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Abstract
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regu-

larization approaches have been widely used for uncovering cancer driver genes based on

genome-scale data. Although the existing methods have been widely applied in the field of

bioinformatics, they possess several drawbacks: subset size limitations, erroneous estima-

tion results, multicollinearity, and heavy time consumption. We introduce a novel statistical

strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data

analysis and investigation of driver genes. For time-effective analysis, we consider a recur-

sive bootstrap procedure in line with the random lasso. Furthermore, we introduce a

parametric statistical test for driver gene selection based on bootstrap regression modeling

results. The proposed RRLasso is not only rapid but performs well for high dimensional

genomic data analysis. Monte Carlo simulations and analysis of the “Sanger Genomics of

Drug Sensitivity in Cancer dataset from the Cancer Genome Project” show that the pro-

posed RRLasso is an effective tool for high dimensional genomic data analysis. The pro-

posed methods provide reliable and biologically relevant results for cancer driver gene

selection.

Introduction
Much research is currently underway to understand the complexity of the heterogeneous
genetic networks underlying cancer. To identify the heterogeneous genetic networks that
underlie cancer, various large scale-omics projects (e.g., The Cancer Genome Project, The Can-
cer Genome Atlas (TCGA), Sanger Genomics of Drug Sensitivity in Cancer dataset from the
Cancer Genome Project, and others) have been initiated and have provided large amounts of
data, such as genomic and epigenomic data for cancer patients or cell lines. A crucial issue in
cancer research is to identify cancer driver genes based on various genomic data analysis (e.g.,
expression levels, copy number variations, methylation, and others), since efficient identifica-
tion of cancer drug targets facilitates development of successful anti-cancer therapies. Although
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various L1-type regularization approaches, e.g., lasso [1] and elastic net [2], have been widely
used to identify cancer driver genes, they possess several drawbacks as tools for driver gene
identification [3]. The lasso and adaptive lasso [4] suffer from the limitation of subset size (i.e.,
these methods select features at most sample size, n). The elastic net, which has been widely
used in bioinformatics research, may provide erroneous estimation results for coefficients of
highly correlated variables with different magnitudes, especially those that differ in sign,
because of its “grouping effect”. However, coefficients of highly correlated variables with differ-
ent magnitudes are frequently observed in bioinformatics research, since genes in common
biological pathways are usually correlated, and their regression coefficients can have different
magnitudes or different signs. Furthermore, adaptive L1-type regularization methods suffer
from multicollinearity, since their adaptive data driven weights are based on Ordinary Least
squares (OLS) estimators.

To resolve these issues, Wang et al. [3] proposed a random lasso based on bootstrap regres-
sion modeling with random forest method. Although the random lasso overcomes the draw-
backs of existing L1-type regularization approaches by using a random forest strategy, the
method is computationally intensive because it employs two step bootstrap procedures. Fur-
thermore, Wang et al. [3] performed final feature selection based on an arbitrarily decided
threshold, even though the variable selection results heavily depend on the threshold.

We propose a novel statistical strategy to identify driver genes of anti-cancer drug sensitivity
in line with the random lasso. We introduce recursive bootstrap approaches to simultaneously
measure the significance of each gene and perform driver gene selection. We also propose a
novel threshold based on a parametric statistical test to effectively identify driver genes based on
bootstrap regression modeling. By using a recursive bootstrap procedure, we perform time-effi-
cient bootstrap regression modeling for high dimensional genomic data analysis without loss of
modeling accuracy. Furthermore, the proposed feature selection method using parametric statis-
tical test can be a useful tool for variable selection based on the bootstrap regression modeling.

Using Monte Carlo simulations of various scenarios, we demonstrate the effectiveness of
the proposed recursive random lasso and elastic net with a parametric statistical test for high
dimensional regression modeling. We also apply the proposed statistical strategy to the pub-
licly available “Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer
Genome Project” (http://www.cancerrxgene.org/), and identify potential driver genes of anti-
cancer drug sensitivity. Numerical analyses show that the proposed recursive random lasso
and elastic net are time-efficient procedures, and outperform high dimensional genomic data
analysis (i.e., from a view point of feature selection and predictive accuracy).

In Section 2, we introduce the existing L1-type regularization approaches, and point out
their drawbacks. We then introduce the random lasso, and propose the recursive random lasso
and elastic net procedures. In Section 3, we describe the Monte Carlo simulations and driver
gene selection using the Sanger Genomics of Drug Sensitivity in Cancer dataset to examine the
effectiveness of the proposed statistical strategies. We state our conclusions in Section 4.

