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Abstract The Visual Predictive Check (VPC) is a valuable and supportive instrument
for evaluating model performance. However in its most commonly applied form, the
method largely depends on a subjective comparison of the distribution of the simulated
data with the observed data, without explicitly quantifying and relating the information
in both. In recent adaptations to the VPC this drawback is taken into consideration by
presenting the observed and predicted data as percentiles. In addition, in some of these
adaptations the uncertainty in the predictions is represented visually. However, it is
not assessed whether the expected random distribution of the observations around the
predicted median trend is realised in relation to the number of observations. Moreover
the influence of and the information residing in missing data at each time point is not
taken into consideration. Therefore, in this investigation the VPC is extended with
two methods to support a less subjective and thereby more adequate evaluation of
model performance: (i) the Quantified Visual Predictive Check (QVPC) and (ii) the
Bootstrap Visual Predictive Check (BVPC). The QVPC presents the distribution of
the observations as a percentage, thus regardless the density of the data, above and
below the predicted median at each time point, while also visualising the percentage
of unavailable data. The BVPC weighs the predicted median against the 5th, 50th and
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95th percentiles resulting from a bootstrap of the observed data median at each time
point, while accounting for the number and the theoretical position of unavailable data.
The proposed extensions to the VPC are illustrated by a pharmacokinetic simulation
example and applied to a pharmacodynamic disease progression example.

Keywords Visual Predictive Check - Pharmacokinetics - Pharmacodynamics -
Disease progression - Evaluation - Validation - Qualification - Model performance

Introduction

Throughout the various phases in drug development, data are increasingly analysed
using population pharmacokinetic (PK), pharmacodynamic (PD) and disease progres-
sion (DP) models [1-4]. An important part in the modelling process is to evaluate
how well a model performs, either to gain knowledge on how to improve the model
from a learning perspective or to confirm its validity for further application, e.g. for
clinical trial simulations [5]. Various methods exist for this purpose, many of which
are graphical or statistical evaluations of the observations in relation to measures of
the model prediction [6]. An appealing method for checking model performance is
the so-called Visual Predictive Check (VPC), which originates from the Posterior
Predictive Check (PPC) [7,8]. The VPC is a valuable tool as it is simply applicable
from a practical standpoint and has the potential for strong intuitive convincing, albeit
subjective, graphs [7,9]. The rationale of the VPC is to graphically assess whether an
identified model is able to reproduce the variability in the observed data from which
it originates. Using the identified model, several replications based on the structure of
the original data (i.e. dosing, timing and number of samples) are simulated and the
distribution of these replicates is compared to actual observations. Figure 1 shows the
most common display of the VPC where the 5th and 95th percentiles, and in some
cases the 50th percentile, of the simulated distribution are compared to the observa-
tions. In this general form, the VPC largely depends on a subjective comparison of the
overlap in the simulated distribution with the observations, without explicitly quanti-
fying and relating the information in both. Recently proposed adaptations to the VPC
methodology clearly take this relation into account by showing the percentiles of the
distribution of observed and simulated data [10—-16]. Visual evaluation of the resem-
blance between the observed and the predicted variability and the general time trend
in the data, while also including the anticipated but unavailable data, is an elementary
feature in model evaluation [8,17,18]. Although the VPC is currently a supportive
tool, it has important shortcomings in its present application, which limits its use as a
standard tool for model evaluation [9].

In general, three main shortcomings in the standard VPC can be identified. These
shortcomings are partly accounted for in the recently published adaptations, but require
further advances, which are described in this paper: (i) it is not evaluated whether the
median calculated from the simulations is well-matched to the median of the observa-
tions, (ii) neither the distribution of the observations, nor the expected random alloca-
tion of the observations around the model predicted median are objectively considered
and (iii) neither the amount of observations at each time point, nor the influence and
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Fig. 1 Common display of the VPC. The dark grey dots present the observations, the dashed black lines
the 5th and 95th percentiles of the model simulation and the solid black line depicts the model predicted
median. The observations arise from the PK simulation MODEL 1 and the VPC from optimisation MODEL
2 (Table 1)

information residing in unavailable data are taken into account in relation to either the
first or the second issue. Within the context of this paper, the term ‘unavailable data’
reflects all sorts of missing or unobserved data resulting from a variety of reasons, e.g.
concentrations below the lower limit of quantification, subject drop-out, random or
informative missing. As the aim of the manuscript is the clarification of the concep-
tual extensions to the VPC, it is judged reasonable to use this term throughout the
manuscript.

