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Abstract

Type IV pili are expressed by a wide range of prokaryotes, including the opportunistic pa-

thogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm

maturation, surface adhesion, and virulence. The pilus is composed mainly of major pilin

subunits while the low abundance minor pilins FimU-PilVWXE and the putative adhesin

PilY1 prime pilus assembly and are proposed to form the pilus tip. The minor pilins and

PilY1 are encoded in an operon that is positively regulated by the FimS-AlgR two-compo-

nent system. Independent of pilus assembly, PilY1 was proposed to be a mechanosensory

component that—in conjunction with minor pilins—triggers up-regulation of acute virulence

phenotypes upon surface attachment. Here, we investigated the link between the minor

pilins/PilY1 and virulence. pilW, pilX, and pilY1 mutants had reduced virulence towards Cae-

norhabditis elegans relative to wild type or a major pilin mutant, implying a role in pathoge-

nicity that is independent of pilus assembly. We hypothesized that loss of specific minor

pilins relieves feedback inhibition on FimS-AlgR, increasing transcription of the AlgR regulon

and delaying C. elegans killing. Reporter assays confirmed that FimS-AlgR were required

for increased expression of the minor pilin operon upon loss of select minor pilins. Overex-

pression of AlgR or its hyperactivation via a phosphomimetic mutation reduced virulence,

and the virulence defects of pilW, pilX, and pilY1 mutants required FimS-AlgR expression

and activation. We propose that PilY1 and the minor pilins inhibit their own expression, and

that loss of these proteins leads to FimS-mediated activation of AlgR that suppresses

expression of acute-phase virulence factors and delays killing. This mechanism could con-

tribute to adaptation of P. aeruginosa in chronic lung infections, as mutations in the minor

pilin operon result in the loss of piliation and increased expression of AlgR-dependent viru-

lence factors–such as alginate–that are characteristic of such infections.

Author summary

Pseudomonas aeruginosa causes dangerous infections, including chronic lung infections

in cystic fibrosis patients. It uses many strategies to infect its hosts, including deployment
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of grappling hook-like fibres called type IV pili. Among the components involved in

assembly and function of the pilus are five proteins called minor pilins that—along with a

larger protein called PilY1—may help the pilus attach to surfaces. In a roundworm infec-

tion model, loss of PilY1 and specific minor pilins delayed killing, while loss of other pilus

components did not. We traced this effect to increased activation of the FimS-AlgR regu-

latory system that inhibits the expression of virulence factors used early in infection, while

positively regulating chronic infection traits such as alginate production, a phenotype

called mucoidy. A disruption in the appropriate timing of FimS-AlgR-dependent viru-

lence factor expression when select minor pilins or PilY1 are missing may explain why

those pilus-deficient mutants have reduced virulence compared with others whose prod-

ucts are not under FimS-AlgR control. Increased FimS-AlgR activity upon loss of PilY1

and specific minor pilins could help to explain the frequent co-occurrence of the non-

piliated and mucoid phenotypes that are hallmarks of chronic P. aeruginosa lung

infections.

Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, recently listed as one of

the highest priority antimicrobial-resistant threats by the World Health Organization, due to

its intrinsic antibiotic resistance and recalcitrance to therapy [1]. Among its virulence factors

are filamentous surface appendages called type IV pili (T4P), sophisticated biological nanoma-

chines that are broadly distributed among bacteria and archaea [2, 3]. In P. aeruginosa, T4P

facilitate surface and host cell adhesion, colonization, biofilm maturation, virulence, and

twitching, a form of surface-associated motility facilitated by cycles of extension, adhesion,

and retraction of T4P fibres [3–11]. T4P are composed of hundreds to thousands of copies of

small proteins called major pilins (PilA in P. aeruginosa) along with the low abundance minor

pilins (MPs) FimU-PilVWXE [12–16]. The MPs are encoded in a polycistronic operon with

the pilY1 gene that codes for a large ~125 kDa non-pilin protein. The operon is positively

regulated by the virulence factor regulator Vfr, and the two-component system (TCS) FimS

(AlgZ)-AlgR. FimS is a predicted histidine sensor kinase while AlgR is a response regulator

that promotes expression of genes important for biofilms and chronic cystic fibrosis (CF) lung

infections [17–21]. The N-termini of immature pilins are cleaved and methylated at the cyto-

plasmic face of the inner membrane by the prepilin peptidase, PilD, while PilY1 may be pro-

cessed by signal peptidase 1 [22–25]. Mature pilins are polymerized into a T4P fibre via an

envelope-spanning assembly machinery, where individual PilA subunits are added or removed

at the platform protein, PilC, via action of the ATPases PilB and PilT, respectively [2, 26].

The MPs and PilY1 are required for T4P function in several bacterial species, including P.

aeruginosa, Escherichia coli, Neisseria meningitidis, N. gonorrhoeae, andMyxococcus xanthus
[12–15, 27–30]. PilY1 and the MPs were originally proposed to oppose pilus retraction, as a

few surface pili remain in pilY1 and MP mutants when retraction is blocked via deletion of

pilT [23, 28, 29, 31, 32]. We recently showed that when T4P MPs are missing, the equivalent

minor pseudopilins of the Xcp type II secretion system can pilus prime extension in the pilT
background, and that deletion of both sets of minor components abolishes pilus assembly [24].

We also demonstrated that PilY1 and the MPs are present in sheared pili, and that the loss of

PilV, PilW, PilX, or PilY1 excludes the other three components from the pilus [24]. Thus,

PilVWXY1 are proposed to form a core assembly-initiation subcomplex, while FimU and PilE

are thought to connect this complex to PilA. Initiation of assembly with subsequent addition
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of multiple PilA subunits would place the MPs at the pilus tip, with PilY1 –the largest compo-

nent–at the distal position, supporting the hypothesis that PilY1 is a T4P-associated adhesin

[31].

PilY1 and the MPs (and their regulators FimS-AlgR) are required for T4P biogenesis, and

therefore T4P-mediated functions [12–15, 17, 19]. However, recent studies hinted at more

enigmatic roles of PilWXY1 in virulence. Bohn et al. [33] showed that in a non-piliated P. aer-
uginosa background, subsequent loss of pilY1 reduced virulence in a Caenorhabditis elegans
fast killing assay and in a mouse airway infection model, and increased resistance to killing by

neutrophils. Thus, PilY1 has a role in virulence that does not require functional pili. Other

studies using C. elegans infection models suggested that MP and pilY1mutants had attenuated

virulence relative to WT, and in one case, to a non-piliated mutant [34–37]. Recently, Sirya-

porn et al. [38] showed that PilWXY1 were required for surface-activated virulence towards

amoebae, while other non-piliated mutants had WT virulence. The N-terminal region of PilY1

has weak sequence similarity to the eukaryotic von Willebrand factor A (VWFa) domain,

which can be deformed by shear forces [39]. In-frame deletion of this domain from PilY1

allowed normally avirulent planktonic cells to kill amoebae [38]. PilY1 was therefore proposed

to be a mechanosensor, where deformation of its VWFa domain upon surface interaction led–

by an as-yet unknown mechanism–to increased expression of virulence factors. One important

caveat of that study was that an algRmutant (which lacks PilY1 and the MPs) had WT viru-

lence towards amoebae [38].

