundance of CD8(+) 

CTL and CD57(+) NK cells in tumor tissues, and 

correlated with a better prognosis in EC patients [31]. 

This finding is consistent with the results obtained in 

our study. CTSW (Cathepsin W) is a novel human 

cysteine protease expressed in CD8+ T cells and NK 

cells [32], and plays an important role in cellular 

cytotoxicity mediated by NK cells and CD8+ T cells 

[33, 34]. Different T cell populations have different 

functions in regulating tumor grade, stage, and 

invasion ability in endometrial cancer [35–37]. We 

speculate that CTSW might be involved in the 

development of EC by regulating the T cell functions.  

 

Previous studies have suggested that the tumor 

microenvironment in EC may have a significant 

prognostic value, and even play a role in resistance to 

treatment [38–40]. However, the tumor 

microenvironment is complex, and is determined by 

many factors. To improve the accuracy and reliability 

of the TME analysis, we used a large global collection 

of EC tissues from TCGA-UCEC, and introduced two 

machine learning algorithms. In addition, this study 

comprehensively analyzed the correlation between 

microenvironmental and genetic factors, and 

identified six potential prognostic TME-related genes 

(CACNA2D2, CTSW, NOL4, SIGLEC1, 

TMEM150B, and TRPM5). Future studies should 

identify the specific roles these genes play in the 

regulation of EC development and progression. 

 

 
 

Figure 8. Correlation of microenvironment related prognostic genes’ expression with immune infiltration level. 
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MATERIALS AND METHODS 
 

R software (version 3.5.1) [41] and Bioconuctor [42] 

were used for all analyses in this study. 

 

Data collection and analysis 

 

All RNA expression data were obtained from The 

Cancer Genome Atlas (TCGA) (Data Release 16.0 - 

March 26, 2019) (https://portal.gdc.cancer.gov/). The 

expression data were then normalized by Fragments 

Per Kilobase of transcript per Million mapped reads 

(FPKM). The corresponding clinical data were 

obtained from TCGA-CDR (TCGA Pan-cancer 

Clinical Data Resource) dataset [14]. Patients whose 

overall survival times or progression-free interval 

(PFI) times were less than 30 days were excluded from 

our study. Progression-free interval is characterized as 

a time without a new tumor occurrence or a death from 

cancer. In total, data from 521 patients were analyzed 

in our study, and 19459 RNAs were extracted from 

RNA-seq data according to ENSEMBL Genomes 

(hg38) (http://ensemblgenomes.org/). Both RNA-seq 

data and corresponding clinical data were publicly 

available. 

 

Calculation of immune and stromal scores 
 

ESTIMATE (Estimation of STromal and Immune cells 

in MAlignant Tumor tissues using Expression data) is 

one of the algorithms developed to evaluate the cell 

tumor composition by calculating the immune and 

stromal scores using Pearson’s correlation coefficient 

[6]. By using “estimate” R package, the immune and 

stromal scores were calculated based on the gene 

expression data of EC patients. 

 

Selection of differentially expressed genes 
 

The samples were divided into high and low 

immune/stromal score groups based on the medium 

values of the immune/stromal scores. The selection of 

differentially expressed genes (DEGs) was performed by 

using “limma” R package with p-value < 0.05 and log 

fold change > 1 as a filter [43]. A website Venn diagrams 

tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) 

was used to identify the commonly upregulated or 

downregulated DEGs in the immune and stromal groups. 

These intersection genes were selected for further 

analysis. 

 

Enrichment analysis of intersection genes 

 

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia 

of Genes and Genomes) enrichment analyses and 

visualization of intersection genes were performed by 

“clusterProfiler” R package [44] and “enrichplot” R 

package [45] with p-value < 0.05 as the cut-off value.  

 

Protein-protein interaction (PPI) network 

construction 

 

For understanding protein interactions, we constructed 

the PPI network by STRING (V11) [46] with high 

confidence (0.7). The information of nodes of the PPI 

network was then further analyzed by Cytoscape 

software [47]. In Cytoscape, we used Molecular 

COmplex DEtection (MCODE) to select clusters which 

included 10 or more nodes [48]. ClueGo App was used 

to perform enrichment analysis of each cluster selected 

by MCODE [49]. 

 

Identification of TME associated prognostic genes 
 

Least Absolute Shrinkage and Selector Operation 

(LASSO) algorithm was used to identify candidate genes 

by “glmnet” R package with number of lambda = 1000 

[50]. Clinical outcomes and gene expression profiles were 

analyzed by LASSO and Random forest algorithms. 

Lambda.min is the cutoff point that brings minimum 

mean cross-validated error. Genes with the highest 

lambda values were selected for further analysis. 

Simultaneously, Radom Forest algorithm was used for 

candidate genes selection by “randomForest” R package 

[51]. According to “randomForest” package, we set 

“ntree” as 10001 and “mtry” as a default value. No other 

options were used in machine learning algorithm. 

 

The overlapped genes in LASSO and Random Forest 

algorithms were selected and then "survival" R package 

[52] was used to preform multivariate cox regression. 

The ROC (time-dependent receiver operating 

characteristic) curve was used to estimate the accuracy 

and specificity of the classification performance of the 

gene signature. 

 

Overall survival analysis 

 

Overall survival analysis was performed by Kaplan-

Meier survival analysis by using “survival” R package 

[52], overall survival times of EC patients (n=521), and 

gene expression data.  

 

Analysis of immune cell infiltration 

 

The TIMER (Tumor IMmune Estimation Resource) 

algorithm was used to calculate the tumor abundance of 

six infiltrating immune cells (CD4 + T cells, CD8 + T 

cells, B cells, neutrophils, macrophages, and dendritic 

cells) based on RNA-Seq expression profiles data [12]. 

Compared to other calculation methods, the TIMER 

algorithm can eliminate bias effects by removing highly 

https://portal.gdc.cancer.gov/
http://ensemblgenomes.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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expressed genes and eliminating collinearity between 

immune cells to ensure accuracy of the calculation.  

 

The correlation between the selected prognostic genes 

and immune cells was calculated by Spearman’s 

correlation analysis by TIMER. The correlation 

coefficient value<0.3 indicates that the correlation is 

negligible, while the correlation coefficient >0.3 

indicates a positive/negative correlation [53]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

Supplementary Figure 1. ROC (receiver operating characteristic) curve of LASSO algorithm (A) and Random forest algorithm (B). 
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Supplementary Figure 2. Functional enrichment of key modules of PPI network. GO analysis (A) and KEGG (C) analysis of module 1. 
GO analysis (B) and KEGG (D) analysis of module 2 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. The immune scores and stromal scores of EC. 
 

Supplementary Table 2. The clinical data of EC extracted from TCGA-CDR. 
 

Supplementary Table 3. Differentially expressed genes selected based on immune and stromal scores. 
 

Supplementary Table 4. 711 GO terms and 36 KEGG terms of differentially expressed genes. 
 

Supplementary Table 5. The infiltration of six types immune cells of EC patients. 
 