Specific VPC examples exist where observations and model predictions are gra-
phically linked. Winter etal. and Holford etal. display the median of the observations
next to the model predicted median, managing the first shortcoming [10,11]. Fur-
thermore, others have presented examples in which the observed data are displayed as
percentiles, presenting the distribution of the observed data around the model predicted
median, thereby also accommodating the second shortcoming [11,13-15]. Following
submission of this paper, R-scripts have become available which take this one step
further by enabling the visualisation of uncertainty ranges around the percentiles of the
observed and simulated data [15]. Recently, another method based on the PPC was pro-
posed, which deals with the first two issues [16, 19]. This attractive approach computes
the prediction discrepancies for each observation and summarises the position of the
observations in the distribution of predictions graphically and statistically. These recent
developments clearly show the evolution in methodology and tools for performing a
VPC aiming to overcome the shortcomings of its elementary form. Nevertheless, the
aforementioned approaches do not account for the amount of unavailable data and
the information residing in these data, thereby disregarding their possible influence on
the observed data distribution and, indirectly the model predictions. This introduces
an inequality in the comparison between the model prediction and the observations.
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In order to address the identified deficiencies two extensions are proposed; the
Quantified Visual Predictive Check (QVPC) and the Bootstrap Visual Predictive Check
(BVPC). In general, the first extension visualises the distribution of the available data
around the model predicted median while including the amount of unavailable data
at each time point. The second extension displays measures of the distribution of the
bootstrapped observations, while accounting for the influence (number and theoretical
position) of unavailable data. This reflects the existing uncertainty in the observed
data used for model identification and renders a more objective comparison with the
predicted median. As the amount of observations will influence the visual identification
of an adequate model, the uncertainty in the observations from which the model is
derived should be clearly shown. In this respect, the QVPC shows the data relative to
the model and the BVPC the model relative to the data.

This paper describes two extensions to the VPC in a general framework, enabling
a more accurate and objective evaluation of model performance. To illustrate the cha-
racteristics and the application of these methods two examples are presented. The first
is a PK simulation example in which the characteristics of the methods are exem-
plified. The second example concerns the application of the methods in PD disease
progression modelling.

Methods
Quantified Visual Predictive Check (QVPC)

As the median is defined as the value in the middle of the observation range (i.e. 50%
of the values are greater or lower than this respective value), it is expected that for
an adequate model the observations at each time point are randomly allocated around
the model predicted median. The QVPC is a method that enables the visualisation
of the positioning of available observations regardless of the density, the amount and
the shape of the data distribution in relation to the model predicted median in a VPC.
Unavailable observations are also taken into account as they can have an influence on
the graphical interpretation of the VPC, for example when data are missing on one
side of the distribution with non-random dropout [11,20] or when data are below the
limit of quantification. The predicted median is selected, as opposed to the mean, as
it is not sensitive to outliers and it presents the best measure of central tendency if the
distribution is skewed.

Let ngops,; denote the number of available observations at time ¢, M, the model
predicted median corresponding to the 50th percentile of the simulated distribution at
time ¢t and N the expected number of observations at each time point given the number
of individuals included in the study. The percentage of available observations around
M; and the percentage of unavailable observations at each time point are then reflected
by:

AM,I(%) = Z (”aobs,l = Mt)/N - 100
100% = § B (%) = 3 (raobss < My)/N - 100 )

Unm.i(%) =100 — (Ap,s + Bu1)
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where Ay ; is the percentage of available observations above and By ; the percentage
of available observations below the model predicted median at time t and Uy ; presents
the percentage of unavailable observations at time ¢.

The median of the observed data m at time ¢ is reflected by 50% if the available
number of observations at each time point (n40ps,/) €qual the expected number of
observations (N):

my =50% = ((Aps + Bai)/2) + Upty with Upry = 0% )

In the theoretical situation of a perfect model prediction with all observations available
(Umyr = 0% and Ay = Bys = 50%,), m; equals both Ay ; and By ;. When
all observations are available but the model prediction is inadequate at certain time
points, m; will still equal 50%. However, A s ; and B)s ; will contrariwise differ from
50%, totalling 100%. In this manner a poor distribution around the model predicted
median is visualised, which helps identifying model misspecification. In case part of
the data are unavailable (Ujys,; > 0%), m; will deviate from 50% revealing the weight
of unavailable observations on the actual median of the observed data at specific
time points. Larger deviations of m, from 50% point to the need of a more subtle
interpretation of the model prediction and the observed data distribution around it, as
less data exists for the interpretation of model performance. Further clarification and
interpretation of the QVPC characteristics are presented in the results section.