Deformation of PilA subunits by tensile forces acting upon surface-attached pili was also

proposed as a possible way to signal attachment. Detection of partly unfolded pilins by the Pil-

Chp chemotaxis system could lead to increased cyclic adenosine monophosphate (cAMP) syn-

thesis via the CyaB adenylate cyclase [40, 41]. cAMP is bound by Vfr, a key transcription factor

that promotes expression of virulence factors involved in motility, attachment, and secretion

[20, 40, 41]. fimS-algR transcription is activated by Vfr, leading to increased transcription of

fimU-pilVWXY1E [40]. PilVWXY1 were proposed to repress their own expression in an AlgR-

dependent manner, as the loss of pilV, pilW, pilX, or pilY1 led to elevated expression of the MP

operon and fimS-algR [23, 33, 38, 40]. The mechanism of this putative feedback inhibition is

largely uncharacterized, but was speculated to involve FimS [40].

Once expression of the MP operon is activated, extracellular PilY1 may sense surface associ-

ation and transduce this information through the T4P assembly machinery [38, 40]. This sig-

nal is thought to activate an inner membrane-localized diguanylate cyclase, SadC, to increase

levels of c-di-GMP, promoting expression of genes associated with a biofilm lifestyle, while

repressing early-phase virulence traits such as swarming motility [40, 42]. This model was sup-

ported by studies demonstrating that loss of pilW, pilX, or pilY1 in a high-c-di-GMP back-

ground resulted in hyper-swarming and reduced c-di-GMP levels, as measured by liquid

chromatography-mass spectrometry of extracts from surface-grown cells [39, 43]. Rodesney

et al. [44] showed that c-di-GMP levels increased in response to shear forces, and that func-

tional T4P were required for this phenomenon, further supporting this hypothesis. However,

unlike pilW, pilX, and pilY1mutants, a sadCmutant had WT virulence towards amoebae, sug-

gesting the PilWXY1-SadC pathway may be important for surface sensing, but not necessarily

for surface-activated virulence [38].

Although PilY1 and the MPs clearly influence virulence, the underlying mechanism

remains to be established [33–36, 38, 45]. We hypothesized that a subset of these components

represses FimS activity, such that loss of pilW, pilX, or pilY1 activates FimS-AlgR, shifting the

bacteria to a less pathogenic phenotype typically associated with chronic infection. We found

that slow killing (SK) of C. elegans by pilW, pilX, and pilY1mutants was significantly delayed

compared to WT or a pilAmutant, and this delay was dependent on FimS-AlgR, because
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double mutants had WT killing kinetics. Hyperactivation (via phospho-mimetic point muta-

tion) or overexpression of AlgR alone was sufficient to delay killing. Together, these data are

consistent with a model where loss of PilWXY1 relieves feedback inhibition on expression of

the AlgR regulon, resulting in dysregulation of virulence factors that are important for C. ele-
gans pathogenesis.

Results

PilWXY1 modulate T4P-independent virulence in PA14 and PAO1

Specific genes in the MP operon were reported to be important for virulence in amoebae, nem-

atodes, and mouse models, but those studies were done using different strains of P. aeruginosa
[33–36, 38, 45]. We first confirmed these results in the C. elegans SK model, using two well-

studied strains. SK assays were performed using PA14 with deletions of pilA, fimU, pilV, pilW,

pilX, pilY1, or pilE (Fig 1A). An E. coli OP50 plate was included as a negative control for patho-

genicity; worms began to senesce on these plates around day 7–8, consistent with published

data regarding temperature-dependent effects on lifespan [46]. As worms at later time points

were at increased risk of death due to ageing in addition to P. aeruginosa infection, statistical

significance was assessed using the Gehan-Breslow-Wilcoxon test, which places greater weight

on earlier time points [47]. A pilA (major pilin) mutant was slightly less pathogenic than WT;

subsequent comparisons were made relative to pilA, since all mutants lack pili. fimU and pilE
mutants were more pathogenic than the pilAmutant, similar to WT. In contrast, pilW, pilX,

and pilY1mutants were less pathogenic than the pilAmutant, suggesting that delayed killing

was not due to loss of functional T4P. Virulence of the pilVmutant was similar to the pilA
mutant. The twitching and virulence defects of pilW, pilX, and pilY1mutants could be partially

complemented by expression of the relevant gene in trans (S1 Fig). The stoichiometry of PilY1

and the MPs is important for optimal T4P function [23], which may explain the lack of full

complementation. To verify that these phenotypes were not strain-specific, we tested PAO1

Fig 1. PilWXY1 contribute to T4P-independent virulence. (A) SK assays for PA14 pilA, fimU, pilV, pilW, pilX, pilY1, and pilEmutants. Synchronized L4 worms

were seeded onto SK plates and scored for death every 24 h, then plotted as “percent survival” over the course of the assay. “Day” represents the number of days after

L4 on which the plates were scored. PA14 fimU and pilEmutants had similar virulence to WT, pilA and pilVmutants were slightly less virulent than WT, and pilW,

pilX, and pilY1mutants killed more slowly than all other strains tested. (B) SK assays for PAO1 pilA, fimU, pilV, pilW, pilX, pilY1, and pilEmutants. The PAO1 pilE
mutant had similar virulence to WT, the pilAmutant was slightly less virulent, and fimU, pilV, pilW, pilX, and pilY1mutants showed significant delays in killing. In

(A) and (B), asterisks indicate strains that were significantly different from a pilAmutant by Gehan-Breslow-Wilcoxon test at p = 0.05 (p = 0.00625 with a Bonferroni

correction), n = 3 trials.

https://doi.org/10.1371/journal.ppat.1007074.g001
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transposon-insertion mutants of pilA, fimU, pilV, pilW, pilX, pilY1, and pilE in the SK assay

(Fig 1B). Similar to the results in PA14, PilWXY1 were important for T4P-independent viru-

lence. However, the fimU and pilVmutants killed nematodes more slowly than pilA; the PA14

and PAO1 MPs are divergent (61–75% amino acid similarity), so it is possible that FimU and

PilV function slightly differently in PAO1 versus PA14 [48]. To focus on genes that were gen-

erally important for virulence of P. aeruginosa, we undertook studies of the mechanism

responsible for delayed killing of C. elegans by the pilW, pilX, and pilY1mutants.

