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Abstract

Alzheimer's disease is the most prevalent cause of dementia, which is defined by

the combined presence of amyloid and tau, but researchers are gradually moving

away from the simple assumption of linear causality proposed by the original amy-

loid hypothesis. Aging is the main risk factor for Alzheimer's disease that cannot be

explained by amyloid hypothesis. To evaluate how aging and Alzheimer's disease are

intrinsically interwoven with each other, we review and summarize evidence from

molecular, cellular, and system level. In particular, we focus on study designs, treat-

ments, or interventions in Alzheimer's disease that could also be insightful in aging

and vice versa.
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1 | INTRODUCTION

Aging is the time‐dependent physiological functional decline that is

also the most profound risk factor for many noninfectious diseases,

including Alzheimer's disease (AD). With the growing aging popula-

tion and increasing burden of health care for people with AD,

research on this disease is rapidly expanding. Given the fact that Alz-

heimer's disease is one of the best known aging‐linked diseases, in

this review, we examine how AD is linked to aging and how the

research in the two fields could impact and inspire each other, at

the molecular, cellular, and system level.

Alzheimer's disease was first described by the psychiatrist and

neuropathologist Alois Alzheimer in 1907 as a disease that mani-

fested extracellular amyloid plaques and intracellular neurofibrillary

tangles (NFTs) in the brain, composed of abnormally folded amy-

loid‐β42 (Aβ42) and tau proteins, as the most pathologically

important phenotypic hallmarks. Meanwhile, NFTs are universally

found in all aged people and abnormally phosphorylated tau protein

is already present in young individuals who do not have AD (Braak

& Tredici, 2011). Amyloid plaques are also not unusual in normal

brain aging. Other phenotypes of AD include neuronal dystrophy,

reactive astrogliosis, synapse loss, and vascular alterations. Although

much research has been devoted to biochemical mechanisms of

pathogenic events induced by Aβ42 and abnormal tau, the actual

cause of AD is still an open question.

2 | MOLECULAR LINKS BETWEEN AGING
AND AD

2.1 | Genetic susceptibility

With the advent of next‐generation sequencing and genomewide

association studies (GWAS), more than 20 risk loci of AD were
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identified (Karch & Goate, 2015). However, the identification of

apolipoprotein E (APOE), the strongest risk factor for sporadic AD,

well preceded the age of high‐throughput sequencing. Among the

three common alleles (ε2, ε3, and ε4), APOEε4 is associated with

increased AD risk, while APOEε2 is associated with decreased AD

risk (Strittmatter et al., 1993). Other genetic risk loci related to AD

can be classified into different functional pathways, including β‐amy-

loid precursor protein loading and sequential cleavage (APP, PSEN1,

and PSEN2), cholesterol metabolism (CLU and ABCA7), immune

response (CR1, CD33, MS4A, and TREM2), endocytosis (BIN1,

PICALM, CD2AP, EPHA1, and SORL1), and others (PLD3). A full list of

genetic risk factors identified by GWAS of AD can be found in Karch

and Goate (2015).

The aging‐ or longevity‐related GWAS have generated few loci,

perhaps due to the complexity of the phenotype and the lack of

bona fide biomarkers of aging. However, two loci that are repeatedly

found by GWAS of aging are APOE (Deelen et al., 2011; Ewbank,

2007; Gerdes, Jeune, Ranberg, Nybo, & Vaupel, 2000) and FOXO3A

(Anselmi et al., 2009; Flachsbart et al., 2009; Li et al., 2009; Paw-

likowska et al., 2009; Willcox et al., 2008). Similar to AD, APOEε2 is

found to be enriched in elderly and centenarians compared to

younger individuals (Seripa et al., 2006). Elder APOEε2 carriers were

found to have reduced accumulation of amyloid pathology via multi-

modal neuroimaging (Grothe et al., 2017). Mice carrying human

apoE2‐targeted replacement (apoE2‐TR) exhibited preserved memory

function as compared to apoE3‐TR or apoE4‐TR mice, but this is

independent with age‐related synaptic loss or neuroinflammation,

and higher level of apoE and lower level of cholesterol in the cortex

might contribute to this protective effect (Shinohara et al., 2016).

2.2 | DNA methylation

DNA methylation is a well‐studied chemical modification which

occurs mostly on the 5‐carbon of cytosine residues in CG dinu-

cleotides (5mC) of DNA sequence. DNA methylation in promoter

regions is correlated with transcriptional repression. Important regu-

lators of DNA methylation include the writers (DNMT1 (maintenance

methylation through DNA replication cycle), DNMT3A, DNMT3B,

and DNMT3C (Barau et al., 2016) (de novo methyltransferases)), a

cofactor without catalytic activity DNMT3L, and erasers (TET1–3). A
distinct feature of DNA methylation in brain is that neurons are

enriched in mCH (non‐CG methylation, H = A/C/T) and 5‐hydrox-
ymethylcytosine (5hmC, established by TETs in the first of a series

of stepwise modifications (Ito et al., 2011)).