Materials and Methods
Suppose we have n independent observations {(yi, xi);i = 1, . . ., n}, where yi are random
response variables and xi are p-dimensional vectors of the predictor variables. Consider the lin-
ear regression model,

yi ¼ xT
i βþ εi; i ¼ 1; :::; n; ð1Þ

where β is an unknown p-dimensional vector of regression coefficients and εi are the random
errors which are assumed to be independently and identically distributed with mean 0 and
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variance σ2. We assume that the yi are centered and xij are standardized by their mean and stan-
dard deviation:

Pn
i yi=n ¼ 0,

Pn
i xij=n ¼ 0 and

Pn
i x

2
ij=n ¼ 1, thus an intercept term is excluded

from the regression model in Eq (1). Many studies are currently underway on regression model-
ing, especially for high dimensional data analysis (e.g., genomic alterations data analysis).

Tibshirani [1] proposed the lasso, which minimizes the residual sum of squares subject to a
constraint l

Pp
j¼1 jbjj, and its solution is given by

β̂LA ¼ arg min
β

f
Xn

i¼1

ðyi � xT
i βÞ2 þ l

Xp

j¼1

jbjjg; ð2Þ

where λ is a tuning parameter controlling model complexity. By imposing a penalty term, the
sum of the absolute values of the regression coefficients, the lasso can simultaneously perform
parameter estimation and variable selection.

However, a recent work suggested that the lasso may suffer from the following limitations [2]:

• In the p> n case, the lasso selects at most n variables, because of the convex optimization
problem. This implies that the lasso is not suitable for driver gene selection, since genomic
alteration data is typically high dimensional data.

• The lasso cannot account for grouping effect of predictor variables, and thus tends to select
only one variable from among highly correlated variables, even if all are related to response
variable. However, genomic alterations of genes (e.g., expression levels, copy number varia-
tions, methylation, etc.) that share a common biological pathway are usually highly correlated,
and the genes may be associated with a complex cancer mechanism considered to be the
response variable. This also implies that the lasso is not suitable for genomic data analysis.

To overcome these drawbacks, various L1-type regularization methods have been proposed.
The elastic net [2] in particular has drawn considerable attention in the field of bioinformatics:

β̂ELA ¼ arg min
β

f
Xn

i¼1

ðyi � xT
i βÞ2 þ l1

Xp

j¼1

jbjj þ l2

Xp

j¼1

b2

j g: ð3Þ

The penalty term of the elastic net is a convex combination of the ridge [5] and lasso penalties.
By imposing an additional L2-penalty on the lasso, the elastic net performs effectively feature
selection in high dimensional data analysis, i.e., there is no limitation on subset size. Further-
more, the elastic net can enjoy the following grouping effect:

Dl1 ;l2
ðj; kÞ ¼ 1

jyj1
jb̂ jðl1; l2Þ � b̂kðl1; l2Þj �

1

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞ

p
; ð4Þ

where r ¼ xT
j xk is sample correlation [2].

Although the elastic net performs well for high dimensional data analysis, Wang et al. [3]
demonstrated that the elastic net has the following drawbacks:

• The property of “grouping effect” leads to erroneous estimation results when coefficients of
highly correlated variables with different magnitudes, especially those with different signs.
However, coefficients of highly correlated variables with different magnitudes are frequently
observed in bioinformatics research, since genes in the common biological pathway are usu-
ally highly correlated, and their regression coefficients can have different magnitudes or a dif-
ferent sign.

The adaptive L1-type penalties have also been proposed and are widely used in various fields
of research:
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• adaptive lasso:

PAd:LA
l ðjβjÞ ¼ l

Xp

j¼1

wjjbjj; ð5Þ

• adaptive elastic net:

PAd:ELA
l ðjβjÞ ¼ lfð1� aÞ

Xp

j¼1

wjjbjj þ a
Xp

j¼1

b2

j g; ð6Þ

where wj ¼ 1=jb̂OLS
j jg is an adaptive data driven weight for γ> 0. By using the weight, we can

discriminately impose a penalty on each feature depending on their significance, and thus
effectively perform feature selection. Zou and Hastie [4] and Zou and Zhang [2] established the
oracle property of the adaptive lasso and the adaptive elastic net, respectively. However, the
performance of adaptive regularization methods heavily depends on the OLS estimator, and
thus these methods suffer from multicollinearity. Furthermore, the adaptive L1-type regulariza-
tion methods suffer from the same drawbacks as the common methods, i.e., when using the
adaptive lasso, the number of selected variables cannot exceed n, and the adaptive elastic net
may also provide erroneous estimation results when coefficients of highly correlated variables
with different magnitudes are present.

Random Lasso
Wang et al. [3] detailed the drawbacks of existing L1-type approaches, and proposed the ran-
dom lasso based on a bootstrap strategy that employs the random forest method. In the ran-
dom lasso procedure, randomly selected q variables are considered as candidate variables in
regression modeling for each bootstrap sample. Thus, the results do not suffer from the highly
correlated variables drawbacks, since each bootstrap sample may include only a subset of the
highly correlated variables. Furthermore, the random lasso can overcome the subset size limita-
tion, since variable selection is based on the results of bootstrap regression modeling with ran-
domly selected q1 or q2 variables in each bootstrap sample.