PilWXY1 promote virulence in a SadC-independent manner

PilWXY1 were previously proposed to increase c-di-GMP production by SadC, such that loss

of pilW, pilX, or pilY1 resulted in a biofilm-deficient phenotype, indicative of low intracellular

c-di-GMP [39, 40, 43]. Therefore, we hypothesized that biofilm defects of pilW, pilX, and pilY1
might impede their ability to colonize the C. elegans gut, leading to delayed killing. The PA14

and PAO1 parent strains and their cognate pilA, fimU, pilV, pilW, pilX, pilY1, and pilEmutants

formed negligible levels of biofilm in liquid SK medium, chosen to approximate the growth

conditions used for the SK assay (S2 Fig). To assess the levels of cyclic-di-GMP in these strains,

we constructed a luminescence-based cdrA promoter reporter based on an extensively-charac-

terized green fluorescent protein-based reporter system [44, 49–54]. cdrA promoter activity

has been positively correlated with c-di-GMP levels, as measured by liquid chromatography-

mass spectrometry [49, 51, 53, 54]. We verified that overexpression of SadC led to a ~60-fold

increase in cdrA promoter activity, while overexpression of AlgR, which positively regulates

genes that promote c-di-GMP production [55, 56], led to a ~2-fold increase in promoter activ-

ity that was enhanced to ~4-fold when algR expression was increased with 0.05% L-arabinose

(Fig 2A). Deletion of sadC or algR led to a ~2-fold decrease in cdrA promoter activity relative

to WT. cdrA promoter activity in WT is expected to be relatively low in liquid media because

c-di-GMP levels increase upon surface attachment [43]. Compared to WT, pilW, pilX, and

pilY1 had ~3-fold lower cdrA promoter activity, indicative of reduced c-di-GMP (Fig 2B).

These results are consistent with reports that PilWXY1 promote c-di-GMP production via

SadC [39, 40, 43]. We next investigated whether SadC was required for virulence, as would be

predicted if decreased virulence in pilW, pilX, and pilY1mutants was due to dysregulation of

SadC activity. A small decrease in virulence towards C. elegans was previously reported for a

PA14 sadCmutant [57]; however, we saw no difference between WT and sadCmutants in the

PA14 and PAO1 backgrounds (S3 Fig). Further, overexpression of SadC led to a hyper-biofilm

phenotype in vitro in SK medium, but a slight delay in killing, demonstrating that the amount

of biofilm formed in vitro does not correlate with virulence in C. elegans (Fig 3). Although the

exact mechanisms of P. aeruginosa pathogenesis in C. elegans are not fully understood, biofilms

were suggested to be important for establishment of infection [57–59]. Our in vitro data sug-

gests that biofilms may not be a major contributor to P. aeruginosa pathogenesis in this model,

but direct visualization and quantification of biofilms in the nematode gut will be required to

support this conclusion.

PilVWXY1 repress expression of the MP operon

After ruling out involvement of the SadC pathway, we explored the potential role of FimS-AlgR

in PilWXY1-mediated modulation of killing kinetics. Informed by previous work in our labora-

tory showing that the sensor kinase PilS of the PilSR TCS interacts directly with PilA in the

inner membrane to decrease PilR-dependent major pilin expression [60], we hypothesized that

FimS interacts with one or more MPs, and that loss of that interaction could lead to activation

of AlgR and subsequent upregulation of the MP operon. Bacterial two-hybrid (BACTH) assays

Minor pilins regulate virulence by modulating FimS-AlgR activity
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were used to identify potential interactions between FimS and PilA, FimU, PilV, PilW, PilX, or

PilE (Fig 4A). We also screened for interaction of FimS and AlgR, which has been inferred but

never demonstrated [19]. Interactions between FimS and each pilin were identified; however,

based on our experience with PilS [60], binding is necessary but not sufficient for inhibition.

We also demonstrated interaction of FimS and AlgR (Fig 4A), providing further support for the

hypothesis that FimS is the sensor kinase for AlgR.

To decipher which MPs might modulate expression of the operon, we monitored expres-

sion from the fimU promoter using a luxCDABE reporter. Compared to WT PA14, there was a

~25-fold increase in luminescence in pilV, pilW, pilX, and pilY1mutants, which was restored

to WT by expressing the corresponding pilin in trans (Fig 4B, S4 Fig). fimU and pilAmutants

had ~5-fold increased promoter activity, while that of a pilEmutant was comparable to WT.

fimS and algRmutants had low baseline luminescence, ~10-fold lower than WT. To determine

whether the increased promoter activity in pilV, pilW, pilX, and pilY1mutants depended on

FimS-AlgR, either fimS or algR was deleted in the pilY1mutant background. The luminescence

was ~10-fold lower than WT in the pilY1 algR double mutant, consistent with AlgR acting as a

positive regulator of the MP operon [40]. Loss of fimS in the pilY1mutant background also

abolished fimU promoter activity (~10-fold lower than WT), supporting the idea that FimS

Fig 2. pilW, pilX, and pilY1 mutants have reduced cdrA promoter activity. (A) cdrA promoter activity in PA14 sadC and algR deletion and overexpression strains.

pMS402-PcdrA, containing the lux genes under expression of the cdrA promoter, was introduced into strains of interest, along with pBADGr (vector-only control),

pBADGr-sadC, or pBADGr-algR. Assays were set up in technical triplicate in SK media, with or without 0.05% L-arabinose to induce expression of the pBADGr

promoter, and measurements were taken every 15 min over 5 h. Loss of sadC or algR led to a subtle decrease in cdrA promoter activity, while SadC overexpression led

to a dramatic increase in cdrA promoter activity. Overexpression of AlgR also led to a subtle increase in cdrA promoter activity that was enhanced upon addition of L-

arabinose. n = 3 trials. (B) cdrA promoter activity in PA14 pilA, fimU, pilV, pilW, pilX, pilY1, and pilEmutants. Loss of pilW, pilX, or pilY1 led to a decrease in cdrA
promoter activity. n = 3 trials.

https://doi.org/10.1371/journal.ppat.1007074.g002
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may monitor PilVWXY1 and activate AlgR when their levels drop. Based on these data, PilA,

FimU, and PilE are unlikely to modulate FimS-AlgR activity even though they can interact

with FimS.

PilVWXY1 were previously proposed to form a complex in the inner membrane, such that

loss of any one component destabilizes the others [24]. Since PilY1 is thought to be cleaved on

the periplasmic side of the inner membrane, it is unlikely to interact directly with the trans-

membrane domains of FimS [24]. Thus, we suspected that high fimU promoter activity in the

pilY1mutant was due to reduced levels of one or more of the other pilins. To address this, we

Fig 3. SadC promotes biofilm formation but is not required for virulence. (A) Biofilm assays for sadC deletion and

overexpression strains. PA14 sadC biofilm levels were similar to WT. Expression of SadC in trans from a multicopy

plasmid led to increased biofilm formation relative to WT at 0% (due to leaky promoter) and 0.05% L-arabinose,

p< 0.001. Significance was determined by one-way ANOVA followed by Dunnett post-test relative to PA14

+ pBADGr, n = 3. (B) SK assays for sadC deletion and overexpression strains. Overexpression of SadC led to a subtle

but reproducible delay in killing relative to WT at 0% L-arabinose. A sadCmutant was similar to WT. Asterisks

indicate strains that were significantly different from PA14 + pBADGr by Gehan-Breslow-Wilcoxon test at p = 0.05

(p = 0.0125 with a Bonferroni correction), n = 3.

https://doi.org/10.1371/journal.ppat.1007074.g003
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overexpressed FimU, PilV, PilW, PilX, or PilE in the pilY1mutant and measured fimU pro-

moter activity. All these strains had luminescence comparable to the pilY1mutant (S4 Fig).

Conversely, distinct effects have been observed in other studies upon overexpression of PilY1

[39, 40, 43]. Therefore, we overexpressed PilY1 in the pilW and pilX (high-luminescence)

backgrounds; but PilY1 alone was insufficient to alter fimU promoter activity. Together, the

data suggest that no individual component of the PilVWXY1 subcomplex is capable of modu-

lating FimS activity when others are absent.