DNA methylation is known to drift away from extremes of com-

plete methylation or demethylation in older people (Heyn et al.,

2012), not only intraindividual but also interindividual (Oh et al.,

2016). The so‐called epigenetic clock in which age is estimated from

DNA methylation data is based on the fact that epigenetic age

(which is estimated from DNA methylation levels using machine

learning algorithms) is highly correlated with chronological age, and

thus, the deviation of epigenetic age from chronological age was

found to be associated with the severity of cognitive decline in

patients with AD (Levine, Lu, Bennett, & Horvath, 2015). Important

to note with DNA methylation profiles in AD and brain aging is that

the blood methylome might not appear to directly reflect the brain's

methylome, at least from the previous data in CD4+ lymphocytes

and dorsolateral prefrontal cortex (Yu et al., 2016). Whether this will

hold for the whole brain or other brain regions needs further data

for support.

Two reports (De Jager et al., 2014; Lunnon et al., 2014) estab-

lished that changes in DNA methylation are associated with AD, and

more specifically, a differentially methylated region in ankyrin 1

(ANK1) was found to be associated with the neuropathology. A

recent report (Zhao et al., 2017) also links 5hmC with AD. Epigenetic

changes in AD appear to be independent of genetic variants and

therefore influence disease risk by interaction with various genetic

factors (Klein & De Jager, 2016). Whether age‐related changes in

DNA methylation are associated with AD pathology is still unclear.

An early study showed that overexpression of Dnmt3a2 isoform

could improve the cognitive abilities of aged mice (Oliveira, Hemst-

edt, & Bading, 2012), which points to the importance of DNA

methylation in cognitive function.

2.3 | Histone modifications

Histones are the basic building blocks of eukaryotic chromatin, a

complex DNA packaging system that helps organize the genome in

three‐dimensional nuclear space. Histone marks are chemical modifi-

cations added to histones, including but not restricted to methyla-

tion, acetylation, phosphorylation, ubiquitination, (ADP)‐ribosylation,
crotonylation, hydroxylation, proline isomerization, and sumoylation

(Lardenoije et al., 2015), to control the expression of genes and to

remodel chromosomes.

Chromatin changes during cellular aging are marked by loss of

heterochromatin and histone (H1 tail (Funayama, Saito, Tanobe, &

Ishikawa, 2006), H3, and H4 (Feser et al., 2010; O'Sullivan, Kubicek,

Schreiber, & Karlseder, 2010)) in human cell lines. The overall pattern

of histone modifications in aging shows a loss of repressive marks

and gain of activating marks (Sen, Shah, Nativio, & Berger, 2016).

Although it is not known whether such a pattern exists for in human

brain aging, thanks to the Roadmap project, a snapshot of the older

brain's epigenome in seven brain regions (angular gyrus, anterior cau-

date, cingulate gyrus, dorsolateral prefrontal cortex, inferior temporal

cortex, midhippocampus, and substantia nigra) and six marks

(H3K9me3, H3K27me3, H3K4me3, H3K36me3, H3K27ac, and

H3K4me1) is available. We also refer the readers to reviews on

other tissues or model organisms (Booth & Brunet, 2016; Lardenoije

et al., 2015).

Histone acetylation is a major topic in the AD field, as it was

found to be drastically decreased in both human (Zhang et al., 2012)

and mouse models of AD (Gräff et al., 2012). Indirectly enhancing

histone acetylation by chronic inhibition of histone deacetylases

(HDACs) was able to reverse the cognitive deficits in AD mouse

model (Kilgore et al., 2010) and also in aging mouse (Benito et al.,

2015). This is consistent the dysregulation of H4K12ac being
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implicated to mediate cognitive impairment in aged mice (Peleg

et al., 2010). Other histone markers are reviewed summarized else-

where (Lardenoije et al., 2015).

2.4 | RNA

miRNAs are a class of 22 nt length RNA molecules that negatively

regulate mRNA via base pairing mostly in the 3′ untranslated region.

The lin‐4 miRNA was the first miRNA identified to regulate lifespan

in C. elegans, followed by many others (Kato & Slack, 2013). The

essentiality of miRNAs in neuronal cells was established by condi-

tional Dicer KO, which is an important enzyme in miRNA genesis.

Conditional perturbation experiments of Dicer in mouse brain

showed progressive neuronal loss associated with behavioral deficits

(Junn & Mouradian, 2012). A pool of miRNAs has been found to be

associated with AD at each step of AD pathology or could serve as

circulating biomarkers or in diagnostics, such as downregulated miR‐
132, 212 and upregulated miR‐34a and 125b(Millan, 2017; Tan, Yu,

Hu, & Tan, 2013), etc.

Long intergenetic RNAs (lncRNAs) are a >200 nt long, poorly

conserved, recently discovered, abundant class of noncoding RNAs,

transcribed from the intergenic and intronic regions of mammalian

genome (Mattick & Rinn, 2015). A recent review summarized the

lncRNAs related to senescence and aging process (Kour & Rath,

2016). However, as functions of most of lncRNAs are still unknown,

the lncRNAs’ relationship to aging is limited to their expression

changes during aging. In contrast to the long list of aging‐associated
lncRNAs (30 lncRNAs in (Kour & Rath, 2016)), there are only six

lncRNAs, BACE1‐AS, 51A, 17A, NDM29, BC200, and NAT‐Rad18,
known to be associated with AD (Luo & Chen, 2016).