Wang et al. [3] proposed the following algorithm based on a two-step bootstrap procedure
to implement the random lasso:

Algorithm 1 Random lasso

• Step 1: Generating importance measures of predictor variables.

� Draw B bootstrap samples with size n by sampling with replacement from the
original dataset.

� For the bth
1 bootstrap sample, b1 2 {1, 2, . . ., B}, q1 candidate variables are

randomly selected, and the lasso is applied for regression modeling and

we obtain estimators b̂ðb1Þ
j for j = 1, . . ., p.

� The importance measure of xj is calculated as Ij ¼ jB�1
PB

b1¼1 b̂
ðb1Þ
j j.

• Step 2: Variable selection

� Draw B bootstrap samples with size n by sampling with replacement from the
original dataset.

� For the bth
2 bootstrap sample, b2 2 {1, 2, . . ., B}, q2 candidate variables are

randomly selected with a selection probability of xj proportional to
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Ij, and the adaptive lasso is applied for regression modeling, and we

obtain the estimator b̂ðb2Þ
j for j = 1, . . ., p.

� Compute the final estimator, b̂j, as b̂j ¼ B�1
PB

b2¼1 b̂
ðb2Þ
j for j = 1, . . ., p.

For noise predictor variables, the coefficients in the respective bootstrap samples are esti-
mated to be small or to have different signs, and thus the absolute value of the average coeffi-
cients (i.e., Ij) will be small or close to zero. On the other hand, the coefficients of crucial
predictor variables may be consistently large in different bootstrap samples, and thus a crucial
gene has a large value of Ij. This implies that the selection probability Ij provides effective fea-
ture selection. Wang et al. [3] considered q1 and q2 as tuning parameters, and the importance
measure Ij can also be used to weight for the adaptive lasso.

Wang et al. [3] noted that the variable selection results of the random lasso are unfair,
since some of the final non-zero coefficients may result from a particular bootstrap sample
(i.e., the random lasso can yield false positives in variable selection). Thus, a threshold tn = 1/

n was added for variable selection, and predictor variables with jb̂ jj⩽ tn were deleted from the

final model.

Recursive Random Lasso for Effective Feature Selection
The random lasso can overcome the drawbacks of existing L1-type regularization by using a
random forest method with bootstrap regression modeling. Although the random lasso per-
forms well for high dimensional regression modeling with highly correlated predictors, the
method also suffers from the following drawbacks:

• The random lasso is computationally intensive, since it is based on two bootstrap procedures
with respective B replications. The computational complexity of the random lasso is signifi-
cantly increased in genomic data analysis, because the dataset is constructed with an
extremely large number of predictor variables.

• The threshold is crucial in feature selection, since the feature selection results depend heavily
on the threshold. However, Wang et al. [3] arbitrarily set the threshold as 1/n, without any
statistical background.

• The method has too many tuning parameters, i.e., λ in L1-type penalties, and q1 and q2 in the
random forest method. The large number of tuning parameters also makes the method time
consuming, since the random lasso procedures should be implemented repeatedly to select
the optimal parameter combination.

We propose an effective modeling strategy in line with the random lasso, called a recursive
random lasso (or elastic net). To efficiently perform high dimensional genomic data analysis,
we propose a recursive bootstrap procedure for generating the importance measure and regres-
sion modeling. We also propose a novel threshold to effectively select predictor variables in
bootstrap regression modeling using a parametric statistical test. Furthermore, a number of
candidate predictors, q, is also randomly selected in each bootstrap sample (i.e., we do not con-
sider q as a tuning parameter). The proposed recursive random lasso (elastic net) is imple-
mented by the following algorithm.

Algorithm 2 Recursive random lasso (or elastic net)

1. Draw B bootstrap samples with size n by sampling with replacement from
the original dataset.

Recursive Random Lasso
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2. For the first bootstrap sample (i.e., b = 1), q candidate variables are
randomly selected and the lasso (or elastic net) is applied for regres-

sion modeling. We then obtain estimators b̂ð1Þ
j for j = 1, . . ., p.

3. For b 2 {2, . . ., B}, the importance measure of xj is calculated as

Ij ¼ jðb� 1Þ�1 Pb�1

r¼1 b̂
ðrÞ
j j. The q candidate variables are randomly selected

with a selection probability Ij, and the adaptive lasso (or adaptive
elastic net) with wj = 1/Ij is applied for regression modeling. We obtain

the estimators b̂ðbÞ
j for j = 1, . . ., p.

4. Final estimators are computed as b̂j ¼ B�1
PB

b¼1 b̂
ðbÞ
j .