We also tested whether PilD processing of PilVWX was required for modulation of FimS

activity. We constructed a pilDmutant, which lacks twitching motility because unprocessed pilins

remain in the inner membrane [23, 61]. The absence of pilD had no impact on fimU promoter

activity (S5 Fig), and a pilDmutant had virulence equivalent to a pilAmutant, likely attributable

to its lack of T4P. Thus, PilVWX can modulate FimS activity in their unprocessed form.

Hyperactivation of AlgR delays killing

Because the results suggested that loss of PilWXY1 relieves feedback inhibition on FimS-AlgR,

resulting in AlgR activation, we tested whether hyperactivation of AlgR alone could delay

Fig 4. PilVWXY1 repress their expression via FimS-AlgR. (A) BACTH assays for FimS, AlgR, PilA, and MPs.

Protein fusions with T18 and T25 fragments of the CyaA adenylate cyclase were screened for interactions on

MacConkey and LB + X-gal plates. FimS interacted with itself, AlgR, PilA, FimU, PilV, PilW, PilX, and PilE. Positive

(+) or negative (-) interactions are indicated below each image, n = 3. (B) fimU promoter activity in PA14 pilA, fimU,

pilV, pilW, pilX, pilY1, pilE, fimS, algR, pilY1 fimS, or pilY1 algRmutants. pMS402-PfimU, containing the fimU
promoter upstream of the lux genes, was introduced into strains of interest. Loss of pilV, pilW, pilX, or pilY1 led to

highly elevated fimU promoter activity. pilA and fimUmutants had moderately increased fimU promoter activity

relative to WT. fimS and algRmutants had negligible luminescence, and loss of fimS or algR also reverted fimU
promoter activity in the pilY1mutant to baseline. n = 3 trials.

https://doi.org/10.1371/journal.ppat.1007074.g004
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killing of C. elegans. We made chromosomal algRD54E phospho-mimetic point mutants [62] in

both PA14 and PAO1 backgrounds. We also made algRD54A point mutants, as AlgR phosphor-

ylation is required for transcription of a subset of genes in its regulon, including the MP

operon [17, 62, 63]. We verified that the algRD54A mutant was defective for twitching motility,

while the algRD54E mutant had WT twitching (S6 Fig). Unexpectedly, a fimSmutant retained

~50% twitching motility, in contrast to previous reports [18, 62]. In the absence of FimS, AlgR

might be phosphorylated by small phosphate donors [64]. Based on the fimS data, we also

questioned the assumption that AlgR phosphorylation was necessary for expression from the

fimU promoter. When we overexpressed WT AlgR or AlgRD54A in the algRmutant (S6 Fig), its

twitching defect was fully complemented by AlgR, and partially complemented (25%) by

AlgRD54A. Thus, although it increases binding to the fimU promoter [17, 62], phosphorylation

of AlgR is not essential for transcription of the MP operon.

SK assays were then performed for PA14 and PAO1 algRD54A and algRD54E mutants, plus

PA14 and PAO1 fimS and algR deletion mutants. PA14 and PAO1 algRD54E mutants killed

more slowly than the corresponding WT strains, while fimS, algR and algRD54A mutants had

WT virulence (Fig 5A and 5B). Loss of FimS-AlgR decreases expression of the MPs and PilY1

and prevents pilus assembly [17, 40]. Because our data show that loss of FimS-AlgR (and thus

MP expression) had no impact, we conclude that delayed killing of nematodes by pilW, pilX,

and pilY1mutants is due to inappropriately timed FimS-AlgR activation.

Overexpression of AlgR delays killing

Increased transcription of fimS-algR in a pilY1mutant relative to WT has been reported [38],

suggesting that delayed killing could arise through expression of increased amounts of the

FimS-AlgR TCS, as well as its activation. Therefore, we asked whether increased AlgR levels

would attenuate virulence, as previously demonstrated in a mouse infection model [65].

When algR was expressed in trans from a multicopy plasmid in PA14 algR, killing was delayed

compared to the vector control (Fig 6A). Because un-phosphorylated AlgR can also affect

transcription of a subset of genes [66, 67], we tested the same mutant complemented with

AlgRD54A. Complementation of the algRmutant with AlgRD54A resulted in a severe delay in

killing relative to the vector-only control. Thus, AlgR hyperactivation and overexpression

independently diminish P. aeruginosa virulence towards C. elegans. Lastly, as AlgR is a positive

regulator of biofilm formation [17, 55, 56], we performed biofilm assays for PA14 algR comple-

mented with AlgR or AlgRD54A. Expression of either variant led to hyper-biofilm formation

(Fig 6B), further emphasizing that the ability of a strain to form biofilms in SK medium does

not correlate with virulence in worms. Instead, we suggest that virulence factors repressed by

FimS-AlgR are important for C. elegans SK, and an increase in AlgR levels and/or activity at

the wrong time delays killing.

The virulence defects of pilW, pilX and pilY1 mutants are dependent on

FimS-AlgR

To provide further support for this model, we asked whether the virulence defects of PA14

pilW, pilX, and pilY1mutants required FimS-AlgR. We deleted fimS or algR in the pilW, pilX,

and pilY1 backgrounds, and tested virulence of the double mutants (Fig 7). We also deleted

pilW, pilX, and pilY1 in the algRD54A background, to test if AlgR activation was necessary for

the delayed killing by pilW, pilX, and pilY1mutants. In all cases, the double mutants had WT

virulence, equivalent to that of the fimS, algR, or algRD54A single mutants. These results dem-

onstrate that the delay in killing that results from loss of PilWXY1 requires both FimS and

AlgR. Although overexpression of AlgRD54A in trans repressed virulence (Fig 6A), the
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chromosomal mutation was sufficient to alleviate delayed killing by pilW, pilX, and pilY1
mutants, suggesting that AlgR phosphorylation is important for modulation of virulence when

PilWXY1 are missing.

The sigma factor AlgU (AlgT/σ22/σE) acts upstream of FimS-AlgR to promote algR tran-

scription [68–70], thus we tested its potential involvement in modulation of virulence by

PilWXY1. An algUmutant killed more rapidly than WT (Fig 8), as previously demonstrated in

mouse models [71], while pilW algU, pilX algU, and pilY1 algU double mutants had near-WT

virulence (less than an algUmutant, but more than pilW, pilX, and pilY1 single mutants).

Although AlgU promotes algR transcription [69], loss of AlgU alone does not prevent AlgR

Fig 5. AlgR hyperactivation delays killing. SK assays for (A) PA14 and (B) PAO1 fimS, algR, algRD54A, and algRD54E

mutants. The fimS, algR, and algRD54A mutants had WT virulence, while the algRD54E mutants showed delays in killing.

For (A) and (B), asterisks indicate strains that were significantly different from WT by Gehan-Breslow-Wilcoxon test

at p = 0.05 (p = 0.01 with a Bonferroni correction), n = 3 trials.

https://doi.org/10.1371/journal.ppat.1007074.g005
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expression [68]. Given the reduced virulence of the pilW algU, pilX algU, and pilY1 algU dou-

ble mutants relative to algU, PilWXY1 modulation of FimS-AlgR signalling appears to be

intact in the algUmutant. These data are consistent with studies showing thatmucA and

mucDmutants, in which algR and algU are highly transcribed [69, 72–74], are less virulent

towards C. elegans [75–77].

