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A B S T R A C T   

Botulinum toxin type-A (BoNT/A) application, especially neurological disorders, has been spread nowadays 
while it may cause side effects. The current study aimed to assess the BoNT/A dose-dependent effect on induction 
of aging in the Drosophila melanogaster model. The third instar larvae of Drosophila melanogaster were exposed to 
¼ LC50, ½ LC50, and LC50 of BoNT/A in the Drosophila diet for 48 h while H2O2 1% was used as a positive control. 
After the exposure time, some larvae were collected for molecular study, including gene expression analysis, 
comet assay, oxidative stress markers, and the phenotype changes. BoNT/A induced dose-dependent cytotoxicity, 
elevated reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) enzyme activity. In addition, it 
caused DNA damage and activated caspase-3 and -9, and reduced the body size of the fly, especially in high 
doses. In line with the purpose of the study, aging markers, including β-galactosidase (β-gal), p16, p21, p38, and 
p53, were up-regulated by BoNT/A low dose. BoNT/A activates the aging pathway in the low dose, and 
increasing the dose induces toxicity, including oxidative stress, DNA damage, and apoptosis.   

1. Introduction 

Botulinum toxin is produced by a gram-positive bacterium called 
Clostridium botulinum, which can induce botulism poisoning. This toxin 
is made up of botulinum proteins encoded by two gene clusters near 
each other [1–3]. It demonstrated that botulinum induced inhibition of 
viability, growth cells, and apoptosis [4,5]. 

Seven botulinum immunological subtypes (A–G) were reported; of 
these, just subtypes A and B were commonly used in clinics [6,7]. Bot-
ulinum toxin type-A (BoNT/A) has been applied for medical therapy 
since the early 1970s [8,9]. It was used since 1994 to reduce facial 
wrinkles as a cosmetic treatment [10]. Using BoNT/A as a cosmetic for 
glabellar frown lines was approved in 2002 by the United States Food 
and Drug Administration (USFDA) [11]. The common BoNT/A 

medications in the market are including abobotulinumtoxinA (Dys-
port®, Ipsen Ltd., Berkshire, UK), onabotulinumtoxinA (Botox®, Aller-
gan Inc., Irvine, California, USA), and incobotulinumtoxinA (Xeomin®, 
Merz Pharmaceuticals GmbH, Frankfurt, Germany) [12]. 

Besides the widespread use of BoNT/A in cosmetics, it has also been 
prepared as a pharmaceutical product for a variable number of disorders 
resulting from muscle tone elevation, including blepharospasm and 
hemifacial spasm (spasticity), and cervical dystonia [13]. Moreover, 
BoNT/A is a helpful treatment for other diseases like axillary and uro-
logic disorders [14]. It is demonstrated, BoNT/A induced temporary 
inhibition of acetylcholine secretion at the neuromuscular junction, 
decreased muscle activity, and reduced muscle tone and spasticity [6]. 
The above activities reach their peak three weeks post-injection [15]. 
BoNT/A has also been expected to have a potential role in toxicity 
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(especially genotoxic effects) and senescence; however, this is not well 
studied. 

This study was designed to investigate BoNT/A ’s role in the senes-
cence and toxicity process. In the present study, LC50 and lower doses of 
BoNT/A were evaluated by developing the experimentally and geneti-
cally approved biologic model, Drosophila melanogaster. 

As reported in previous studies, the Drosophila genome has been 
completely sequenced, with a nearly 75 % correlation between human 
disease-related genes and sequences in fly genes [16,17]. Furthermore, 
there is an approximately 40 % homology of the nucleotide level or 
protein sequence between mammals and flies, which is believed to be 
80–90 % higher for the functional domains [18]. It is also demonstrated 
that the Drosophila model is a fundamental in-vivo model for studying 
the probable effect of drugs, toxicity, aging, and environmental con-
taminants [19–22]. This study evaluates the impact of BoNT/A on 
senescence and toxicity on the wild type of Drosophila model. 

2. Material and method 

2.1. Chemicals 

The 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), and 
SYBR green were obtained from Sigma-Aldrich (GmbH, Munich, Ger-
many). Superoxide dismutase (SOD) activity kit was obtained from Teb 
Pazhouhan Razi (Iran). BoNT/A (Dysport®, 500 units/vial) was pur-
chased from IPSEN (UK). Agarose powder was gained from Invitrogen 
(Carlsbad, CA, USA). Other chemicals were purchased from Merck 
(Germany). 