5. Finally, we perform variable selection based on the threshold t� via the
parametric statistical test.

Parametric Statistical Test for Variable Selection in Bootstrap Regression Modeling
(PSTVSboot). In order to effectively perform feature selection, we propose a parametric sta-
tistical test based on the bootstrap regression modeling results. We first consider a B × p binary
matrixD obtained from the above recursive bootstrap procedures. We set an element of the

binary matrix as Dbj = 1 for a non-zero b̂ j in the bth bootstrap sample; otherwise Dbj = 0. In

other words, we consider that the binary matrix is obtained from Bernoulli experiments, and
let Dj be a random variable associated with Bernoulli trials as follows:

• Dbjðb̂b
j 6¼ 0Þ ¼ 1,

• Dbjðb̂b
j ¼ 0Þ ¼ 0.

The Bernoulli random variable has the following probability density function,

f ðdjÞ ¼ pdjð1� pÞ1�dj ; dj ¼ 0; 1; ð7Þ

where the probability π can be estimated as follows,

p̂ ¼ 1

p� B

Xp

j¼1

XB

b¼1

Dbj; ð8Þ

which indicates the average of the selection ratio of all predictor variables in B bootstrap sam-
ples. For reasonable variable selection, we then consider the following statistic:

Cj ¼
XB

b¼1

Dbj; j ¼ 1; :::; p; ð9Þ

which indicates the number of non-zero b̂ðbÞ
j in B Bernoulli trials (i.e. B bootstrap samples).

The statistic Cj follows the Binomial distribution bðB; p̂Þ and has the following probability
mass function:

f ðcÞ ¼ B!
c!ðB� cÞ! p̂

cð1� p̂ÞB�c
; c ¼ 0; 1; :::; B: ð10Þ

We then calculate a p-value for each predictor variable as follows,

p� valuej ¼ pðc � Cjjp̂Þ

¼
XB

c¼Cj

B!
c!ðB� cÞ! p̂

cð1� p̂ÞB�c
;

ð11Þ
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and finally perform variable selection based on the p-value with a threshold t� = 0.05 as follows,

b̂�
j ¼ b̂ jIðp� valuej < 0:05Þ; ð12Þ

where I(�) is an indicator function. We can expect that the parametric statistical test can over-
come false positive feature selection results of bootstrap regression modeling. Although we have
described the proposed variable selection strategy focused on the random lasso procedure, the
parametric statistical test will be a useful tool for bootstrap regression modeling.

Results

Monte Carlo Simulations
Monte Carlo simulations were conducted to investigate the effectiveness of the proposed
modeling strategy. We simulated 100 datasets from the following linear regression model,

yi ¼ xT
i βþ εi; i ¼ 1; :::; n; ð13Þ

where εi are N(0, σ
2), and the correlation between xl and xm is 0.5|l−m|.

We considered the following simulation situations:

• Type1: n = 100 and p = 1000 as βj = 3 for 50 randomly selected variables, otherwise βj = 0,

• Type2: n = 100 and p = 1000 as βj = 3 for 25 randomly selected variables, βj = −3 for 25 ran-
domly selected variables, otherwise βj = 0,

• Type3: n = 100 and p = 1000 as βj = 3 for 150 randomly selected variables, otherwise βj = 0.

• Type4: n = 100 and p = 1000 as βj = 3 for 75 randomly selected variables, βj = −3 for 75 ran-
domly selected variables, otherwise βj = 0,

• Type5: n = 50 and p = 2000 as βj = 3 for 40 randomly selected variables, otherwise βj = 0,

• Type6: n = 50 and p = 2000 as βj = 3 for 20 randomly selected variables, βj = −3 for 20 ran-
domly selected variables, otherwise βj = 0,

• Type7: n = 50 and p = 2000 as βj = 3 for 200 randomly selected variables, otherwise βj = 0.

• Type8: n = 50 and p = 2000 as βj = 3 for 100 randomly selected variables, βj = −3 for 100 ran-
domly selected variables, otherwise βj = 0,

To evaluate the proposed recursive random lasso and elastic net procedures, we compared
the performance of our methods, recursive random elastic net (RCS.RD.EL), recursive random
lasso (RCS.RD.LA), with the lasso (LASSO), adaptive lasso (AD.LA), elastic net (ELA), and
existing random lasso (RD.LA). In numerical studies, we used a ridge estimator for weight in
the existing adaptive lasso, and we considered the threshold of the existing random lasso to be
s/n, and selected s based on the root mean squared error in the validation dataset. We consid-
ered the number of bootstrap samples to B = 1000 and a dataset constructed with training, vali-
dation, and test datasets with sample size n, respectively. The tuning parameters were selected
by 5-fold cross validation based on the training dataset.

We first evaluated the computational efficiency of our methods. Table 1 shows the computa-
tional time required for the existing random lasso in ALGORITHM 1 (RD.LA) and the proposed
recursive random lasso in ALGORITHM 2 (RCS.RD.LA). The run time indicates the total time
required to estimate the regression model via tuning parameters selection and bootstrap replica-
tion. Table 1 shows that the performances of the proposed recursive random lasso is computa-
tionally effective compared with the existing random lasso in all simulation situations.