Bootstrap Visual Predictive Check (BVPC)

The QVPC examines whether the observations are randomly scattered around the
median prediction. However, the percentages above and below the model predicted
median will rarely be exactly 50% at each time point as the observed data on which
the model was obtained is uncertain depending on the density, amount and shape of its
distribution and the influence of the unavailable data. This uncertainty in the median of
the observed data should be characterised before comparing the observed to the model
predicted median. The BVPC presents a method that identifies and visualises this
uncertainty by computing a nonparametric bootstrapped median including its 5th and
95th percentiles based on the available data per time point, while accounting for the
number and theoretical position of unavailable data. The code was written in S-PLUS
and is attached to the paper as appendix.

Let yq0ps,: denote an available observation, ngops,; the number of available obser-
vations at time ¢ and N the expected number of observations at each time point given
the number of individuals that were included in the study. In the BVPC the following
algorithm is performed for each time point:

1. Draw a number of bootstrap replications (NoBS), e.g. 1000 times, from ygops s
with replacement. Each sample of the 1000 replications now has a number of
observations that equals 7,0ps. ;-

2. Compose a new dataset (BootSamp) with the number of rows equal to n40ps,; and
the number of columns equal to NoBS.
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3. Fill each position in BootSamp with the possible realisations obtained in step 1 of

the observed data from the statistics of the bootstrap.

When all observations are available at each time point (U, ; = 0%), naops,: €quals the
expected number of observations (N) and BootSamp automatically contains as many
rows as N. The median of each replicate (NoBS) in BootSamp can be obtained directly
and the 5th, 50th and 95th percentiles of these replicate medians are determined. These
percentiles are included in the VPC graph and reflect the observed data median and
its uncertainty limits and will be referred to as bootstrapped median.

In the situation where data are unavailable at certain time points (U, ; > 0%),
ngobs,: does not equal the expected number of observations (V) and BootSamp contains
as many rows as ngps,;- The difference between N and n,0ps ¢ presents the portion of
the unavailable data at these time points (1,055 ;). The possible influence of these data
on the bootstrapped median, depending both the amount and position of these data,
should be considered in the evaluation. Therefore, the following additional steps are
performed:

4. Obtain n,,yps,; and find the minimum and maximum values of y,ops ¢-

5. Compose a second dataset (UnavSamp) with the number of rows equal to n,ps./
and the number of columns equal to NoBS.

6. Fill each position in UnavSamp with either the minimum or maximum value of
Yaobs.: Obtained in step 4 given an assumed probability of whether it is located at the
higher or lower end of the observed data distribution. For arandom allocation, when
no influence of unavailable data on the median of the observed data is assumed,
the probability is set to 50%.

7. Merge BootSamp and UnavSamp thereby ensuring that the combined dataset (Both)
contains as many rows as N.

By taking n4ops,; and n,ps,; jointly into account, the sample size in the replications
as obtained in step 3 will now correctly equal the expected amount of data (N) at
each time point before calculating the bootstrapped median. In addition to the amount
of unavailable data, the position of the unavailable data in the data distribution is
also accounted for. For example, when data are below the limit of quantification, it
is expected that a number of unavailable observations are located below the observed
data median and these are then assigned this position within the data distribution.

Finally, the bootstrapped median is calculated and included in the VPC graph,
reflecting the observed data median and its uncertainty limits. The percentiles are
determined only when the fraction of unavailable observations account for less than
50% of the expected observations at a certain time point. Otherwise the percentiles
are considered inaccurate as the uncertainty in the observations has such an influence
that evaluation of model performance is not realistic at that time point.

Application QVPC and BYPC
Pharmacokinetic example (simulated data)

Pharmacokinetic profiles were simulated for 20 subjects receiving a 100 mg oral dose
of a hypothetical compound. A total of 13 samples at 0.5, 0.75, 1, 2, 3, 4, 8, 12,
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Table 1 Parameters of the population PK simulation and optimisation models

MODEL 1 MODEL 2 MODEL 3 MODEL 4

Simulation All data Data above LOQ 3 Data above LOQ 5
Parameter (units) Value Optimised (%CV) Optimised (%CV) Optimised (%2CV)
ka (h~1) 0.6 0.609 (2.32) 0.642 (2.73) 0.674 (5.95)
v 10 9.79 (7.08) 10.1 (7.08) 9.93 (6.95)
CL(h™ 1 0.5 0.523 (6.94) 0.497 (6.70) 0.450 (10.0)
V2 CL (%) 30 30.5 (27.1) 27.9(32.2) 31.6 (44.0)
V2 V (%) 30 30.3 (25.5) 29.7 (25.3) 26.1(22.3)
Residual® (%) 10 8.94 (10.9) 8.37 (13.3) 8.37 (15.3)