2.2. Methodology 

The wild type of Drosophila melanogaster stocks was obtained from 
the cell and molecular biology department, School of Biology, University 
of Tehran. All molecular experiments were performed on the third instar 
larvae cultured at 25 ± 2 ◦C and humidity of 60 % on the standard 
Drosophila culture medium containing corn flour (80 g/L), jaggery (70 
g/L), agar (9 g/L), yeast powder (15 g/L), propionic acid (4.4 mL/L) and 
water up to one liter. 

2.3. Determination of LC50 of BoNT/A on Drosophila melanogaster 

The third instar larvae were treated with different doses of BoNT/A 
in the medium for determination of the median lethal concentration 
(LC50). The control group did not have BoNT/A. In each group, there 
were 40 larvae. All deaths during the first 24 h were recorded, and LC50 
of BoNT/A was estimated approximately 10− 5 U/mL using the probit 
test. 

2.4. Treatment protocol 

The larvae were first randomly and equally divided into five groups, 
with 60 larvae in each. The groups were as follows: Group 1 were grown 
on Drosophila diet for 48 h (Control group); Group 2 received H2O2 1% 
on Drosophila diet as a positive control for 48 h (H2O2 group); Group 3 
received 1/4 LC50 of BoNT/A on Drosophila diet for 48 h (BoNT/A-1 
group); Group 4 received ½ LC50 of BoNT/A on Drosophila diet for 48 h 
(BoNT/A-2 group); Group 5 received LC50 of BoNT/A on Drosophila diet 
for 48 h (BoNT/A-3 group). The experiments were done in triplicate, and 
finally, the 30 live larvae were chosen for molecular analysis and the rest 
for phenotypic analysis. 

In treated groups, the dosage of BoNT/A and H2O2 and treatment 
strategy was obtained based on our pilot studies. All experimental pro-
tocols were conducted following the Institute Ethics Committee’s 
guidelines and approved with the code of IR.TUMS.VCR.REC.1397.482. 

2.5. Sampling of larvae for molecular analysis 

After treatment, for molecular analysis, the larvae were gathered and 
washed out by phosphate-buffered saline (PBS) buffer, and the guts of 
larvae in each group were separated and homogenized. All samples were 
instantly frozen at − 80 ◦C. 

2.6. Measurements of protein levels 

The larvae protein detection was performed spectrophotometrically 
at 595 nm, according to the previous reports by Bradford [23]. 

2.7. Measurement of oxidative stress markers 

The SOD activity was measured according to the kit instruction and 
reported as units (U) per mg of protein. Reactive oxygen species (ROS) 
evaluation was done according to the previous method for the oxidation 
of DCFH-DA to DCF reported by Rahimifard et al. [23]. The ROS levels in 
each group were determined based on the standard curve and reported 
as U per mg of protein. The malondialdehyde (MDA) levels were 
determined spectrophotometrically at 532 nm based on the previous 
report by (Baeeri et al. [24]). MDA concentration was calculated based 
on the standard curve and reported as μmol per mg of protein. 

2.8. Comet assay 

We used the alkaline single-cell Comet assay to evaluate genotox-
icity, previously reported by (Hodjat et al. [25]). Briefly, after exposure 
to each group, the gut tissue was turned into single cells using the 
collagenase enzyme. After that, 10,000 cells were mixed with 0.7 % low 
melting agarose in PBS at 37 ◦C. Then, the cells were lysed with lysis 
buffer, and the slides were electrophoresed in a horizontal electropho-
resis chamber of alkaline running buffer. Subsequently, the slides were 
neutralized and washed with pure ethanol and dried overnight at 4 ◦C. 
The slides were stained with SYBR green and assayed with the fluores-
cence microscope. The analysis was calculated by CASP software (Cas-
pLab, Poland). 

2.9. Caspase-3 and -9 activities 

As reported previously, the caspase-3 and -9 activities were 
measured using spectrophotometrically at 405 nm [26]. The caspases 
activities were assumed 100 % in the treatment groups as compared to 
the control. 