Discussion

P. aeruginosa uses T4P to attach to surfaces and host cells, for biofilm maturation, and to move

across surfaces via twitching motility [2]. The MPs and PilY1 are important players in T4P

Fig 6. AlgR promotes biofilm formation and delays killing. (A) SK assays for algR deletion and overexpression

strains. Loss of algR led to a small increase in virulence, while overexpression of pBADGr-algR or pBADGr-algRD54A

delayed killing at 0.05% L-arabinose. Asterisks indicate strains that were significantly different from PA14 + pBADGr

by Gehan-Breslow-Wilcoxon test at p = 0.05 (p = 0.00833 with a Bonferroni correction), n = 3 trials. (B) Biofilm assays

for algR deletion and overexpression strains. Microtiter plate biofilm assays were performed in liquid SK media over 24

h, in triplicate. Biofilms were stained with 1% crystal violet then solubilized in acetic acid. Loss of algR had no effect on

biofilm formation. When grown at 0.05% L-arabinose, overexpression of pBADGr-algR or pBADGr-algRD54A

increased biofilm formation, p< 0.001. Significance was determined by one-way ANOVA followed by Dunnett post-

test relative to WT, n = 3 trials.

https://doi.org/10.1371/journal.ppat.1007074.g006
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Fig 7. Delayed killing by pilW, pilX, and pilY1 mutants is dependent on FimS-AlgR. SK assays for pilW, pilX, pilY1,

fimS, algR, and algRD54A single and double mutants. fimS, algR, and algRD54A mutants have WT virulence. pilW, pilX,

and pilY1 killed more slowly relative to WT, fimS, algR, and algRD54A mutants. Combination of pilW, pilX, or pilY1

Minor pilins regulate virulence by modulating FimS-AlgR activity
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biogenesis and function, but also in regulation of swarming motility, surface attachment,

mechanosensation, and virulence [38–40, 43]. The MP operon is positively regulated by

FimS-AlgR, a TCS implicated in regulation of chronic P. aeruginosa lung infections [17–

19]. Here, we explored the connection between loss of PilWXY1 (and thus, loss of T4P) and

AlgR activation in virulence towards C. elegans, as summarized in Fig 9. We showed that

pilW, pilX, and pilY1mutants kill nematodes more slowly than WT or a pilAmutant, sup-

porting the idea that PilWXY1 modulate virulence independently of their role in T4P

assembly. We confirmed previous reports [23, 33, 40] that in the absence of pilV, pilW,

pilX, or pilY1, expression of the MP operon is significantly increased, and that this requires

FimS-AlgR. Either hyperactivation or overexpression of AlgR delayed killing, while loss of

fimS or algR in pilW, pilX, or pilY1 reverted virulence to WT levels.

These data–coupled with BACTH data showing that the MPs interact directly with FimS in

the inner membrane (Fig 4)–suggest that FimS may act as a molecular thermostat to monitor

MP levels, and in their absence, activates AlgR to upregulate expression of the MP operon. A

similar inventory control mechanism was recently described for the PilSR TCS, where PilS

phosphorylates PilR when PilA levels are low, and dephosphorylates PilR when PilA levels are

high [60]. It is not yet clear if FimS responds to changes in levels of the PilVWXY1 subcom-

plex, thought to prime assembly of T4P [24, 78, 79]. When overexpressed individually in trans,
each of the MPs inhibited twitching motility in PAO1 [23], but since the others were still

expressed from the chromosome, the exact nature of the signal detected by FimS remains to be

determined. When expressed in trans, no single component of the PilVWXY1 subcomplex

reduced fimU promoter activity if others were absent (S4 Fig). The specific signal that inhibits

FimS activity remains to be deciphered. Whether the FimS-inhibitory signal is the same in

PA14 and PAO1 also remains unknown. Though PilWXY1 modulated virulence of PA14 and

PAO1, FimU and PilV influenced virulence only in PAO1 (Fig 1A and 1B). Given the MPs are

mutations with fimS, algR, or algRD54A mutations results in killing equivalent to fimS, algR, and algRD54A single

mutants, respectively. All graphs represent 1 trial, separated into 3 graphs where strains relevant to (A) pilW, (B) pilX,

and (C) pilY1mutants are included. Asterisks indicate strains that were less virulent than PA14 by Gehan-Breslow-

Wilcoxon test at p = 0.05 (p = 0.003125 with a Bonferroni correction), n = 3.

https://doi.org/10.1371/journal.ppat.1007074.g007

Fig 8. PilWXY1-mediated modulation of virulence is not dependent on AlgU. SK assays for PA14 pilW, pilX, pilY1,

algU, pilW algU, pilX algU, and pilY1 algUmutants. Loss of algU led to more rapid killing relative to WT, while pilW
algU, pilX algU, and pilY1 algUmutants had near-WT virulence. Asterisks indicate strains that were significantly

different from PA14 by Gehan-Breslow-Wilcoxon test at p = 0.05 (p = 0.00625 with a Bonferroni correction), n = 3.

https://doi.org/10.1371/journal.ppat.1007074.g008
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divergent, FimU and PilV may play different roles in PAO1 versus PA14 [48]. It is possible

that FimU and PilV are more important for stability of the PilWXY1 subcomplex in PAO1

than in PA14, and/or that PAO1 FimU and PilV can directly modulate FimS activity.

Kuchma et al. [39, 43] reported that loss of pilW, pilX, or pilY1 increased swarming motility

and decreased biofilm formation, both indicative of low c-di-GMP levels. As biofilms were

proposed to contribute to P. aeruginosa pathogenesis in C. elegans, we investigated whether the

reduction in virulence in the absence of PilWXY1 was linked to decreased biofilm via loss of

SadC activation [57–59, 80]. In our hands, levels of sadC had no impact on virulence even

though they clearly modulated the amount of biofilm produced in SK media (Fig 3A and 3B,

S3 Fig). Irazoqui et al. [59] examined the C. elegans gut during P. aeruginosa infection and

described extracellular material that they suggested might indicate presence of a biofilm. Anti-

biofilm compounds reduced P. aeruginosa virulence towards C. elegans, but a mechanism of

action for those compounds has not been described [58]. Recently, the small RNA SrbA was

shown to modulate both biofilm and virulence towards C. elegans; however, deletion of srbA
led to altered transcription of at least 26 other genes that may also affect virulence [81].

Rather than using standard biofilm media, we performed these assays in liquid SK media to

more closely mimic the conditions to which bacteria are exposed in the SK assay. To our

knowledge, this is the first report to use SK media for biofilm assays. As we found no correla-

tion between biofilm formation and virulence, we suggest that acute-phase virulence factors

may be more important for C. elegans pathogenesis in the SK model. However, we recognize

that in vitro biofilm assays may not replicate the conditions within the C. elegans gut; direct

visualization of bacteria in worms will be needed to clarify the role of biofilm formation.