2 Inter-individual variability presented as vw? - 100%
b Proportional residual error presented as v/a2 - 100%

16, 20, 24, 28 and 32h were collected. Nominal times were used in order to present
the methods more clearly. A one compartment model with first-order absorption and
first-order elimination was used, parameterised in terms of volume of distribution (V)
and clearance (CL). Inter-individual variability on V and CL was described using a
log-normal distribution. A proportional error model was used to describe the residual
error. Subsequently, the identical PK model structure as used in the simulations was
optimised on three different datasets: (i) the full dataset, (ii) a dataset with data below
3 concentration units removed and (iii) a dataset with data below 5 concentration units
removed. A model building step was not performed and values below the quantifi-
cation limit were not replaced by, for example half the quantification limit, in order
to compare the results solely based on the VPC extensions. The identified parameter
estimates of the three models were then used to simulate a 1000 replicates of the data
based on the study design. With these simulations, the corresponding VPC and the
extensions QVPC and BVPC were obtained. Table 1 presents the parameter values
of the simulation and optimisation models. In the BVPC all unavailable data were
assumed to be located at the lower end of the observed data distribution.

Pharmacodynamic disease progression example (actual phase III data)

To demonstrate the application of the methods on a real dataset, they were applied
on a phase III Type 2 Diabetes Mellitus (T2DM) study using a previously established
mechanism-based disease progression model [10]. The HbA . data of in total 1204
T2DM patients treated with pioglitazone during a 1-year period were examined using
the described methods. As the observations were randomly collected within dedicated
time periods, nominal times were assigned to represent these intervals. These nominal
times were 1, 15,43, 71, 99, 127, 183, 239, 309 and 379 days. Initially in the BVPC,
all unavailable data were assumed to be randomly located around the model predicted
median.
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Computation

The simulations and optimisations were performed by non-linear mixed-effects model-
ling using NONMEM version V, release 1.1 (Icon Development Solutions, Ellicott
City, MD, USA) on desktop computers with an AMD Athlon processor under Win-
dows 2000. The models were compiled using Digital Fortran (version 6.6, Compaq
Computer Corporation, Houston, TX). Optimisations were performed with the FOCE
with interaction method. The presented methods were developed using the statistical
software package S-PLUS for Windows (version 6.2 Professional, Insightful Corp.,
Seattle, WA, USA).

Results
Pharmacokinetic example (simulated data)

Figure 1 displays the simulated concentration vs. time data arising from PK simulation
MODEL 1 and the respective VPC resulting from optimisation MODEL 2 (Table 1).
The dark grey dots present the observations, the dashed black lines the 5th and 95th
percentiles of the model simulation and the solid black line depicts the model predicted
median (M). This figure, based on the full dataset, reflects the standard VPC format as
a starting point from which the methods are exemplified. The QVPC and BVPC plots
of this example are presented in Fig.2 and the parameter estimates in Table 1. Upon
removal of data throughout the example, the point estimate of clearance progressively
decreases and the uncertainty in this parameter estimate increases as a result of an
increased uncertainty arising from a smaller amount of data.

All data

The QVPC corresponding to the VPC based on the full dataset is presented in Fig. 2;
upper row. As all expected concentrations are available in this dataset both bars reflec-
ting the percentage above (A ;: dark grey) and below (B ;: black) the model predic-
ted median (M;) approximate 50%. The boundary between the two bars presents the
position of M; within the observed data. Furthermore, the reflection of the observed
data median (m,: white dots) equals 50% at each time point as all data are available.
In the ideal situation where all expected data are available, the model fit is perfect
and a substantial amount of subjects are included (m; = Ay = By, = 50%),
the boundary between Ay ; and By ; should equal m,. However, the dataset consists
of a relatively small number of 20 subjects, thereby introducing a certain amount of
uncertainty in median of the observations on which the model was optimised. The cor-
responding BVPC reflects this uncertainty as is evident from Fig. 2. The dark grey area
depicts the range between the 5th and 95th percentiles of the bootstrapped median,
clearly characterising the uncertainty range in the median of the observations. The
model predicted median is allowed to vary within this uncertainty range. The dashed
white line symbolises the 50th percentile of the bootstrapped median, which presents
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Fig. 2 Quantified Visual Predictive Check (QVPC; left) and Bootstrap Visual Predictive Check (BVPC;
right). Upper row: full dataset population PK model (Table 1, MODEL 2). Middle row: observations below
3 concentration units were removed (Table 1, MODEL 3). Lower row: observations below 5 concentration
units were removed (Table 1, MODEL 4). QVPC: The distribution of the observed data around the model
predicted median at each observation time (M;) is presented as a percentage of the expected amount of data.
The black bar presents the observed data below M;, the dark grey bar the observed data above M;. The total
of the black and grey bar combined presents the percentage of available data (n4,ps ). The light grey bar
presents the percentage of unavailable observations. The white dots symbolize the percentage of n,0p, ¢
divided by 2 on top of the percentage of unavailable observations and reflect the observed data median.
BVPC: The light grey dots present the available observations. The dashed black lines present the Sth and
95th percentiles and the solid black line depicts the model predicted median of the standard VPC. The
dark grey area depicts the range between the 5th and 95th percentiles of the bootstrapped median, which
reflects the uncertainty range in the median of the observations. The dashed white line represents the 50th
percentile of the bootstrapped median. For the models where the unavailable observations are removed, the
probability for these data was set to be 100% below the model predicted median
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an additional link between the model predicted trend and that in the observed data.
Both QVPC and BVPC present an adequate fit of the model to the data.