2.10. Real-time PCR 

A real-time PCR method was done to examine and analyze catalase, 
β-gal, p16, p21, p38, and p53 gene expression, using LightCycler ® 96 
(Roche, Mannheim, Germany) [27]. 

The specific primers used in the present study are as follows: 
GAPDH Forward: GTTGTGGATCTTACCGTCCG 
GAPDH Reverse: GAACACAGACGAATGGGTGT 
Catalase Forward: TTCCCCAGCTTCATTCACAC 
Catalase Reverse: TTCATGTGGCAGTAACCGTC 
β gal Forward: ATACTCTACACTGGCAGCCT 
β gal Reverse: CTCGCCAGTTGCTGTCTTAT 
P16 Forward: CCTTGGACCAGAACGACCTA 
P16 Reverse: GGGAACAGTTGGGGTAGTGA 
P21 Forward: TATTAAGGGCGCCAAAACGA 
P21 Reverse: AAGAAATGAGAGCGCGACAA 
P38 Forward: CATGCAAAGAGGACGTACCG 
P38 Reverse: GCGTCCATCAAGTGGGTAAC 
P53 Forward: AATGATAGCCGAGACTGCGA 
P53 Reverse: CCATTCCTTATTGGGGCACG 
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2.11. Phenotype study 

For the study of fly’s phenotype features after the treatment, the 
larvae (n = 20) were transferred to the medium without H2O2 or BoNT/ 
A. Then, when they turned into flies, the flies were anesthetized with 
diethyl ether. Some morphological parameters, including eye, body- 
color changes, body size, and wings, were assessed under the stereo-
microscope. Data of size were analyzed using ImageJ software. 

2.12. Statistical analysis 

The data were demonstrated as Mean ± SEM. Statistically, the 
analysis was performed with a one-way ANOVA test followed by Tukey’s 
multi-comparison. The StatsDirect 3.3.5 software was used. 

3. Results 

3.1. Oxidative stress markers assay 

3.1.1. SOD activity 
BoNT/A at all doses, especially in ½ LC50 and LC50, significantly 

elevated the SOD activity compared to the control group (p < 0.001). 
The SOD activity of all groups is demonstrated in Table 1. 

3.1.2. Evaluation of ROS level 
ROS production in H2O2 and different concentrations of BoNT/A 

were increased in the dosage of ½ LC50 and LC50 of BoNT/A compared to 
the control group (p < 0.05, Table 1). 

3.1.3. MDA assay 
The level of MDA as lipid peroxidation (LPO) activity index was 

elevated in H2O2 and BoNT/A groups compared to the control group (p 
< 0.001). Furthermore, MDA generation in BoNT/A groups at the con-
centration of ½ LC50 and LC50 U/mL was significantly elevated 
compared to the H2O2 group (p < 0.01 and p < 0.001, respectively) 
(Table 1). 

3.2. The mRNA gene expression level of catalase 

As shown in Fig. 1, catalase gene expression was up-regulated in 
H2O2 and BoNT/A groups. Data analysis showed that the expression of 
catalase at the concentration of ½ LC50 and LC50 of BoNT/A was the 
highest compared with the control (untreated) group (with p < 0.01; 
1.93-fold and p < 0.001; 2.35-fold, respectively) (Fig. 1). 

3.3. The genotoxic effect of BoNT/A 

The comet assay was perfumed to indicate BoNT/A induced DNA 

damage response (DDR) to display the DNA breaks. DNA in damaged 
cells appeared as the Comet with a head and tail, while intact cells had a 
round intact DNA with no tail. It was found that Comet Olive tail was 
significantly elevated in H2O2 and BoNT/A groups, especially at the 
concentration of ½ LC50 and LC50 compared with the non-treated control 
group, as shown in Fig. 2 (p < 0.001). 

3.4. Caspase-3 and -9 activities 

The activities of caspase-3 and -9 were elevated in the H2O2 group, 
not significantly. On the other hand, BoNT/A significantly elevated 
caspase-3 and -9 activities at the concentration of LC50 versus the control 
group (p < 0.001; with 1.48-fold, and p < 0.01; with 1.26-fold, 
respectively). BoNT/A, at the concentration of ½ LC50 increased 
caspase-3 activity compared with the control group (p < 0.001; with 
1.30-fold). Furthermore, a substantial elevation in caspase-3 activation 
was found in ½ LC50 and LC50 U/mL of BoNT/A compared to the H2O2 
group (p < 0.001) (Table 2). 