RNA editing is the conversion of adenosine to inosine in dou-

ble‐stranded RNA by adenosine deaminases acting on RNA

(ADARs) (Nishikura, 2016). In C. elegans, the RNA editomes of wild‐
type and ADAR mutants were profiled. Worms lacking RNA editing

were short‐lived, potentially due to alteration of the abundance of

proteins, as determined by quantitative proteomics (Zhao et al.,

2015). In AD, RNA editing was studied in a site‐specific manner

(Gaisler‐Salomon et al., 2014; Khermesh et al., 2016). Recent

research used a preselected set of target sites to quantify A‐to‐I
RNA editing levels and found that the overall editing levels

decreased in AD patients’ brain tissues, mainly in the hippocampus

(Khermesh et al., 2016).

3 | CELLULAR CHANGES IN AGING AND
AD

To understand aging and AD, the well‐studied molecular changes

need to be integrated with the complex cellular context of the

brain. In the following section, the roles of neurons, astrocytes,

microglia, and oligodendrocytes in aging and AD are examined.

Compared with the drastic changes of different cell type composi-

tions and intensive studies in AD, the mild changes of cell types in

aging are understudied.

3.1 | Neurons

Due to the prevailing neuron‐centric view and the clear importance

of neuron loss to cognitive deficits, neurons have long been the

main focus of brain aging studies. An early study used two‐year‐old
mice (equivalent to the human age group of 65) with two subgroups

(5 mice in each group) representing the worst and best performers

in the Morris water maze and found that there is no loss of principal

hippocampal and subicular neurons (Rasmussen, Schliemann,

Sørensen, Zimmer, & West, 1996). A more recent study in human

also showed that very old individuals have comparable number of

neocortical neurons to younger individuals, while there is significant

difference in the total number of neocortical oligodendrocytes

(Fabricius, Jacobsen, & Pakkenberg, 2013). Overall, cell counting

methods show that significant neuron loss does not occur during

normal aging and changes are subtle and region‐specific (Burke &

Barnes, 2006). A special case in successful aging is cognitive intact

elderly with AD pathology, which are believed to have resistant

mechanism for Aβ oligomers, and Aβ oligomers are absent from hip-

pocampal postsynapses, while Zn2+ levels are lower in such cases

(Bjorklund et al., 2012).

AD‐related synaptic loss occurs early in the disease process and

strongly correlates with cognitive decline (Scheff & Price, 2006).

High levels of Aβ have been shown to reduce glutamatergic synaptic

transmission and cause synaptic loss, as shown by evidence from

both in vivo and in vitro studies (Palop & Mucke, 2010). Aβ can con-

trol synaptic activity, depress excitatory transmission at the synaptic

level, while triggering aberrant patterns of neuronal circuit activity

and epileptiform discharges at the network level (Palop & Mucke,

2010). Using a tauopathy mouse model with in vivo intracellular and

extracellular recordings, pathological tau was found to alter neocorti-

cal neuronal oscillatory patterns and firing patterns (Menkes‐Caspi
et al., 2015).

3.2 | Glia: astrocytes, oligodendrocytes, and
microglia

The simple dichotomy of neuron and glia originates from the histori-

cal separation of gray and white matter based on the appearance.

With the name originated from the Greek word for glue, glia were

for many years viewed simply as the brain's packing material, holding

neurons in place. While there have been some reports on each glia

type in AD pathogenesis, astrocytes, which constitute approximately

30% of cells in the mammalian central nervous system, and oligoden-

drocytes, are hardly studied in the aging process. Brain aging

includes proinflammatory phenotypes, altered signaling, and accumu-

lation of senescent microglia (Harry, 2013; Mosher & Wyss‐Coray,
2014). Abnormalities in microglial cytoplasmic structure were

observed in a case study of two nondemented subjects (one 68‐
year‐old and one 38‐year‐old) were defined as microglial dystrophy

which was further concluded as a sign of microglial cell senescence

(Streit, Sammons, Kuhns, & Sparks, 2004). A transcriptional analysis

of microglia from discrete brain regions at three different ages in
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mouse revealed that microglia aging could happen in a region‐speci-
fic manner (Grabert et al., 2016).

Reactive astrogliosis is one of the phenotypes of AD, actually

noticed by Alois Alzheimer himself, but whether it is beneficial or

harmful remains an open question. Astrocytes in Alzheimer's disease

show changes in glutamatergic and GABAergic signaling and recy-

cling, potassium buffering, and in cholinergic, purinergic, and calcium

signaling (Osborn, Kamphuis, Wadman, & Hol, 2016). Additionally, a

subtype of reactive astrocytes is induced by activated neuroinflam-

matory microglia, which lose most normal astrocytic functions, but

gain a neurotoxic function, and is abundant in various human neu-

rodegenerative diseases including Alzheimer's (Liddelow & Barres,

2017).

Oligodendrocytes and myelin are known targets in multiple scle-

rosis, a neurological disorder (Heppner, Ransohoff, & Becher, 2015).