Fig 9. Model for regulation of the MPs and virulence by FimS-AlgR. (A) Loss or inactivation of FimS-AlgR results in sustained

WT (acute) virulence towards C. elegans. Under normal conditions, PilVWXY1 suppress FimS activation of AlgR, leading to

reduced expression of the MPs and increased expression of acute virulence factors. These phenotypes are mimicked by genetic

inactivation of AlgR (D54A) or deletion of fimS or algR. (B) Loss of PilVWXY1 frees FimS to activate AlgR, leading to increased

expression of the MPs, reduced expression of acute virulence factors, and delayed nematode killing. Hyperactivating mutations in

AlgR (D54E) phenocopy this mechanism. Abbreviations: fimU, U (magenta); pilV, V (orange); pilW, W (teal); pilX, X (pink); pilY1,

Y1 (purple); pilE, E (green). Yellow star indicates phosphorylation.

https://doi.org/10.1371/journal.ppat.1007074.g009
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PilY1 and the MPs have been implicated in surface detection and activation of virulence,

via signalling through SadC [38, 40]. Because loss of PilY1 or the MPs prevents T4P assembly

and function, it is crucial to distinguish phenotypes resulting from lack of specific proteins ver-

sus loss of piliation [24]. Luo et al. [40] suggested that association of PilY1 with surfaces trans-

duces a signal through the T4P machinery to stimulate c-di-GMP production by SadC, while

Rodesney et al. [44] showed that loss of pilA, pilY1, or pilT prevents surface-activated c-di-

GMP production. Rodesney et al. [44] proposed that both PilY1 and functional T4P are

required for mechanosensation; however, it is not possible to delete pilY1without ablating

T4P assembly. Our cdrA promoter reporter data support the idea that PilWXY1 promote

cyclic-di-GMP production by SadC, as loss of pilW, pilX, or pilY1 decreased cdrA promoter

activity (Fig 2B). However, we argue that the PilWXY1-SadC pathway–though important for

c-di-GMP signalling–is not critical for virulence towards C. elegans. Instead, our data show

that PilWXY1-FimS-AlgR signalling axis is responsible for T4P-independent changes in viru-

lence of pilW, pilX, and pilY1mutants. Thus, surface attachment may induce c-di-GMP pro-

duction via PilWXY1-SadC [40, 43], while the brief trapping of T4P outside the cell upon

contact with a surface might transiently deplete PilVWXY1 levels in the inner membrane,

resulting in increased FimS-AlgR activity and transition towards a sessile, biofilm lifestyle.

Whether the loss of pilW, pilX, or pilY1 leads to increased amounts of AlgR, its increased

phosphorylation via FimS, or both, remains to be clarified. Okkotsu et al. [62] showed that

AlgR and AlgRD54E levels are comparable, suggesting that the delay in killing we observed for

PA14 algRD54E is attributable to the D54E phospho-mimetic mutation alone. Overexpression

of AlgRD54A in trans delayed killing (Fig 6A), but the same mutation on the chromosome

reverted virulence of pilW, pilX, and pilY1mutants to WT levels (Fig 7). Therefore, we suspect

that it is primarily AlgR phosphorylation (or lack of AlgR dephosphorylation) that leads to

delayed killing. However, it is possible that both increased AlgR protein levels and phosphory-

lation contribute. Kong et al. [55] showed that AlgR binds fimS-algR, suggesting that the TCS

could positively regulate its own transcription in response to reduced PilWXY1 levels.

In addition to being essential for T4P function, FimS and AlgR control alginate production

in the context of chronic CF infections, where algR transcription is high [18, 82]. Phosphoryla-

tion of AlgR increases binding affinity at some–but not all–of its target sequences [17, 62, 63,

67]. For example, AlgRD54N failed to support twitching motility, but did not affect alginate pro-

duction [17, 63]. Our twitching motility data suggests that AlgRD54A is capable of binding to

the fimU promoter, albeit less efficiently than WT AlgR (S6 Fig). FimS is an unorthodox histi-

dine kinase, with four transmembrane domains instead of the typical two, and lacks both a

periplasmic sensing domain and the canonical motif involved in ATP coordination that medi-

ates auto-phosphorylation [19, 83]. Direct interaction and/or phospho-transfer between FimS

and AlgR have not been reported. Rather, the idea that FimS acts as a kinase for AlgR comes

from this and other studies demonstrating similar phenotypes for fimS, algR, and algRD54N

mutants [17, 18, 84]. Here, we demonstrated that FimS and AlgR interact in the BACTH assay

(Fig 4) lending further support to this model.

FimS and AlgR promote expression of genes important for production of alginate, biofilms,

and c-di-GMP, and inhibit expression of the T3SS, pyocyanin, and quorum sensing [55, 56,

74, 85, 86]. The observation that the loss of algR had no impact on virulence towards amoebae

[38] or nematodes (Fig 5A and 5B) suggests that the AlgR-activated genes may not contribute

to virulence, although the mechanisms of killing could differ. In mouse models, fimS and algR
deletion mutants are attenuated, though overexpression of AlgR also markedly reduces viru-

lence [55, 65, 87]. Further, Little et al. demonstrated that PAO1 algRD54E had WT virulence in

Drosophila melanogaster and mouse infection models, while an algRD54A mutant was highly

attenuated [87]. The outcomes that result from interaction of P. aeruginosa with different
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hosts will depend on a combination of factors including host defenses, site of infection, avail-

able nutrients, and virulence repertoire of a particular strain. However, our results suggest that

changes in the specific repertoire of bacterial virulence factors, or the timing of their produc-

tion, can tip the balance in the host’s favour.

The subset of AlgR-regulated virulence genes important for C. elegans pathogenesis is not

defined. Screening of a PA14 transposon library for loss of virulence implicated several genes

encoding regulators rather than individual virulence factors, suggesting that C. elegans patho-

genesis is multifactorial [35]. Consistent with this hypothesis, a study of 18 WT P. aeruginosa
strains revealed no correlation between pathogenicity and any specific virulence factors [88].

We saw WT or greater levels of virulence for algR and algUmutants, respectively, consistent

with a role for AlgRU in repression of acute phase virulence factors (Figs 5 and 8). Factors

under positive control of AlgRU (chronic-phase virulence factors) may be important during

later stages of infection in more complex mammalian infection models, but not crucial for

pathogenesis in nematodes [89, 90]. In support of this hypothesis, past studies have demon-

strated that increased mucoidy, via mutation ofmucA ormucD, reduced nematode killing

[75–77].

While important for the initial stages of infection, T4P are often lost over time in chronic

CF lung infections [5, 91, 92]. P. aeruginosa CF isolates frequently become mucoid via activa-

tion of AlgR, and production of many virulence factors is reduced [82, 93, 94]. Although the

two outcomes are not necessarily temporally or mechanistically linked, mutations that achieve

both may be advantageous during chronic CF lung infections. Specifically, loss of PilWXY1

may be adaptive in the context of CF, leading to AlgR activation. To test this idea, it will be

interesting to examine the genotypes of mucoid CF isolates for these types of mutations. In

conclusion, our results suggest that PilWXY1 promote virulence towards C. elegans by inhibit-

ing FimS-AlgR activation. These data demonstrate how loss of one virulence factor (T4P) may

activate others (via AlgR). Because the interplay between virulence factors in P. aeruginosa is

complex and dynamic, careful consideration will be required when designing potential anti-

virulence therapeutic strategies.