3.5. Senescence markers evaluation 

3.5.1. β-gal gene expression 
The mRNA expression of β-gal, as an indicator of cellular senescence, 

was considerably augmented in H2O2 and BoNT/A groups. The β-gal 
gene expression in the H2O2 group increased significantly compared to 
the control group (p < 0.01). Also, the concentration of ¼ LC50 and ½ 
LC50 of BoNT/A was overexpressed compared with the control group (p 
< 0.001; with 1.76-fold, p < 0.05 and 1.33-fold, respectively) (Fig. 3). 

3.5.2. Gene expression of p16, p21, p38, and p53 
Data of p16, p21, p38, and p53 mRNA expressions illustrated in 

Fig. 4. The p16 gene in the H2O2 group, and ¼ LC50 of BoNT/A, was 
significantly over-expressed compared with the control group (p <
0.001; with 1.66-fold and 1.56-fold, respectively). However, this gene 
was down-regulated at ½ LC50 and LC50 of BoNT/A compared with the 
H2O2 group (p < 0.001; with 1.04-fold and 1.11-fold, respectively). 

Analyzing p21 gene expression among the groups showed the highest 
expression with BoNT/A at the concentration of ¼ LC50, whereas con-
centrations of ½ LC50 and LC50 of BoNT/A showed down-regulation 
compared with the H2O2 group (p < 0.01; with 0.69-fold). 

The mRNA expression p38 was significantly increased in H2O2 and 
BoNT/A groups at the concentrations of ¼ LC50 and ½ LC50 compared 
with the control group (p < 0.05, with 1.95-fold, p < 0.001, 3.37-fold, 
and 3.48-fold, respectively). 

Table 1 
Effects of BoNT/A on oxidative stress parameters.  

Group Control H2O2 ¼ LC50 

BoNT/A 
½ LC50 

BoNT/A 
LC50 

BoNT/A 

ROS 
(U/mg 
protein) 

0.86 ±
0.09 

1.38 ±
0.09* 

1.02 ±
0.042 

1.4 ±
0.16* 

1.4 ±
0.095* 

LPO 
(μM/mg 
protein) 

93.13 ±
3.36 

196.34 ±
16.56*** 

180.56 ±
13.01*** 

277.57 ±
6.54***, 

## 

308.23 ±
5.13***, 

### 

SOD 
activity 
(U/mg 
protein) 

0.74 ±
0.03 

1.11 ±
0.04* 

1.15 ±
0.12* 

1.32 ±
0.07*** 

1.23 ±
0.08*** 

The values are expressed as mean ± SEM for each experimental group. The 
significance of changes was reported as * P < 0.05, and *** P < 0.001 versus the 
control group, ## P < 0.01, and ### P < 0.001 versus H2O2 group. Reactive 
oxygen species (ROS), lipid peroxidation (LPO), superoxide dismutase (SOD). 

Fig. 1. The effects of BoNT/A toxin on catalase activity in Drosophila mela-
nogaster larva. The values are expressed as mean ± SEM for each experimental 
group. The significance of changes was reported as * P < 0.05, ** P < 0.01, and 
*** P < 0.001 versus the control group. 
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Furthermore, H2O2 (with p < 0.05) and ¼ LC50, ½ LC50 and LC50 U/ 
mL of BoNT/A groups markedly up-regulated p53 compared with the 
control group (p < 0.001; with 3.13-fold and 3.39-fold, p < 0.05; with 
2.25-fold, respectively). 

3.6. Morphological analysis of drosophila flies 

Investigation of possible Drosophila phenotypic changes of ten pairs 
of males and females in different groups of BoNT/A are shown in Fig. 5. 
Results demonstrated a remarkable reduction in the female group’s body 
size at the concentration of LC50 of BoNT/A (p < 0.001) compared to the 
control group; however, other features as eye color, wing length, and 
body-color remained unchanged. Treating with BoNT/A (½ LC50) 
dramatically changed the body size of both female and male groups (p <
0.05) without affecting eye color, wing length, and body-color. Ac-
cording to the analyzed pictures from BoNT/A at the concentration of ¼ 
LC50, there was no meaningful difference between body size and 
morphological features than the control group in both male and female 

flies. 