Data above LOQ 3

The QVPC and BVPC based on the model optimisation on the dataset where data below
3 concentration units are removed are presented in Fig. 2; middle row. Table 1 presents
the parameter estimates of MODEL 3 based on this reduced dataset. The percentage
unavailable observations (Uy, ;) are visualised in the QVPC by light grey bars in
addition to the bars reflecting the percentage above (A s ;) and below (B)y ;) the model
predicted median (). The graph shows that between 2 and 8h all expected data are
available and both A y/ ; and By ; as well as the observed data median (i, ) approximate
50%. Therefore, the model can be readily evaluated at these time points. At remaining
time points, the unavailable data influence the interpretation of the model prediction as
shown by m, which deviates from 50%. The evaluation of model performance should
then be more subtle. The graph shows that most data are above the model predicted
median, which in this simulation example obviously relates to the fact that data below
3 concentration units were removed. For example, between 8 and 20h, the percentage
of data above the model predicted median approximates 50%, whereas that below the
model predicted median is smaller. In addition, the observed data median parallels the
boundary between the two areas at these time points, indicating an adequate model
prediction.

In this example, the uncertainty in the median of the observations is further atte-
nuated by the presence of unavailable data. In the BVPC graph, this is presented by
the range (dark grey area) between the 5th and 95th percentiles of the bootstrapped
median and the related 50th percentile (dashed white line). The amount and theoretical
position of the unavailable observations are accounted for in the bootstrapped median,
where the location of these data is understood to always be below the model predicted
median. The model predicted median (solid black line) lies well within the uncertainty
range and follows the trend of the 50th percentile of the bootstrapped median. The
QVPC previously indicated an adequate model performance between 8 and 20h and
the BVPC confirms this finding. At 0.5h and after 20 h the percentage of unavailable
observations is greater than 50% and the measures of the bootstrapped median are
omitted as they cannot be accurately determined. This informs that at these time points
an unambiguous evaluation of model performance is not feasible.

Data above LOQ 5

The QVPC and BVPC based on the model optimisation on the dataset where data
below 5 concentration units are removed are presented in Fig.2; lower row. Table 1
shows the parameter estimates of MODEL 4 based on this reduced dataset.

The QVPC shows that at 4h almost all expected data are available and that the
allocation around the model predicted median is adequate at this time point (Aps ; ~
By =~ my), although slightly more data are above the model predicted median
(M;). At 3 and 8 h some data are unavailable but A, ; approximates 50%. Neverthe-
less, slightly more data are below M; when taking into account the unavailable data.
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Fig. 3 Quantified Visual Predictive Check (QVPC; left) and Bootstrap Visual Predictive Check (BVPC;
right) of the mechanism-based disease progression model on HbA . measurements. Legends as described
for Fig.2. In the BVPC a probability of 50% is set for the unavailable data in the bootstrapped median
assuming a random allocation of the unavailable observations around the model predicted median

At 2 and 12h Ay ; appears to be structurally smaller than 50%, indicating an infe-
rior model estimation. The BVPC further supports this view as M; moves away from
the 50th percentile of the bootstrapped median at these time points. Even so, M; lies
within the range of the bootstrapped median, indicative of a sufficient model fit at
these time points given the uncertainty in the observations. At the remaining time
points the bootstrapped median cannot be accurately determined and an evaluation of
model performance is not feasible.

Pharmacodynamic disease progression example (actual phase III data)

The results of the QVPC and BVPC of the mechanism-based disease progression
model [10] performed on the phase III HbA . data are presented in Fig. 3.

The QVPC shows a cumulative amount of unavailable data over time as would
be expected in a long-term trial due to drop-out. As a result the reflection of the
observed data median (m,) deviates from 50% over time. Although Ay, and By,
are not 50% they are approximately equal, presenting a random allocation of the
available observations around M;. As there are a large number of observations and the
model predicted median (boundary between Ay ; and By ;) follows m;, this gives an
indication that the model prediction is adequate. At 379 days somewhat more data are
located above the model predicted median (M;), indicating a slight underprediction
of the trend at this time point.