Recursive Random Lasso
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To show the effectiveness of recursive bootstrap strategy, we compared the importance mea-
sures for the random lasso procedures. Table 2 shows the average of the importance measures
Ij for predictor variables with truly non-zero coefficients and truly zero coefficients in the
recursive random elastic net (RCS.RD.EL), recursive random lasso (RCS.RD.LA) and random
lasso (RD.LA), where the numbers in parentheses are the average of the importance measures
for small number of bootstrap samples B = 20.

In the existing random lasso, the importance measure is calculated independently with
regression modeling (i.e., in step 1 of ALGORITHM 1). However, in our method, the Ij is
recursively calculated during regression modeling. Furthermore, the Ij of our method is based
on a randomly selected number of candidate predictor variables q, whereas in the existing ran-
dom lasso method, Ij is based on the tuning parameters q1 and q2 selected by minimizing pre-
diction error in the validation dataset. In short, our method provides time-effective procedures
compared with the existing random lasso.

Table 1. Running timings for regression modeling for σ = 1 via glmnet package in R (unit: minute).

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8

RCS.RD.LA 14.9 16.1 16.3 16.2 9.2 9.1 8.7 8.7

RD.LA 116.1 123.1 121.6 122.2 58.7 58.9 58.3 58.5

doi:10.1371/journal.pone.0141869.t001

Table 2. Average of importance measures for predictor variables with non-zero and zero coefficients.

RCS.RD.EL RCS.RD.LA RD.LA

Non.ZERO ZERO Non.ZERO ZERO Non.ZERO ZERO

σ = 1

Type1 0.33(0.32) 0.07(0.10) 0.34(0.29) 0.06(0.05) 0.27(0.24) 0.05(0.06)

Type2 0.29(0.28) 0.06(0.09) 0.30(0.24) 0.05(0.05) 0.24(0.21) 0.05(0.05)

Type3 0.29(0.33) 0.12(0.19) 0.28(0.22) 0.11(0.09) 0.23(0.21) 0.11(0.01)

Type4 0.23(0.27) 0.11(0.17) 0.22(0.18) 0.10(0.08) 0.19(0.18) 0.09(0.10)

Type5 0.08(0.09) 0.02(0.04) 0.08(0.08) 0.02(0.02) 0.05(0.07) 0.02(0.02)

Type6 0.08(0.09) 0.02(0.04) 0.08(0.08) 0.02(0.02) 0.05(0.07) 0.02(0.02)

Type7 0.07(0.12) 0.05(0.09) 0.07(0.07) 0.04(0.04) 0.06(0.08) 0.04(0.05)

Type8 0.07(0.11) 0.05(0.08) 0.06(0.06) 0.04(0.04) 0.05(0.07) 0.04(0.05)

σ = 3

Type1 0.33(0.31) 0.07(0.01) 0.34(0.73) 0.06(0.18) 0.26(0.24) 0.05(0.06)

Type2 0.28(0.29) 0.06(0.09) 0.29(0.26) 0.05(0.05) 0.23(0.20) 0.05(0.05)

Type3 0.29(0.34) 0.13(0.19) 0.28(0.22) 0.11(0.09) 0.23(0.21) 0.11(0.11)

Type4 0.22(0.27) 0.11(0.17) 0.21(0.18) 0.10(0.08) 0.18(0.18) 0.09(0.10)

Type5 0.07(0.09) 0.02(0.04) 0.07(0.08) 0.02(0.02) 0.05(0.07) 0.02(0.02)

Type6 0.07(0.08) 0.02(0.04) 0.07(0.07) 0.02(0.02) 0.05(0.07) 0.02(0.02)

Type7 0.07(0.12) 0.05(0.09) 0.07(0.07) 0.04(0.04) 0.06(0.08) 0.04(0.05)

Type8 0.07(0.11) 0.04(0.08) 0.06(0.06) 0.04(0.04) 0.05(0.07) 0.04(0.05)

σ = 9

Type1 0.30(0.32) 0.07(0.11) 0.31(0.26) 0.06(0.05) 0.24(0.22) 0.06(0.06)

Type2 0.28(0.28) 0.07(0.10) 0.29(0.25) 0.06(0.05) 0.22(0.21) 0.06(0.06)

Type3 0.29(0.34) 0.13(0.19) 0.27(0.23) 0.11(0.09) 0.23(0.23) 0.11(0.11)

Type4 0.23(0.27) 0.12(0.16) 0.22(0.18) 0.10(0.08) 0.18(0.18) 0.09(0.10)

Type5 0.07(0.09) 0.02(0.04) 0.07(0.07) 0.02(0.02) 0.06(0.07) 0.02(0.02)

Type6 0.07(0.09) 0.02(0.04) 0.07(0.07) 0.02(0.02) 0.05(0.07) 0.02(0.02)

Type7 0.08(0.12) 0.05(0.10) 0.07(0.07) 0.04(0.05) 0.06(0.08) 0.04(0.05)

Type8 0.07(0.10) 0.05(0.08) 0.06(0.06) 0.04(0.04) 0.05(0.07) 0.04(0.05)

doi:10.1371/journal.pone.0141869.t002
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From Table 2, it can be seen that the importance measure in our method shows larger differ-
ences between truly zero and non-zero coefficients than it does in the existing random lasso,
although the difference is small. Furthermore, we can see that the proposed recursive bootstrap
procedure also provides the larger differences for importance measure even in the small num-
ber of bootstrap samples (i.e., B = 20 given in parentheses of Table 2). This implies that the pro-
posed recursive bootstrap approaches perform effectively for feature selection by using the
random forest procedure, although our method provides computationally effective modeling
results.