4. Discussion 

BoNT/A is a non-specific neurotoxin that can induce impairment in 
neurons with surface SV2 protein and need SNAP25 protein to fuse 
synaptic vesicle [28]. Moreover, it is reported BoNT/A can cause 
oxidative stress and inflammation [29]. It was considering the extensive 
clinical use of BoNT/A during managing facial wrinkles or plastic sur-
gery [30,31]. This study was performed to understand BoNT/A’s safety 
profile better, mainly focusing on the senescence pathway, toxicity, and 

Fig. 2. Evaluation of BoNT/A-induced DNA damage in 
Drosophila melanogaster larvae by comet assay. The graph de-
picts the Olive tail moment post-exposure to BoNT/A. Comet 
parameters were quantified by CASP software. The values are 
expressed as mean ± SEM for each experimental group. Values 
are shown (horizontal lines) are the mean of 50 to 100 
randomly selected images of each sample. The significance of 
changes was reported as * P < 0.05, and *** P < 0.001 versus 
the control group, # P < 0.05 versus to H2O2 group (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article).   

Table 2 
Effects of BoNT/A on caspase-3 & -9 activities.  

Caspase 
activity 
(% of 
control) 

Control H2O2 ¼ LC50 

BoNT/A 
½ LC50 

BoNT/A 
LC50 

BoNT/A 

Caspase-3 100 ±
0.76 

110 ±
4.24 

109.19 ±
2.07 

130.25 ±
1.70***, 

### 

148.45 ±
1.33***,### 

Caspase-9 100 ±
1.55 

115.26 ±
6.27 

104.54 ±
1.23 

110.56 ±
2.23 

126.41 ±
2.60** 

The values are expressed as mean ± SEM for each experimental group. The 
significance of changes was reported as ** P < 0.01, and *** P < 0.001 versus the 
control group, ### P < 0.001 versus H2O2 group. 

Fig. 3. Effects of BoNT/A on expression patterns of β-gal gene in Drosophila 
melanogaster larvae. The values are expressed as mean ± SEM for each exper-
imental group. The significance of changes was reported as * P < 0.05, ** P <
0.01, and *** P < 0.001 versus the control group, # P < 0.05 and ## P < 0.01 
versus H2O2 group. 
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measuring related parameters in a dose-response manner using the 
Drosophila melanogaster model. Overall, this study demonstrated that 
BoNT/A in the low dose activates the aging path and increases the dose, 
triggering oxidative stress and apoptosis. 

Oxidative stress is an imbalance between anti-oxidant defenses and 
free radicals production [32,33]. As demonstrated previously, the for-
mation of H2O2 (non-radical ROS) induced further production of hy-
droxyl radicals (OH− ) through the Fenton and Haber-Weiss Net 
pathway. H2O2 and the resulted radicals are then neutralized by catalase 
enzyme [34] and glutathione peroxidase (GPx), respectively [35]. Ac-
cording to previous studies, oxidative stress mainly involves senescence, 
apoptosis, inflammation, malfunction of macromolecules [36–38]. The 
results of the present study indicated that BoNT/A induced oxidative 
stress. BoNT/A increased the level of ROS and SOD activity. The current 
study also confirmed the dose-dependently elevation of catalase 
expression and MDA activity in Drosophila melanogaster larvae exposed 

to BoNT/A. These results (BoNT/A-induced oxidative stress) in agree 
with those previous results revealing the injection of BoNT/A induced 
oxidative stress [39,40]. Furthermore, in another study, it is demon-
strated that BoNT/A reduces the induction of oxidative stress during 
cutaneous ischemia-reperfusion injury [41]. 

The most apparent finding that emerged from the previous studies 
demonstrated a diversity of free radicals inducing DNA damage. The 
Comet assay data in the current study indicated that BoNT/A caused 
DNA damage dose-dependently, which seems to be mediated through 
oxidative stress, as explained [42]. This finding aligns with the earlier 
research suggesting DNA damage with cell senescence/cell malfunction 
and cell death [43,44]. Moreover, it is demonstrated ROS through 
activation of p53 and then translocation of p53 to nucleus and binding to 
DNA induced up-regulation of several genes which are involved in 
inflammation and apoptosis [42,45]. 