In the BVPC the amount of unavailable observations is taken into account and the
allocation of these data is assumed to be random. Due to the substantial amount of
observations the uncertainty in the observed data median is small and consequently the
range of the bootstrapped median is narrow. Notice that the distribution of the boots-
trapped median is skewed, thereby properly reflecting the distribution of the actual
data. The model predicted median is generally well-matched to the 50th percentile of
the bootstrapped median, indicating an adequate model performance. Nevertheless,
the underprediction of the trend as observed in the QVPC is also apparent in the BVPC
and the model predicted median lies just outside the narrow uncertainty range of the
bootstrapped median.
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Fig. 4 Quantified Visual Predictive Check (QVPC) of the mechanism-based disease progression model
on HbA |, measurements. Legends as described for Fig.2. The QVPC on the left has the percentage of
unavailable observations randomly allocated around the model predicted median (light grey bar). The
QVPC on the right has a pattern bar included which presents the location of the unavailable observations
around the model predicted median for patients leaving the study based on the position of the last available
observation relative to the model predicted median (pattern bar). The light grey bar now presents the
percentage of remaining unavailable observations randomly allocated around the model predicted median

In order to further examine the most likely position of the unavailable observations,
they are subsequently assumed to be randomly allocated around M; in the QVPC. This
gives a first impression of whether inclusion of, for example a drop-out model should
be attempted. Figure4; left graph, presents a QVPC with the unavailable observa-
tions appointed evenly above and below M;. Markedly, the reflection of the observed
data median (m,) approximates 50% when considering the unavailable data as being
randomly missing, indicating that these data can be considered randomly allocated
around M,. Furthermore, the model predicted median (boundary between Ay, and
By.1) follows m; when considering the unavailable data randomly allocated, except
for the previously mentioned time point where a slight underprediction of the trend
was observed.

As a subsequent step, the nature of the total of unavailable observations is inves-
tigated. The amount and position of the unavailable observations that are structurally
missing are separated from the observations that are infrequently missing. Figure 4;
right graph, presents a QVPC graph where unavailable observations of patients leaving
the study are assigned above or below the predicted median according to their posi-
tion relative to the predicted median at the time point before drop-out, carrying this
position forward towards the last time point in the study (pattern bar). For example,
when a patient left at time 7 and the position of HbA . at time + — 1 was above M;_;
this location is then reserved for the rest of the study duration. See for an analogous
example the paper by Hu and Sale [20]. Half of the remaining observations that appa-
rently are infrequently or randomly unavailable are presented above and the other half
are presented below M;. At 379 days more patients cumulatively left the study with a
HbA | measurement above than below M,, indicative of a possible influence of these
subjects on the model predicted time trend, either on the treatment effect or on the
parameters reflecting the total disease progression.

A further advantage of the methods becomes apparent when examining model
performance in an external validation when the confirmation dataset consists of a
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Fig. 5 Bootstrap Visual Predictive Check (BVPC) of the mechanism-based disease progression model
optimised on 1-year data on HbA|. measurements of 270 patients during a 2-year period. Legends as

described for Fig.2 with a probability of 50% set for the unavailable data in the bootstrapped median
assuming a random allocation of the unavailable observations around the model predicted median

dissimilar amount of subjects than that on which the model was identified. The QVPC
and BVPC then link the model prediction and the new observations more objectively,
despite a varying quantity of data. An example of such a situation is presented in
Fig.5 where the BVPC of the mechanism-based disease progression model optimised
on l-year data is presented in relation to the HbA . observations of a subset of 270
patients that continued treatment for a second year [23]. During the second year of
treatment, it appears that the variability is overestimated as the 5th and 95th percentiles
of the VPC fan out and the observations are only within the lower part of the prediction
interval. It could be argued that time trend in the data is predicted too optimistically by
the model, focussing mainly on the observations of the patients that are still present
in the study. However, as the uncertainty in the observations is taken into account in
addition to the unavailable observations as presented by the bootstrapped median, a
comparison with the model predicted median is feasible. Note also the increase in
the uncertainty range as presented by the bootstrapped median with an increasing
amount of unavailable data during the second year. From the BVPC it is clear that
the two-year time trend on this subset of patients can be predicted adequately by
the mechanism-based model which was optimised on 1-year data. Furthermore, the
perceived underestimation of the time trend at the end of the first year now appears to
be related more to the system than to the influence of dropout as the predicted time
trend in the second year is quite accurate. As such, the methods thus substantially
optimise the use of the available information when evaluating model performance.