Complement‐activated oligodendrocytes are found in various neu-

rodegenerative conditions including AD (Yamada, Akiyama, &

McGeer, 1990). Overall, oligodendrocytes, although constituting

~75% of the neuroglia cells in the neocortex, are treated as a silent

majority in AD research (De Strooper & Karran, 2016).

Changes related to microglia, the resident macrophages of the

CNS, have long been considered to be secondary events to neurode-

generation but are now emerging as central to AD risk (Guerreiro

et al., 2013; Jonsson et al., 2013; Lambert et al., 2013; Salter & Ste-

vens, 2017; Zhang et al., 2013). GWAS repeatedly identified SNPs

on TREM2, CD33, CD1, etc., which are all expressed on microglia

and myeloid cells, as AD risk factors. The actual functions of those

SNPs, however, are controversial in different animal models (Hepp-

ner et al., 2015). Microglia surround amyloid plaques in human AD

brains. Their role in AD pathogenesis is complex and includes engulf-

ing or degrading amyloid plaques and promoting neurotoxicity

through excessive inflammatory cytokine release (Wyss‐Coray &

Rogers, 2012). However, it remains unclear whether microglia

phagocytose Aβ fibrils in vivo (Prokop, Miller, & Heppner, 2013).

Moreover, microglial function is impaired in a progressive, Aβ‐depen-
dent manner, as shown by a decrease in the phagocytosis of beads

in a mouse model of AD (Krabbe et al., 2013). Paradoxically, micro-

glia impairment might be sustained by inflammatory cytokines, which

suggests that AD pathology can be accelerated through this vicious

circle (Heppner et al., 2015). A recent single‐cell RNA‐Seq study in

an AD mouse model identified a novel microglia subtype which is

AD‐associated phagocytic cell conserved in mice and human (Keren‐
Shaul et al., 2017). A list of attractive immune targets has been

regarded as having therapeutic values (Heppner et al., 2015).

3.3 | Neural stem cells

The adult central nervous system contains resident neural stem cells

(NSCs) able to self‐renew and to generate new neurons and other

neural cell types throughout life. The capacity for neurogenesis of

neural stem cells diminishes with age, even in the absence of dis-

ease, as seen during bromodeoxyuridine incorporation experiment in

aging rat hippocampus (Montaron et al., 1999). Age‐related decline

of cognitive function is associated with decreased numbers of neural

stem cells (Fan, Wheatley, & Villeda, 2017). However, recent two

researches (Boldrini et al., 2018; Sorrells et al., 2018) are contradic-

tory to each other on whether endogenous neurogenesis exists in

adult human hippocampus and new techniques need to be devel-

oped to track the newly generated neurons. Stem cell‐based thera-

peutics, both exogenous (transplantation) and endogenous (via

factors such as growth factors that stimulate stem cells), could have

important implications for both aging and AD (Limke & Rao, 2002).

Most recently, Zhang et al. (2017) showed that mid‐aged mice locally

implanted with healthy hypothalamic stem/progenitor cells could

retard aging and obtain extended lifespan, which they linked to exo-

somal microRNA mechanisms.

Stem cells may actually only play a limited role in AD, such that

part of the neural damage observed during the disease may be

attributed to the loss of stem cells’ ability to divide. Interestingly,

olfactory identification deficits are suggested to be an early diagnos-

tic marker for AD (Devanand et al., 2000) and stem cells of the sub-

ventricular zone could follow the rostral migratory stream to become

interneurons in the olfactory bulb (Limke & Rao, 2002). In APPxPS1

mouse AD models, there are only limited numbers of new neurons

generated and the capacity of the new granule cells is reduced in a

sex‐unbalanced manner (Richetin, Petsophonsakul, Roybon, Guiard,

& Rampon, 2017). NSC transplantation slowed the disease progres-

sion in an AD mouse model (Blurton‐Jones et al., 2009), while direc-

ted expression of a transcription factor, Neurod1, in cycling

hippocampal progenitors could produce population of highly con-

nected new neurons and restore spatial memory in AD mouse model

(Richetin et al., 2015).

4 | SYSTEMS LEVEL EVENTS IN AGING
AND AD

4.1 | Systemic inflammation

The “inflammaging” theory states that aging is characterized by

chronic, low‐grade systemic inflammation, and a complex balance

between pro‐ and anti‐inflammatory responses. Intrinsic and extrinsic

factors responsible for such systemic chronic inflammation, including

alterations in chronic viral infections, sex steroids, and debris from

other senescent cells, are discussed in two recent reviews (Fran-

ceschi, Garagnani, Vitale, Capri, & Salvioli, 2017; Shaw, Goldstein, &

Montgomery, 2013).