Materials and methods

Bacterial strains and plasmids

Strains and plasmids used in this work are listed in S1 Table. Bacteria were grown at 37˚C for

16 h in 5 ml lysogeny broth (LB) Lennox, or on 1.5% agar LB plates, unless otherwise specified.

Plasmids were transformed into chemically-competent E. coli by heat-shock, and into P. aeru-
ginosa by electroporation [95]. Where appropriate, gentamicin (Gm) was added at 15 μg/ml

for E. coli, and 30 μg/ml for P. aeruginosa. Kanamycin (Kan) was added at 50 μg/ml for E. coli,
and 150 μg/ml for P. aeruginosa. Ampicillin (Amp) was added at 100 μg/ml for E. coli. L-arabi-

nose was added at 0.05% where indicated to induce expression from the pBADGr promoter

[96].

Cloning procedures

Vectors were constructed using standard cloning procedures, using the primers listed in S2

Table. Deletion constructs were designed to contain 500–1000 bp homology upstream and

downstream the gene to be deleted. Deletion constructs for PA14 fimU, pilV, pilW, pilX, pilY1,

and pilEwere synthesized by Genscript in the pUC57Kan vector. pEX18Gm-sadC was created

by amplifying the sadC deletion region from PA14 sadC roeA [42], followed by digestion and

ligation into pEX18Gm. pEX18Gm-fimS, pEX18Gm-algRD54A, and pEX18Gm-algRD54E were

made by overlap extension PCR [97]. Restriction digestion followed by ligation of the
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upstream and downstream fragments was used to create the deletion constructs pEX18Gm-

algR, pEX18Gm-algU, and pEX18Gm-pilD. pMS402-PfimU and pMS402-PcdrA were created

by amplifying and digesting the promoter regions of the PA14 MP operon and cdrA gene,

respectively. Digested pBADGr was treated with alkaline phosphatase prior to ligation to avoid

re-circularization of the vector. Constructs were verified by Sanger sequencing (MOBIX lab,

McMaster, Hamilton, ON).

Mutant generation by allelic exchange

Allelic exchange was used to remove or alter specific genes [98]. pEX18Gm suicide plasmid

derivatives (see Cloning procedures and S1 Table) were used to create all mutants in this work.

After heat-shock transformation into E. coli SM10 cells, pEX18Gm constructs were conjugated

into corresponding PA14 or PAO1 parent strains. Cells were then transferred to Pseudomonas
isolation agar (PIA) Gm100 plates and incubated for 18 h at 37˚C, to select for integration of

pEX18Gm derivatives into the chromosome. Colonies were streaked onto LB/sucrose and

incubated at 30˚C for 18 h to select against merodiploids. Resultant colonies were patched

onto LB and LB Gm30 to identify gentamicin-sensitive colonies. Regions flanking the desired

mutations were amplified and sequenced to confirm success.

Twitching motility assays

Twitching motility assays were performed as previously described [99], with the following

modifications. Individual colonies were stab-inoculated in triplicate into 1% agar LB solidified

in plasma-treated tissue culture-grade plates (Thermo Fisher) and incubated at 30˚C for 48 h.

Agar was carefully removed and plates were stained with 1% crystal violet for 5 min. Unbound

dye was removed by rinsing with water, then stained twitching areas were measured using

ImageJ. Twitching zones were normalized to WT (100%).

Biofilm assays

Biofilm assays were performed as previously described, with modifications [100]. P. aeruginosa
cultures were grown for 16 h at 37˚C, diluted 1:200 in fresh LB, and grown to OD600 ~0.1. Cul-

tures were then diluted 1:500 in liquid SK media (50 mM NaCl, 0.35% peptone, 1 mM CaCl2, 1

mM MgSO4, 5 μg/ml cholesterol in EtOH, 20 mM KH2PO4, and 5 mM K2HPO4), then 96-well

plates were inoculated with 150 μl each strain, in triplicate. Sterility controls (liquid SK media)

were included throughout the plate to check for contamination. Plates were covered with peg

lids (Nunc) then wrapped in parafilm and incubated at 37˚C for 24 h, shaken at 200 rpm. After

incubation, the OD600 of the plate was measured to check for uniform growth and lack of con-

tamination. Peg lids were washed for 10 min in 200 μl/well 1X phosphate-buffered saline

(PBS), then stained with 200 μl/well 0.1% (w/v) crystal violet for 15 min. Unbound crystal vio-

let was removed by washing lids in 70 ml distilled water 5 times at 10 min intervals. Crystal

violet was solubilized from lids in 200 μl/well 33.3% acetic acid, then the absorbance at 600 nm

was measured. Optical density and absorbance at 600 nm were plotted for growth and biofilm

formation, respectively, then analyzed by one-way ANOVA followed by Dunnett post-test to

compare each mutant to the WT control, p = 0.05. Error bars indicate standard error of the

mean. Representative wells of acetic acid-solubilized crystal violet were imaged.

Caenorhabditis elegans slow killing assay

SK assays were performed as described previously [101]. SK plates (0.35% peptone, 50 mM

NaCl, 2% agar, 1 mM CaCl2, 5 μg/ml cholesterol, 1 mM MgSO4, 20 mM KH2PO4, 5 mM
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K2HPO4, 100 μM FUDR) were seeded with 100 μl of an overnight culture and incubated

overnight at 37˚C. The following day, plates were enriched with 1 ml of an overnight culture

concentrated to 100 μl. Synchronized L4 worms were collected from E. coli OP50 plates,

washed twice in M9 buffer, and then >50 worms were seeded onto each bacterial lawn on

individual SK plates. SK plates were incubated at 25˚C and scored for dead worms every 24

h. Worms were considered dead when they did not respond to touch, and were removed

from the plate. OP50 was included as a negative control for virulence. Percent survival was

plotted as a function of time. Survival curves were plotted on GraphPad Prism 5.00 for Win-

dows, then compared using the Gehan-Breslow-Wilcoxon test, p = 0.05. Given that larvae

were synchronized at 20˚C then transferred at L4 to 25˚C for the duration of the assay,

worms were at risk of death due to senescence, rather than direct killing by P. aeruginosa,

before day 10 [46]. Therefore, the Gehan-Breslow-Wilcoxon test, which gives weight to ear-

lier timepoints, was used in favour of the standard log-rank test (notably, all reported differ-

ences were also significant by the standard log-rank test). To correct for multiple analyses,

the critical p-value of 0.05 was divided by the number of pairwise comparisons made within

an individual trial, as per the Bonferroni method [102]. Each assay was performed at least 3

times, and differences were only considered significant if they were reproducible in the

majority of trials. Representative trials are shown; all replicates can be viewed in the Supple-

mental Material (S1 File).