Discussion

The described methods in this paper present practical and effective extensions to the
VPC that render this model evaluation method more objective and accurate. The basis
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of the proposed methods lies in the fact that the observed data are explicitly linked to
the model predictions, and vice versa, while including the influence of the expected but
unavailable data [8,17,18]. The benefit of the QVPC arises from the visual allocation
of the available and unavailable observations around the model predicted median
regardless of the density and the shape of the observed data distribution. The pertinent
feature to account for the uncertainty in the observed median while accounting for the
influence of missing data in relation to the model prediction is a clear advantage of
the BVPC over the standard VPC.

Ilustration QVPC and BVPC

The presented PK simulation example illustrates the structure and the interpretation of
the conceptual methods in a situation where progressively more data are unavailable.
This example shows which influence unavailable data exert on the evaluation of model
performance using a VPC. The QVPC objectively relates the observations to the model
prediction by quantifying the amount of observations that surround the model predicted
median. Without this method speculation of the observed data distribution is standard
practice, as currently done by interpreting Fig. 1. From this graph it is solely evaluated
whether the prediction interval overlaps with the perceived distribution of the observed
data. Furthermore, the interpretation of the QVPC is based on a “‘complete” dataset as
the amount of unavailable data is displayed, which additionally reduces the speculation
of the amount of data that are supposedly observed. The QVPC thus offers distinct
advantages over a standard VPC, as in the latter the model might be judged as being
inadequate despite the fact that it could merely be a result of interpreting only available
data without consideration of the misleading distribution of the available data or the
underlying influence of unavailable data.

Besides relating the observations to the model prediction in the QVPC, the model
prediction is also related to the characteristics of the data, as presented by the BVPC.
The inherent uncertainty in the observations on which the model was optimised are
characterised with this method, thereby presenting a means to objectively position the
model predicted trend within the observations. Ultimately, the example shows that the
QVPC and BVPC as presented in Fig. 2 are in fact able to reveal an underestimation of
clearance resulting from a substantial amount of observations below the quantification
limit. This confirms the finding by Hing etal. who showed that omitting observations
below the lower limit of quantification will result in an underestimation of clearance
in specific cases [21]. Therefore, the extensions present a practical tool to diagnose
whether these unobserved data have an impact. In the manner the VPC is currently
applied this would not have been immediately apparent. For PK data most of the
unavailable data, consciously disregarding actual randomly missing data, can readily
be assigned to be missing at the lower end of the data distribution, making these
extensions a blueprint for these kind of studies.

Application QVPC and BVPC

The PD disease progression example shows the application of the VPC extensions
on a real phase III dataset. These trials primarily consist of large patient populations
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where the amount of observations and the shape of the data distribution influence
and complicate an objective judgment of the model performance. By application of
the QVPC and BVPC, the substantial amount of 1204 observed and unobserved data
per time point are objectively displayed, offering a comprehensive insight into the
data and model prediction. The methods show an apparent underestimated time trend,
as displayed in Fig.3. The standard VPC would not be able to detect this as 1204
observations in relation to the model prediction cannot be “eyeballed”. Furthermore,
due to various reasons a cumulative amount of data are unavailable in long term trials,
obscuring the true data distribution that would have been present with all data available.
Both extensions to the VPC offer improved diagnostic tools in such a setting.

Moreover, the added benefit of the QVPC is apparent when unavailable data are
examined further. In these particular trials the number of expected but unobserved data
is related to either patients prematurely leaving the study or to randomly missing data,
which both distort the evaluation of model performance [11,14]. The influence on the
reflection of the observed data median can be visualised when randomly allocating
the missing data above and below the model prediction. Figure 4; left graph displays the
HbA . data in this manner and the reflection of the observed data median now closely
resembles 50%. Figure 4; right graph then presents a further division of the unavailable
data into random and nonrandom missing data. For the patients prematurely leaving
the study the last available observation is examined for its position relative to the model
predicted median and this location is projected forwards. The remaining unavailable
observations are allocated randomly around the model predicted median. Now the
distribution and allocation of all unavailable observations can be observed according
to their origin of absence and this presents valuable information. From Fig.4; right
graph it becomes apparent an increasing number of patients that discontinue treatment
are located above the model predicted median. This presents a possible explanation for
the identified underestimated time trend although other reasons such as adaptation of
the system or the onset of the treatment effect could present alternative explanations.
Nevertheless, it enables the acknowledgement of the possible influence of subject drop-
out before formally addressing it in a modelling process, which can be a complex and
time consuming process [17,20,22].

Combined, the methods result in simple, yet effective graphical diagnostics that
ensure that: (i) it is evaluated whether the model predicted median is well-matched to
the observed data median and its uncertainty, (ii) the distribution of the observations
and the expected random allocation of the observations around the model predicted
median are considered in an objective manner and (iii) the amount of observations
at each time point and the influence and information residing in unavailable data are
taken into account in relation to the first and second point.