We then compared the results of regression modeling based on prediction accuracy in the
test dataset and the variable selection results shown in Figs 1 and 2.

Fig 1 shows the prediction errors given as average of root mean squared errors using recur-
sive random elastic net (RCS.RD.EL), recursive random lasso (RCS.RD.LA), random lasso
(RD.LA), elastic net (ELA), adaptive lasso (AD.LA), and lasso (LASSO). It can be seen though
Fig 1 that the proposed recursive random elastic net shows superior prediction accuracy in
almost simulation situations. In addition, the proposed recursive random lasso also shows
much higher prediction accuracy than the lasso, adaptive lasso or elastic net, and results similar
to the existing random lasso, even though the recursive random lasso provides time-effective
performances compared with the existing random lasso as shown in Table 1.

We also compared variable selection results given as the average of true positive rate (i.e.,
the average number of true non-zero coefficients, incorrectly set to zero) and true negative rate
(i.e., the average percentage of true zero coefficients, that were correctly set to zero) in Fig 2.
We can see though Fig 2 that the proposed recursive random lasso and recursive random elas-
tic net show outstanding performance for variable selection in all simulation situations. On the
other hands, the lasso and adaptive lasso show poor results for variable selection in high
dimensional data situations, since the methods suffer from the limitation of subset size.

In short, the proposed recursive random lasso and elastic net methods are not only compu-
tationally effective but produce outstanding regression modeling results (i.e., prediction accu-
racy and variable selection). This results imply that our methods can be useful tools for high
dimensional genomic alteration data analysis.

Real World Examples: Identifying Driver Genes of Anti-cancer Drug
Sensitivity
We applied the proposed strategies to identify potential driver genes of anti-cancer drug sensi-
tivity in the publicly available “Sanger Genomics of Drug Sensitivity in Cancer dataset from the
Cancer Genome Project” (http://www.cancerrxgene.org/). The dataset contains the gene
expression levels, copy number and mutation status for 654 cell lines and the half-maximal
inhibitory drug concentrations (IC50 values) of 138 anti-cancer drugs as an indicator of drug
sensitivity. We considered the expression levels of 13321 genes and the IC50 values of anti-can-
cer drugs to reveal driver genes, which are available from the resources: “Cell line genetic
(mutation and copy number) and gene expression data used for EN analysis” and “Cell line
drug sensitivity, mutations and tissue type”, respectively, in “http://www.cancerrxgene.org/”.
Many IC50 values are missing from the Sanger dataset, and we therefore considered only 99
anti-cancer drugs, which have non-missing observations for at least 600 cancer cell lines, as
response variables. The expression levels of 10% of the genes (i.e., 1332 genes) having the high-
est variance in all samples were considered as predictor variables. We employed B = 1000 boot-
strap replications and the tuning parameters were selected by 5-fold cross validation.

To evaluate the proposed methods, we compared the prediction accuracy of the recursive
random lasso and elastic net, existing random lasso, elastic net, adaptive lasso and lasso based
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Fig 1. Prediction error: Root mean squared error.

doi:10.1371/journal.pone.0141869.g001
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Fig 2. Variable selection results: Average of T.P and T.N.

doi:10.1371/journal.pone.0141869.g002
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on 99 regression models corresponding to 99 anti-cancer drugs. Table 3 shows the average of
root means squared error of the 99 regression models. We can see through Table 3 that the ran-
dom lasso type approaches show outstanding performance compared with the L1-type regulari-
zation methods. The proposed recursive random lasso and elastic net show similar
performance to the existing random lasso, although our methods show time-effective proce-
dure as shown in the list of run times in Table 3.

We then identified potential driver genes using the proposed recursive random elastic net.
We focused on five popular anti-cancer drugs: Cisplatin, Docetaxel, Doxorubicin, Gemcitabine
and Vinorelbine, which have attracted considerable for cancer research [6, 7]. We will intro-
duce the five anti-cancer drugs.

• Cisplatin (trade name: Platinol): a platinum-compound chemotherapy drug that stops can-
cer cells from growing. Target: DNA crosslinker. Used to treat: testicular, ovarian, bladder,
head and neck, breast, cervical and prostate cancers. Side effects: nausea and vomiting, kid-
ney toxicity, low white blood cell counts, and low red blood cell counts.