Although the majority of inflammation in AD is attributed to glia

dysfunction, especially in microglia and astrocytes, systemic inflam-

mation shows a strong association with AD, as shown by an interest-

ing experiment: Under systemic immune challenge by the viral mimic

polyriboinosinic–polyribocytidilic acid, mice show sporadic AD phe-

notypes including Aβ plaques and altered Tau phosphorylation (Krstic

et al., 2012). In human, there are some similar association studies:

Obesity increases the likelihood of systemic inflammation (Almond,

Edwards, Barclay, & Johnston, 2013), and white‐fat tissue has a high

percentage of activated macrophages secreting proinflammatory
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cytokines (Bastard et al., 2006); thus, it is not surprising to find that

midlife obesity is a risk factor for AD (Whitmer et al., 2008). Data

from microbiome studies (see below) have also provided supporting

evidence on this issue. Trials in nonsteroidal anti‐inflammatory drugs

on AD have shown inconsistent results with most ending in failure;

however, it is speculated that this may be due to timing and choice

of specific anti‐inflammatory drugs (Heneka et al., 2015; St‐Amour,

Cicchetti, & Calon, 2016).

4.2 | Cardiovascular system

The key general vascular modifications occurring during aging (Celer-

majer et al., 1994; Vita et al., 1990) are endothelial dysfunction and

central arterial stiffness. Endothelial dysfunction may be due to

diminished bioavailability of nitric oxide (Taddei et al., 2001; Tschudi

et al., 1996). Arterial stiffness results primarily from loss of elastic

fibers and an increase in collagen (Fritze et al., 2012). Like AD, car-

diovascular disease is another aging‐related disease that brings a

great burden for the patients and healthcare systems (Paneni, Diaz

Cañestro, Libby, Lüscher, & Camici, 2017).

There is debate on whether cardiovascular dysfunction can

induce AD, because dementia related to cardiovascular conditions

can happen without amyloid accumulation, as shown by the follow-

ing studies: In elderly people (sample size, 942), only midlife dyslipi-

demia was found to be associated with amyloid deposition, rather

than other risk factors including hypertension (Vemuri, Knopman,

et al., 2017); and another study from the same group (sample size,

430) found that people with cardiovascular and metabolic conditions

had significantly greater neurodegeneration, but their amyloid and

tau were at similar levels (Vemuri, Lesnick, et al., 2017). Another fol-

low‐up study (sample size, 322; median follow‐up, 23.5 years) found

that late‐life vascular risk factors are not associated with amyloid

standardized uptake value ratios (calculated from florbetapir positron

emission tomography, in this case, to reflect the brain amyloid depo-

sition). However, when two or more vascular risk factors occur in

midlife, then the odds ratio for AD increase to 2.88 (Gottesman

et al., 2017).

4.3 | Microbiome

With the advance of next generation of sequencing technology,

microbes can be readily sequenced and identified. In a study of

female identical twins, frailty as measured by Rockwood Frailty Index

has been found to be negatively associated with gut microbiome

diversity (Jackson et al., 2016). Among centenarians, the best model

of “successful” aging, their gut microbiome showed high diversity of

species composition compared to younger elderly adults (Santoro

et al., 2017). A recent study even found that when maintained under

germ‐free conditions, mice do not display an age‐related increase in

circulating proinflammatory cytokine levels (Thevaranjan et al.,

2017); thus, inflammaging is controllable in an animal model.

The human gut microbiome has not been investigated for associ-

ations with AD yet. In a mouse model of AD, antibiotic treatment

decreases Aβ plaque deposition (Minter et al., 2016) and germ‐free
APP transgenic mice have a drastic reduction in cerebral Aβ amyloid

pathology (Harach et al., 2017). Poor dental status has been linked

to AD or early signs of AD (Gatz et al., 2006). An early study found

that subgingival microbiome is associated with changes in cognitive

function (Cockburn et al., 2012). Please refer to Pistollato et al.

(2016) and Tremlett, Bauer, Appel‐Cresswell, Finlay, and Waubant

(2017) as a starting point.

5 | LIFESTYLE ASSOCIATIONS AND
INTERVENTIONS FOR AGING AND AD

5.1 | Sleep

An important feature of old age is the decline in sleep, wherein non‐
rapid eye movement (NREM) slow‐wave sleep (SWS) declines are

especially significant. Particularly, decline in NREM sleep quality is

accelerated in patients with AD relative to age‐matched normal peo-

ple (Prinz et al., 1982). In addition, increased AD symptomatology is

related to a parallel sleep deterioration, which appears to be associ-

ated with cognitive decline (Liguori et al.&&, 2014). For example,

high tau and Aβ protein levels measured in cerebrospinal fluid were

correlated with sleep impairment (Liguori et al., 2014). Besides sleep

disruption, clinical sleep disorders are strongly comorbid with mild

cognitive impairment (MCI) and AD. Over 60% of persons with MCI

and AD have one or more sleep disturbances (Ancoli‐Israel, Klauber,
Butters, Parker, & Kripke, 1991; Guarnieri et al., 2012), with sleep

apnea and insomnia being most common.