Apoptosis is an essential regulatory pathway for regulating cell death 
during the homeostasis of multicellular organisms during many physi-
ological or pathological situations [46,47]. This cellular pathway is 
required to destroy harmed tissue (pathological or physiological con-
ditions), tissue’s shaping, transformed cells, and control cell numbers 
[48,49]. The possible mechanisms for activation of caspase-3 and-9 
possibly are through the free radical effect on mitochondrial malfunc-
tion and opening of mitochondrial permeability transition pore (mPTP) 
[50,51]. Moreover, oxidative stress-induced DNA damage leads to p53 
activation and the opening of mPTP. The opening of mPTP induced re-
leases of some factors, including cytochrome c, ATP, etc., from mito-
chondria to cytoplasm, which reacts with apoptotic protease activating 
factor-1 (apaf-1) and ATP to produce apoptosome [52]. Then, apopto-
some turns procaspase-9 to caspase-9, activation of caspase-3, and 
finally, cell death/apoptosis occurs in a high dose of BoNT/A [53–55]. In 
the present study, the induction of the apoptosis pathway by BoNT/A 
treatment was confirmed by dose-dependently activation of caspase-3 
and-9. In a low dosage of BoNT/A, there is no significant elevation of 
caspase-3 and -9. However, in a high dosage of BoNT/A, caspase-3 and 
-9 were significantly up-regulated, which means by increasing the dose 

Fig. 4. Effects of BoNT/A on expression patterns of (A) p16, (B) p21, (C) p38, and (D) p53 genes in Drosophila melanogaster larvae. The values are expressed as mean 
± SEM for each experimental group. The significance of changes was reported as * P < 0.05 and *** P < 0.001 versus the control group, # P < 0.05, ## P < 0.01, and 
### P < 0.001 versus H2O2 group. 

Fig. 5. Effects of BoNT/A on body size of Drosophila melanogaster fly. The 
values are expressed as mean ± SEM per each experimental group. The sig-
nificance of changes was reported as * P < 0.05, and *** P < 0.001 versus the 
control group, ### P < 0.001 versus the H2O2 group. 
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of BoNT/A, the senescence (aging) pathway turned to apoptosis and 
toxicity. However, studies demonstrated conflicting results in the role of 
BoNT/A in activating apoptosis. The result by Gorgal et al. [28] and 
Bandala et al. [56] indicated BoNT/A elevated apoptosis in the rat 
prostate and T47D breast cancer cell line, respectively. Moreover, 
another study by (Shi et al. [57]) showed BoNT/A reduced apoptosis in 
human dermal microvascular endothelial cells exposed in the ische-
mia/reperfusion injury model. The possible mechanism for this conflict 
can be through the dose usage of BoNT/A or the models. 

Cellular senescence, or cell growth arrest, is a permanent cell cycle 
arrest induced by oxidative stress, DNA damage, age-linked telomere 
shortening, and oncogene activation [58–60]. β-gal is an important 
senescence marker, detection of cellular senescence (aging). The present 
study’s data demonstrated β-gal elevated in a low dose of BoNT/A and 
reduced dose-dependently by increasing BoNT/A concentrations. As 
mentioned in the literature review, two critical signaling pathways 
involved in cell senescence are p53/p21 and p38/p16 pathways [42,61]. 
The current study found that β-gal, p53/p21, and p38/p16 increased in a 
low dose of BX and then dose-dependently down-regulated in larvae 
exposed to higher amounts BoNT/A, which these results of markers of 
senescence are in line with previous results. 

Due to the frequent administration of BoNT/A in humans, further 
research should be undertaken to investigate the exact role of BoNT/A in 
several models. Moreover, this is an essential issue for future research to 
understand the role of BoNT/A for facial wrinkles, which might cause 
aging in long-term use. 

5. Conclusion 

In this study, BoNT/A showed dual effects in different concentra-
tions. The cell senescence pathway was activated in low dose treatment 
of BoNT/A, which the expression of β-gal, p53, p21, p38, and p16 gene 
elevated. This is while the increment in the dose of BoNT/A was 
accompanied by the induction of toxicity markers, including elevation of 
oxidative stress, apoptosis, and reduction of flies’ body size. 
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