• Docetaxel (trade name: Taxotere): belongs to a class of chemotherapy drugs that works by
preventing division of cancer cells. Targets: Microtubules. Used to treat: breast, non-small
cell lung, advanced stomach, and head and neck cancers. Side effects: nausea, diarrhea, hair
loss, nail change, low white blood cell counts, and low red blood cell counts.

• Doxorubicin (trade name: Adriamycin): an anti-cancer chemotherapy drug that is classi-
fied as an “anthracycline antibiotic”. It slows or stops the growth of cancer cells, and binds to
DNA by intercalation between specific base pairs, thus blocking DNA synthesis [8]. Target:
DNA intercalation. Used to treat leukemia, bladder, breast, stomach, lung, ovarian and thy-
roid cancers, and soft tissue sarcoma. Side effects: hair loss, myelosuppression, oral mucosi-
tis, and diarrhea.

• Gemcitabine (trade name: Gemzar): an anti-cancer chemotherapy drug that is classified as
an antimetabolite. Gemcitabine prevents the growth of cancer cells, eventually resulting in
their destruction. It inhibits thymidylate synthetase, which leads to inhibition of DNA syn-
thesis and cell death [9]. Targets: DNA replication.Used to treat pancreatic, non-small cell
lung, bladder, metastatic breast, and ovarian cancers, and soft-tissue sarcoma. Side effects:
flu-like symptoms (e.g., muscle pain, fever, headache, etc.), fatigue, and poor appetite.

• Vinorelbine (trade name: Navelbine): an anti-cancer chemotherapy drug that is classified
as a “plant alkaloid”. Vinorelbine kills cancer cells by interfering with their DNA, which is
necessary for their growth and reproduction. The antitumor activity of vinorelbine is thought
to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin
[9]. Target: Microtubules. Used to treat non-small cell lung, breast, and ovarian cancers, and
Hodgkin’s disease. Side effects: temporary decrease in white and red blood cells, muscle
weakness, and constipation.

We identified the potential driver genes with top 10 largest importance measures Ij among
the selected genes for each anti-cancer drug (Table 4). As shown in Table 4, the identified

Table 3. Average of root mean squared errors of 99 regression models and average of running timings (unit: minute).

RCS.RD.EL RCS.RD.LA RD.LA ELA AD.LA LASSO

MSE 1.70 1.70 1.70 1.80 1.74 1.83

Running timings 211.2 32.3 398.9 - - -

doi:10.1371/journal.pone.0141869.t003
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Table 4. Identified potential driver genes of anti-cancer drugs and their evidences.

Drug Gene Reference Disease

Doxorubicin

TM9SF2 [10, 11] Breast carcinoma cells, Colon cancer

ENSA [12] Liver, Breast cancers

STRAP [13] Colorectal cancer

FAT [14] Oral, Breast, Lung, Pancreatic, Gastric cancers

VDAC2 [15] Muscles of electrically stunned chikens

GPM6B [16, 17] Breast, Liver Cancers

AMOTL2 [18] Ovarian carcinoma

IL6ST [19] Lung cancer

RPL26-LOC400055 [20] Pancreatic cancer

NCAM1 [21] Lung cancer

Docetaxel

SLC7A11 [22, 23] Breast, Bladder cancers

HLA.DQA1 [24, 25] Lung squamous cell carcinoma, Breast cancer

GOLGA8A [26] Lung cancer

CS [27] Pancreatic ductal carcinoma

S100A14 [12, 28] Esophageal, Ovarian cancers

YPEL5 [29] Chronic lymphocytic leukemia

BTG1 [30, 31] Breast, Ovarian cancers

KDELR2 [32] Breast, Ovarian cancers

FKBP1A [33] Breast carcinoma

ACTC1 [34] Prostate cancer

Gemcitabine

NEDD9 [35, 36] Breast, Lung cancers

HEXB [37] Renal carcinoma

DDX39 [38, 39] Bladder cancer, Lung squamous cell cancer

SPOCK1 [40] Lung cancer

TOB1 [41, 42] Breast, Gastric cancers

CDH17 [43, 44] Gastric cancer

PRDX6 [45] Lung cancer

BAMBI [46, 47] Ovarian, Bladder cancers

FST [48] Breast, Ovarian cancers

NTS [49] Breast cancer

Vinorelbine

ZNF706 [50] Laryngeal, Head and neck, Gastric cancers

TFAP2A [51] Breast cancer

PABPC4 [52] Breast cancer

DFNA5 [53, 54] Gastric, Colorectal cancers

MGST3 [55] Glioblastoma multiforme

CD55 [56] Prostate cancer

CCT5 [57] Breast cancers

PRDX4 [58, 59] Prostate, Lung cancers

NDUFC2 [60] Ovarian cancer

TCP1 [61] Colorectal adenocarcinomas

Cisplatin

CCT3 [62] Colorectal cancer

IRAK1 [63] Colorectal cancer

CLIC4 [64, 65] Squamous, Ovarian cancers

KRT20 [66] Colorectal cancer

GPI [67] Breast cancer

COL4A2 [68] Lung Cancer

ENC1 [69, 70] Colorectal, Colon cancers

MRCL3-MRLC2 [71] Colorectal cancer

TIMP3 [72, 73] Prostate, Colorectal cancers

MRPS6 [74, 75] Parkinson’s disease, Breast cancer

doi:10.1371/journal.pone.0141869.t004
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genes are strong candidates for cancer driver genes. This implies that our method provides reli-
able results for uncovering driver genes. In short, the proposed strategies based on the recursive
bootstrap method and parametric statistical test are useful tools for driver gene selection based
on high dimensional genomic data analysis.