Insomnia and sleep apnea are not only more prevalent in AD,

but increase the risk of developing MCI and AD (Osorio et al., 2011;

Yaffe et al., 2011), suggesting bidirectional links between sleep and

Aβ pathology. Furthermore, individuals with sleep apnea had a

younger age of MCI or AD onset (Osorio et al., 2015). By contrast,

successfully treating sleep disturbance can delay the age of MCI

onset (Osorio et al., 2015) and improve cognitive function in AD

(Ancoli‐Israel et al., 2008; dos Santos Moraes et al., 2006). Together,

these findings indicate that high‐quality sleep can mitigate Alzhei-

mer's disease pathology. A connection between Aβ and NREM sleep

has been found in rodent models (Kang et al., 2009; Roh et al.,

2012). Investigating the underlying mechanisms of sleep, a recent

study discovered a sleep‐dependent role for the lymphatic system in

Aβ clearance (Xie et al., 2013). During NREM sleep, glial cells shrink

by as much as 60%, facilitating an obviously increased flow of cere-

brospinal fluid through interstitial space. This results in enhanced

clearance of Aβ and other compounds. Conversely, the waking brain

state can contribute to accumulation of Aβ (Kang et al., 2009),

specifically through a higher neurometabolic rate relative to NREM

sleep (Buchsbaum et al., 1989). Neurons consume greater levels of

oxygen and ATP during wakefulness (Braun et al., 1997; Dworak,

McCarley, Kim, Kalinchuk, & Basheer, 2010), while NREM sleep is

associated with reduced oxygen consumption and active replenish-

ment of ATP levels (Braun et al., 1997; Dworak et al., 2010). Waking

therefore represents a state of higher oxygen, ATP, and glucose
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consumption, resulting in high rates of metabolic burdens (Everson,

Henchen, Szabo, & Hogg, 2014). Therefore, without sufficient NREM

sleep, the neurotoxicity and oxidative effects of AD pathophysiology

are higher (Everson et al., 2014; Massaad & Klann, 2011; Villafuerte

et al., 2015). Furthermore, Aβ accumulation is promoted by oxidative

stress (Misonou, Morishima‐Kawashima, & Ihara, 2000) and further

promotes oxidative stress itself. Thus, sleep loss promoted Aβ aggre-

gation, and Aβ aggregation in turn promotes sleep loss. But, sleep

loss also magnifies the effect of Aβ aggregation on neuronal function

(Tabuchi et al., 2015).

Detecting selective impairments of NREM sleep quality may rep-

resent a novel, noninvasive, relatively inexpensive, and specific bio-

marker of AD pathology. Frequency‐specific quantitative

electroencephalographic (EEG) measures of NREM sleep, particularly

those in the <1 Hz signature range, may therefore represent an early

biomarker of Aβ burden. Compared with other established biomark-

ers, sleep EEG may significantly contribute to identifying an individ-

ual's risk for developing AD years or even decades before onset of

clinical symptoms (Jack et al., 2010).

5.2 | Exercise

Physical inactivity is an important risk factor for cognitive decline in

aging and for Alzheimer's disease (Norton, Matthews, Barnes, Yaffe,

& Brayne, 2014). Conversely, exercise can convey a protective effect

(Ahlskog, Geda, Graff‐Radford, & Petersen, 2011; Geda et al., 2012;

Ngandu et al., 2015; Wirth, Haase, Villeneuve, Vogel, & Jagust,

2014) even if initiated after midlife (Tolppanen et al., 2015). In

humans, higher levels of physical activity, as measured by the Inter-

national Physical Activity Questionnaire, are associated with lower

plasma Aβ in APOEε4 noncarriers (Okonkwo et al., 2014; Vidoni

et al., 2012).

Besides physical activity, cognitive stimulation can also convey

a protective effect against cognitive decline in aging and AD

(Anderson‐Hanley et al., 2012; Barnes et al., 2013). Spatial naviga-

tion training in old age can protect the hippocampus from shrink-

age (Lovden et al., 2012). A combination of exercise and cognitive

enrichment in mice increases protective effects against synaptotoxi-

city of Aβ in the hippocampus (Li et al., 2013). However, the bene-

fits from exercise or cognitive stimulation are not consistent across

studies (Sexton et al., 2016), and thus, standardized protocols and

outcome measures are needed for this field (Duzel, van Praag, &

Sendtner, 2016).

5.3 | Metabolism

Aging and many aging‐associated disorders involve perturbed

energy balance. Metabolism, including glucose regulation and appe-

tite balance, is controlled by both central regulatory inputs (primar-

ily via the hypothalamus) and peripheral signals such as insulin,

ghrelin, cholecystokinin, and adipokines (e.g., leptin and adiponec-

tin). It is possible that the association between increased risk of

developing AD and excess body weight reflects the potential

effect of a diet high in simple sugars and fats to the development

of AD. A recent study showed reducing caloric intake increases

healthspan, reduces damage in the brain due to aging, and pro-

vides greater maintenance of various brain functions (Martin et al.,

2008; Martin, Golden, Egan, Mattson, & Maudsley, 2007; Martin,

Ji, Maudsley, & Mattson, 2010; Martin, Mattson, & Maudsley,

2006).