In general, the VPC can readily be used in trials with a fixed sampling schedule
or a fixed time window of sampling. However, in the situation where PK or PD mea-
surements are obtained at varying time points among subjects or when dense and
sparse profiles are both available within a study, the methods are more complex, as the
identification of a representative median or the allocation around the model predicted
median per time point are more challenging to identify. A solution for this would
be to substitute the number of expected subjects per study, as was assumed in this
paper, with the expected number of subjects per time point. Another issue arises in the
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situation where measurements are obtained at random time points within dedicated
time windows and subjects have multiple measurements within one time window due
to additional visits related to safety evaluation or subject drop-out. This should be
accounted for as this would artificially increase the amount of available data at that
time interval. Nevertheless, these issues are certainly disregarded without a proper link
between the observations and the model prediction in the manner the VPC is currently
applied.

Furthermore, the application of the VPC s limited by the fact that a more or less fixed
dosing schedule or substantial subsets of individuals with identical dosing schedules
are required to generate comprehensive VPC plots in which data of identical groups
can be combined and shown in isolation that present a substantial body of information.
When the data arising from these groups becomes too little, the VPC and the proposed
extensions to the VPC have limited use as the amount of information becomes too
small to meaningfully visualise the data or to calculate the bootstrapped median.
This requirement of attaining substantial subsets to be able to graphically display
the VPC also holds true for trials in which various dose groups, sampling schedules
or covariate levels are investigated. Finally, the VPC can be only practical in the
situation where observations on a continuous scale are obtained. For trials investigating
pharmacodynamics on a categorical scale the VPC and the proposed extensions are
of limited use.

As the purpose of this paper was to introduce and clarify the conceptual extensions
to the VPC, it was not investigated whether they are able to discriminate between com-
peting models as was pursued by Jadhav and Gobburu [9]. However, the improvement
in diagnostics will support the evaluation of competing models by taking into account
all aspects of the models and data.

In summary, two conceptual methods are presented with dedicated examples illus-
trating simple, yet effective extension to the VPC to evaluate model performance. Both
methods result in a more objective and accurate interpretation of the VPC by explicitly
linking the observed data and the model prediction, while accounting for the influence
of expected but unavailable data.

Appendix

MyBootDrop <- function (x,probupdrop,nodropout)

# Call MyBootDrop for each timepoint in the dataset

# out <- MyBootDrop (x¢, P, Nypps,s)

# out <- MyBootDrop (data[data$TIME==t, "DV"],0.5,n,0ps )

# x - vector with observations per timepoint (ysops,:)

# probupdrop - probability of being censored at the upper tail
# - 1 = all at the upper end, 0 = all at the lower end, 0.5
# = random

# nodropout - number of unavailable observations per timepoint
# (Myobs.t)

# Result - Bootstrapped median (with 95% uncertainty limits)

{

# Number of boostrap samples
NoBS = 1000

# bootstrap dataset with replicates all saved in BSM
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BSM <- bootstrap(x, median (x),seed=5,B=NoBS, save.indices=T)
# all bootstrap replicates of median

Indices <- resamp.get.indices (BSM)

# Determine extremes in dataset

maxx <- max(x)

minx <- min(x)

# bootstrap samples

BootSamp <- matrix(nrow=length (x),ncol=NoBS)

BootSamp[,] <- x[Indices|[,]]

# Make matrix with extremes to account for unavailable data
UnavSamp<-matrix (nrow=nodropout,ncol=NoBS)

# Fill matrix with theoretical unavailable observations

if (nodropout>=1)

{
for (j in 1:NoBS)
{
for (i in 1:nodropout)
{
# probupdrop: probability of being allocated
# above (1), below (0) or random (0.5) around
# the model predicted median
yves<-rbinom(1l, 1, probupdrop)
UnavSamp[i, j] <-maxx*yes+minx* (1-yes)
}
}
# Bind extremes with BootSamp
Both<-rbind (BootSamp, UnavSamp)
}
else
{

Both<-BootSamp
}
result<-rep (3,NoBS)
# Determine medians of all replicate sets
for (k in 1:NoBS)
{
result[k] <- median(Both[, k])
}
# Determine percentiles of the replicate medians
if (nodropout>=length(x))

{
# if unavailable data account for more or equal the amount
# of available observations the bootstrapped median is

omitted

ONT<-quantile(c(-99,-99,-99),c(0.05,0.5,0.95), na.rm = F)

}

else

{

ONT<-quantile(result,c(0.05,0.5,0.95), na.rm = F)
}

# Return result
return (QNT)
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