Drug sensitive-specific driver genes were identified by the “Cancer Genome Project”. In the
project, they considered regression modeling and applied the elastic net to identify driver
genes. The results are given in the project website (http://www.cancerrxgene.org/). There are,
however, differences between selected driver genes of our study and given in the project web-
site, since we consider only 10% of genes (i.e., 1332 genes) having the highest variance as candi-
date genes in regression modeling. Although the identified driver genes by our method are
difference from the driver genes identified by the project, we can see through Table 4 that the
identified driver genes by our method have strong evidence as cancer driver genes.

We also show a gene network based on protein-protein interactions (PPIs). Fig 3 shows the
potential driver genes identified in Table 4 as well as genes that have PPIs with the identified
genes.

Solid lines indicate potential driver genes identified for each anti-cancer drug and dashed
lines indicate PPIs between genes. The anti-cancer drug cisplatin has the largest sub-network
constructed by PPIs with a path length of 1. In Fig 3, we can also see that the sub-networks of
the five anti-cancer drugs share common genes. The common genes can be considered as

Fig 3. Network for selected driver genes and genes having PPI with identified driver genes.

doi:10.1371/journal.pone.0141869.g003
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driver genes for anti-cancer therapy, and investigation of the common genes may lead to devel-
opment of effective cancer therapies.

We also focused on driver genes with large sub-network, i.e., NEDD9, TCP1, CCT5, ACTC1,
CS, CLIC4, and NCAM1, these genes are connected with a large number of genes (n� 9) by
PPIs. Table 5 shows the genes with large sub-networks and their importance measures in the
recursive random elastic net.

The numbers in parentheses indicate the number of genes connected by PPIs. We can see
that the genes with large sub-networks have relatively larger importance measures (Ij) than
average of all selected genes (Isctj ) and of all 1332 candidate genes (Iallj ). This implies that posses-

sion of a large sub-network can be considered as a crucial feature for predicting anti-cancer
drug sensitivity. We can also see through the results that the proposed recursive random elastic
net can effectively be used to reveal driver genes with real biological relevance.

Conclusion
We have proposed a novel statistical strategy based on a recursive bootstrap approach and
parametric statistical test (PSTVSboot) for identifying driver genes. To effectively perform high
dimensional genomic data analysis, we used recursive bootstrap strategies in line with the ran-
dom lasso method. Furthermore, we have proposed a parametric statistical test for gene selec-
tion based on the results of bootstrap regression modeling.

Numerical studies showed that the proposed methods show outstanding performance for
variable selection and prediction accuracy. Furthermore, our methods showed time-effective
performance compared with existing random lasso. We expect that our methods based on
recursive bootstrap regression modeling and parametric statistical test will be useful tools for
high dimensional genomic data analysis, especially driver gene selection. Furthermore, we
expected that the proposed parametric test can be used effectively for variable selection in boot-
strap regression modeling.

Although the proposed parametric statistical test performs well for feature selection, our
method is sensitive to the initial selection of predictor variables, because the initial selection result
directly affects the selection probability in the random forest procedure. Thus, further work is
required for robust recursive random L1-type regularization method against initial selection.

Furthermore, we have focused on the proposed recursive random lasso in not theoretical
but practical viewpoint. We considered constructing theoretical properties of our method (e.g.,
consistency of feature selection) as one of further work of this study.

Variation in gene expression levels in cancer is known to be caused by copy number varia-
tion, and thus the two features should be considered concurrently when searching for driver
genes. We also considered cancer driver gene selection via analysis of copy number driven
expression levels via extension of the recursive random lasso strategies.

Table 5. Importancemeasures for gene with large subnetwork.

Drug Ij AveIsctj Ave:Iallj

CCT5(13) Vinorelbine 0.0139 0.0028 0.0013

TCP1(13) Vinorelbine 0.0134 0.0028 0.0013

CS(13) Dexorubicin 0.0405 0.0032 0.0015

ACTC1(13) Dexorubicin 0.0347 0.0032 0.0015

NCAM1(9) Docetaxel 0.0204 0.0048 0.0015

NEDD9(9) Gemcitabine 0.1997 0.0160 0.0062

CLIC4(10) Cisplatin 0.0022 0.0039 0.0019

doi:10.1371/journal.pone.0141869.t005
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