There is also a connection between type 2 diabetes mellitus

(DM) and AD, and DM individuals have ~2‐fold increase in risk of

developing AD, compared to patients without the condition (Ott

et al., 1999). Furthermore, in the same study, DM requiring insulin

treatment was associated with a fourfold increase in incidence of

AD. The presence of type 2 DM and the APOEε4 allele together has

also been shown to increase the risk of developing AD, to >5‐fold,
compared to individuals without those two conditions (Peila, Rodri-

guez, & Launer, 2002). Tau phosphorylation is increased in the cor-

tex and hippocampus of type 2 diabetes mice compared with

controls. Recent work has begun to uncover the underlying mecha-

nisms of insulin signaling dysfunction in AD. Clinically, there is a

higher density of insulin receptors in the brain of patients with AD

compared to control subjects, possibly reflecting upregulation of the

receptor in an attempt to compensate for the decreased functional-

ity of insulin (Frolich et al., 1998). By contrast, some studies reported

decreased insulin receptor binding in individuals with AD in compar-

ison with age‐matched control (Arnold et al., 2018; Rivera et al.,

2005; Steen et al., 2005). For example, reduced insulin, insulin recep-

tor, IGF1 and IGF2, reduced total IRS1 mRNA expression, and

reduced protein indicators of downstream insulin signaling activity

(including p85‐associated IRS1, phosphorylated AKT) have been

reported in postmortem AD brain (Steen et al., 2005). Although

there are some controversial results about insulin receptor concen-

tration, insulin resistance in AD has been demonstrated a novel

ex vivo insulin signaling stimulation experiment (Arnold et al., 2018;

Talbot et al., 2012). Insulin may affect Aβ degradation via an insulin‐
degrading metalloprotease. It has been observed that the decreased

activity, low concentrations, and small amounts of mRNA of insulin‐
degrading enzyme in brains of patients with AD and knockout mice

that lack the enzyme have reduced degradation of Aβ and insulin in

brain (Lam & Lu, 2007; Li et al., 2002; Shanley, Irving, & Harvey,

2001). Similarly, insulin resistance is commonly observed in older

adults (Barzilai, Huffman, Muzumdar, & Bartke, 2012; Morley, 2008).

Insulin resistance usually caused the unrestrained hepatic gluconeo-

genesis, adipose lipogenesis, and defective glycogen synthesis and

glucose uptake in skeletal muscle. In addition, the proinflammatory

cytokines, which is increased with aging, are involved in insulin

action (Sepe, Tchkonia, Thomou, Zamboni, & Kirkland, 2011). Adipo-

nectin is also a metabolic regulator that can be linked to aging due

to its effect on insulin sensitivity (Berg & Scherer, 2005). Meanwhile,

aging is strongly associated with a progressive loss in mitochondrial

function (Dirks, Hofer, Marzetti, Pahor, & Leeuwenburgh, 2006).

Besides insulin, it was found that lower plasma leptin levels were

associated with a higher risk of incident AD (Lieb et al., 2009). In

addition, glucagon‐like peptide 1 can reduce Aβ levels in vivo and
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decreases levels of amyloid precursor protein in cultured neuronal

cells (Perry et al., 2003).

Brains with AD display a higher occurrence of “adipose inclu-

sions” or “lipoid granules”, suggesting aberrant lipid metabolism

(Foley, 2010). In the brain, cholesterol is present mainly in its unes-

terified form in myelin sheaths and the cellular membranes of glial

cells and neurons (Dietschy & Turley, 2001). As the blood‐brain bar-

rier limits efficient exchange between brain and plasma lipoproteins,

the majority of brain cholesterol is derived from de novo biosynthe-

sis, rather than from plasma LDL (Dietschy & Turley, 2001). Excess

free cholesterol in the cell is converted into cholesteryl esters by the

enzyme sterol O‐acyltransferase 1 (ACAT1; also known as acyl CoA:-

cholesterol acyltransferase 1), followed by accumulation in intracellu-

lar lipid droplets or efflux through the plasma membrane into the

extracellular environment (Chang, Chang, Ohgami, & Yamauchi,

2006). Increasing levels of cholesteryl esters enhance Aβ release in

cultured cells, whereas pharmacological inhibition of ACAT1 (for

example, CP‐113, 818 treatment) can lead to the reduction in both

Aβ and cholesteryl ester (Bhattacharyya & Kovacs, 2010; Hutter‐
Paier et al., 2004; Puglielli et al., 2001).

Cholesterol regulates Aβ generation through regulating secretase

activities. By reducing cellular cholesterol level through lovastatin and

methyl‐β‐cyclodextrin, the formation of Aβ is inhibited (Hartmann,

Kuchenbecker, & Grimm, 2007; Simons et al., 1998; Vetrivel &

Thinakaran, 2010). Cholesterol levels can also directly regulate

β‐secretase‐mediated production of Aβ (Fassbender et al., 2001;