Luminescent reporter assay

Luminescent reporter assays were performed as previously described, with minor modifica-

tions [60]. Various strains harbouring the pMS402-PfimU or pMS402-PcdrA plasmids, encod-

ing the luciferase genes under control of the fimU or cdrA promoters, respectively, were grown

for 16 h at 37˚C in LB Kan150, then diluted 1:50 in fresh liquid SK media with Kan150, in

addition to Gm30 and 0.05% L-arabinose where appropriate. Subsequently, 100 μl of each cul-

ture was added to white-walled, clear-bottom 96-well plates (Corning) in triplicate, and incu-

bated with shaking at 37˚C in a Synergy 4 microtiter plate reader (BioTek). Luminescence

readings were taken every 15 min for 5 h, and normalized to growth (OD600) at each time

point. Readings that exceeded the limit of detection (>4 000 000 luminescence units) were dis-

carded. At least 3 individual trials were performed. Error bars indicate standard error of the

mean.

Bacterial two-hybrid β-galactosidase activity assay

To test for interactions between FimS and AlgR or individual pilins, BACTH assays were per-

formed as previously described [103]. pUT18C and pKT25 derivatives, encoding the T18 and

T25 domains of the Bordetella pertussisCyaA adenylate cyclase fused to the N-terminus of

FimS, AlgR, PilA, FimU, PilV, PilW, PilX, or PilE [24, 60, 104], were co-transformed into E.

coli BTH 101 to screen for pairwise interactions. Single colonies were inoculated in 5 ml LB

Amp100 Kan50 and grown overnight. The following day, 100 μl was inoculated into 5 ml fresh

media and grown to OD600 = 0.6, then 5 μl was spotted onto MacConkey plates (1.5% agar,

100μg/ml ampicillin, 50μg/ml kanamycin, 1% (w/v) maltose, 0.5mM isopropyl b-D-thiogalac-

topyranoside) (Difco) or LB Amp100 Kan50 plates supplemented with 100 μl of 20 mg/ml X-

gal. Plates were incubated at 30˚C for 24 h. An interaction was considered positive when colo-

nies appeared pink or blue on MacConkey and LB + X-gal plates, respectively. BTH 101

expressing pUT18C-fimS and pKT25-fimS was used as a positive control [49]. Negative con-

trols included BTH 101 expressing the empty vectors pUT18C and pKT25, and BTH 101

expressing pKT25-fimS and pUT18C (empty vector).
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Supporting information

S1 Fig. Twitching motility and virulence of pilW, pilX, and pilY1 mutants can be comple-

mented in trans. (A) Twitching motility assays for complemented PA14 pilW, pilX, and pilY1
mutants. Colonies were stab-inoculated into 1% agar LB plates, in triplicate. Plates were stained

with crystal violet after 48 h at 30˚C. Complementation of PA14 pilW, pilX, and pilY1mutants

with pBADGr-pilW, pBADGr-pilX, or pBADGr-pilY1, respectively, led to increased TM relative

to complementation with pBADGr alone. Numbers indicate percent twitching area relative to

WT, n = 3. (B) SK assays for complemented PA14 pilW, pilX, and pilY1mutants. Complementa-

tion of pilW, pilX, and pilY1mutants with pBADGr-pilW, pBADGr-pilX, or pBADGr-pilY1,

respectively, restored virulence to near-WT levels. Asterisks indicate strains that were less viru-

lent than PA14 + pBADGr by Gehan-Breslow-Wilcoxon test at p = 0.05 (p = 0.00833 with a

Bonferroni correction), n = 3. Individual graphs represent separate trials.

(TIF)

S2 Fig. PA14 and PAO1 produce low levels of biofilm in liquid slow killing media. Biofilm

assays for (A) PA14 and (B) PAO1 pilA, fimU, pilV, pilW, pilX, pilY1, and pilEmutants. Very

little biofilm formation was detectable in liquid SK media for any strains. There were no differ-

ences in biofilm formation as determined by one-way ANOVA followed by Dunnett post-test

relative to WT at p = 0.05, n = 3.

(TIF)

S3 Fig. SadC is not required for virulence in PA14 or PAO1. SK assays for (A) PA14 and (B)

PAO1 sadCmutants. Loss of sadC had no impact on pathogenicity relative to each respective

WT strain, as measured by Gehan-Breslow-Wilcoxon test at p = 0.05 (p = 0.025 with a Bonfer-

roni correction), n = 3.

(TIF)

S4 Fig. pilV, pilW, pilX, and pilY1 mutants cannot be cross-complemented for fimU pro-

moter activity. (A) fimU promoter activity of pilV, pilW, pilX, and pilY1mutants comple-

mented with the respective gene in trans. The high luminescence of each mutant was restored

to WT level when pilV, pilW, pilX, and pilY1were complemented with PilV, PilW, PilX, and

PilY1, respectively. (B) fimU promoter activity of a pilY1mutant expressing each MP in trans.
Expression of FimU, PilV, PilW, PilX, or PilE in the pilY1 background had no impact on fimU
promoter activity relative to the pilY1 + empty vector control. (C) fimU promoter activity of

pilW and pilXmutants overexpressing PilY1. Overexpression of PilY1 had no impact on fimU
promoter activity in pilW and pilX backgrounds relative to the respective vector-only controls.

Assays in (A), (B), and (C) were carried out in the presence of 0.05% L-arabinose to induce

expression of the pBADGr promoter, n = 3.

(TIF)

S5 Fig. PilD is not required for PilWXY1-mediated modulation of FimS-AlgR activity. (A)

Twitching motility assays for PA14 pilA and pilDmutants. Loss of pilD resulted in loss of

twitching motility. Numbers indicate percent twitching area relative to WT, n = 3. (B) fimU
promoter activity of a pilDmutant compared to PA14, pilA, and pilY1. Loss of pilD had no

impact on fimU promoter activity relative to WT, n = 3. (C) SK assays for PA14, pilA, pilY1,

and pilDmutants. A pilDmutant had equivalent virulence to a pilAmutant; less pathogenic

than WT but more pathogenic than a pilY1mutants. Asterisks represent strains that were sig-

nificantly different from the pilAmutant by Gehan-Breslow-Wilcoxon test at p = 0.05

(p = 0.0125 with a Bonferroni correction), n = 3.

(TIF)

Minor pilins regulate virulence by modulating FimS-AlgR activity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007074 May 18, 2018 19 / 26

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007074.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007074.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007074.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007074.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007074.s005
https://doi.org/10.1371/journal.ppat.1007074


S6 Fig. Phosphorylation of AlgR is required for optimal twitching motility. (A) Twitching

motility assays for PA14 pilA, fimS, algR, algRD54A, and algRD54E mutants. Twitching motility

was abolished in pilA, algR, and algRD54A mutants, and fully retained in the algRD54E mutant.

A fimSmutant twitched to ~50% WT levels. (B) Twitching motility assays for PA14 algR com-

plemented with AlgR or AlgRD54A. An algRmutant was fully complemented by AlgR with and

without induction by 0.05% L-arabinose. The AlgRD54A variant supported twitching motility

in the algRmutant background in the presence of 0.05% L-arabinose, to ~25% WT levels. In

(A) and (B), numbers indicate percent twitching area relative to WT, n = 3.

(TIF)

S1 Table. Bacterial strains and plasmids used in this study.

(DOCX)

S2 Table. Primers used in this study. Restriction sites are underlined.

(DOCX)

S1 File. Replicates for slow killing assays. Three independent experiments for Figs 1A, 1B,

3B, 5A, 5B, 6A, 7A–7C and 8, and S1B, S3A, S3B and S5C Figs.

(PDF)
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