Simons et al., 1998; Wahrle et al., 2002). Inclusion of cholesterol or

sphingolipids in phosphatidylcholine‐containing vesicles leads to

increased γ‐secretase activity (Osawa et al., 2008; Osenkowski, Ye,

Wang, Wolfe, & Selkoe, 2008). Cholesterol depletion also decreases

the association of BACE1 with lipid rafts resulting in decreased pro-

cessing of APP (Ehehalt, Keller, Haass, Thiele, & Simons, 2003; Hat-

tori et al., 2006; Riddell, Christie, Hussain, & Dingwall, 2001). By

contrast, acute cell exposure to cholesterol promotes the coclustering

of APP and BACE1 in lipid raft domains, as well as their rapid endo-

cytosis (Marquer et al., 2011). Introduction of a glycosylphosphatidyli-

nositol anchor, a targeting motif for lipid raft localization, into the

BACE1 sequence strongly promotes amyloidogenic processing of APP

(Hartmann et al., 2007; Simons et al., 1998), further supporting the

key role of the BACE1 association in Aβ generation. In conclusion,

these studies suggest that cholesterol plays an important role in Aβ

production by altering the levels of BACE1 in lipid rafts. Beyond

cholesterol, some other lipids such as sphingolipids, isoprenoids, and

phospholipids also play important roles in Aβ production (Hannun &

Obeid, 2008; Hooff, Wood, Muller, & Eckert, 2010; Petanceska &

Gandy, 1999).

TABLE 1 Summary of commonalities and differences between aging and Alzheimer's disease (AD)

AD Aging Common

Molecular link between aging and AD

Genetic

susceptibility

APP, PSEN1, PSEN2, TREM, CD33, CD1 FOXA3A APOE

DNA

methylation

Epigenetic clock Association of 5mC and

5nmC

Overexpression of Dnmt3a2 improves the

cognitive abilities of aged mice

Histone

modifications

HDACi reverses cognitive defects Loss of repressive marks; gain

of activating marks

Acetylation

RNA Diagnostic tools; BACE1‐AS and BC200 lin‐4 and Dicer RNA editing decrease

Cell type composition of aging and AD

Neurons Marked by synaptic loss No obvious neuron loss

Glia Reactive astrogliosis; microglia pathogenesis Proinflammatory phenotypes;

microglial dystrophy

Proinflammatory environment

Neural stem

cells

Olfactory deficits; slow progression Stem cell capacity loss;

extend lifespan

NSC implantation

Systems level of aging and AD

Systemic

inflammation

Viral mimic induction; obesity association Inflammaging Strong association

Cardiovascular

system

Midlife vascular risk association Endothelial dysfunction;

central arterial stiffness

Antibiotic treatment; dental status Decreased gut microbiome

diversity

Germ‐free condition control inflammaging

or AD phenotype

Lifestyle and intervention of aging and AD

Sleep Sleep apnea; insomnia; NREM

Metabolic Glucagon‐like peptide 1; phospholipids; leptin;

sphingolipids; cholesterol; isoprenoids

Adiponectin; mitochondria Insulin

Exercise Cognitive stimulation; physical activity
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6 | CONCLUDING REMARKS

From the above comparison and association studies, we find that

AD, in many ways—but not all—accelerated aging. At the molecu-

lar level, GWAS of AD and aging hit the same gene, APOE, with

the same effect on the two different alleles. The aging field could

actually learn from the AD field; wherein, better diagnoses have

led to more robust GWAS results, for example, biological age is

not taken into consideration for aging GWAS and lifestyle and

environment causes need to be controlled or stratified for more

repeatable result. DNA methylation and histone modifications

show association with aging and AD. Specifically, HDAC inhibition

could reverse the cognitive deficits in AD. Noncoding RNA and

RNA modifications emerged as a new research focus in aging and

AD; so far, no miRNA and lncRNA changes are known to overlap

between aging and AD, while changes in RNA editing show a sim-

ilar pattern in the aging and AD (overall editing levels decrease in

both cases).

The cell type composition changes in aging and AD highlight sys-

tems level alterations in AD and aging. A significant difference

between aging and AD is that the number of neurons does not

change very much during aging, but neuron and synapse loss is a

hallmark of AD. Microglia gained much attention due to new highly

convincing GWAS, which included the association to TREM and

CD33. Overall, for glia cell types, there is a proinflammatory environ-

ment promoted by aging, which is much more exacerbated in AD.

The surveys at the system levels are still lagging behind, but the

circulatory system and the “brain‐gut axis” provide links between

the brain and other parts of the body as illustrated by the fascinating

example that mice growing under germ‐free conditions show low

inflammation level and reduced cerebral Aβ. Overall, chronic inflam-

mation seems to a strong commonality between aging and AD, and

if it could be precisely controlled from either the aging or AD per-

spective based on research products from either field, such treat-

ment could benefit both the aging and AD process and transform

the overall landscape of aging and AD.

Among many lifestyle associations and interventions for

aging and AD, sleep is clearly strongly associated with brain aging

and AD, while the benefits of exercise are still controversial.

Metabolic changes in AD are pervasive; however, it converges

with aging on insulin and lipid changes; in particular, cholesterol

is positively correlated with aging and clearly related to AD

pathology.

In summary, aging and AD research are two fields that are intrin-

sically linked (as summarized in Table 1). Many interventions of

aging, such as exercise and calorie restriction (Gunn‐Moore, Kaidano-

vich‐Beilin, Gallego Iradi, Gunn‐Moore, & Lovestone, 2018), can alle-

viate AD phenotypes. Drugs and treatments for AD can also slow

down aging phenotypes, such as treatments with HDAC inhibitors

and neural stem cell transplantation. Although these interventions

are validated in mouse models so far, more evidence is in urgent

need in human or other primates.
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