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ABSTRACT: Lung cancer is the leading cause of cancer-related deaths worldwide, emphasizing
the urgent need for reliable and efficient diagnostic methods. Conventional approaches often
involve invasive procedures and can be time-consuming and costly, thereby delaying the effective
treatment. The current study explores the potential of Raman spectroscopy, as a promising
noninvasive technique, by analyzing human blood plasma samples from lung cancer patients and
healthy controls. In a benchmark study, 16 machine learning models were evaluated by employing
four strategies: the combination of dimensionality reduction with classifiers; application of feature selection prior to classification;
stand-alone classifiers; and a unified predictive model. The models showed different performances due to the inherent complexity of
the data, achieving accuracies from 0.77 to 0.85 and areas under the curve for receiver operating characteristics from 0.85 to 0.94.
Hybrid methods incorporating dimensionality reduction and feature selection algorithms present the highest figures of merit.
Nevertheless, all machine learning models deliver creditable scores and demonstrate that Raman spectroscopy represents a powerful
method for future in vitro diagnostics of lung cancer.

■ INTRODUCTION
Early detection of diseases has become increasingly important,
with lung cancer being the leading cause of cancer-related
deaths worldwide.1 Timely and accurate diagnosis of lung
cancer is crucial for effective treatment and better survival
rates. However, conventional methods are often expensive and
time-consuming and have limited sensitivity in the early
stages.2 In contrast, Raman spectroscopy has emerged as a
promising diagnostic technique that enables noninvasive, label-
free, and real-time analysis.3,4

Raman spectroscopy is based on inelastic scattering of light,
where a small fraction of the photons interact with the sample,
resulting in a gain or loss of energy and thus a shift in the
wavelength of the scattered light. This shift in wavelength is
called the Raman shift and is proportional to the frequency of
the molecular vibration. This highly effective and non-
destructive approach can provide insight into the molecular
composition of biological fluids.5 In particular, human blood
plasma, a complex biological fluid composed of proteins, lipids,
nucleic acids, carbohydrates, etc., is an excellent source for
identifying biochemical changes.6 Therefore, Raman spectros-
copy can be used to analyze the spectral signatures of blood
plasma and provide valuable diagnostic information.7,8 Raman
spectroscopy and other vibrational spectroscopy methods have
been used by several groups to investigate their capacity as new
diagnostic technologies for a variety of cancers.9,10

This research mainly focused on the performance of several
machine learning models used to discriminate the spectral
signatures of human blood plasma samples between lung
cancer patients and healthy controls. An ensemble of 16

different machine learning models was examined, including
different combinations with a particular feature selection
method, transformation techniques, and classifiers. Principal
component analysis (PCA), a commonly used technique for
dimensionality reduction, was applied along with a set of
classifiers such as linear discriminant analysis (LDA), support
vector machine (SVM), Naiv̈e Bayes (NB), logistic regression
(LR), and random forest (RF). The models were extended in
conjunction with the Fisher score (FS) feature selection
method in various configurations. Standalone classifiers and
partial least-squares discriminant analysis (PLS-DA) were
studied independently.

■ EXPERIMENTAL SECTION
Sample Collection. Eighteen blood samples were collected

from patients with nonsmall cell lung carcinoma (NSCLC) in
the Oncology Department of Hospital University Donostia
(San Sebastiań, Spain). Fourteen out of the 18 samples were
obtained from NSCLC patients diagnosed in the advanced
stage with metastasis detected in other organs. For 11 out of
the 18 patients, blood collection was performed before any
treatment administration. Blood samples were collected in
ethylenediaminetetraacetic acid (EDTA) tubes, and plasma
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was prepared within 1 h of phlebotomy according to standard
protocols. In addition, plasma was obtained retrospectively
from 18 healthy donors from the Basque Biobank (Bioef). The
samples were collected in accordance with the Declaration of
Helsinki and with approval by local ethics committees (CEIC
Euskadi approval number: PI2019170).
Sample Preparation and Data Collection. Prior to

analysis, 1 μL of samples from a total of 36 subjects was
deposited on aluminum foil (Alu-Labor-Folie) attached to the
microscope slide (Superfrost Plus Adhesion Microscope Slides
by Epredia) and dried for 5 min.
Aluminum foil offers high reflectivity that increases the

Raman signal by the excitation laser light reflected from the
sample;11 stability that makes it a good choice for holding and
stabilizing samples during analysis; flexibility regarding easy
shaping or molding to fit the sample holder; a low background
signal that helps minimize interference from unwanted signals
during analysis;12 and cost-effectiveness that makes it a
practical option for routine Raman analysis.
During the drying process on the aluminum substrate, the

typical coffee ring effect occurred due to capillary forces,
leading to a higher concentration of molecular components at
the periphery of the droplet. Subsequent Raman measurements
targeted these rings where proteins and other components
were anticipated to be the most dense. This technique,
previously documented, augments Raman measurements by
amplifying analyte concentration giving potentially better
insight into sample properties.13−15

To optimize the strength of the Raman signals while
minimizing damage to the sample, the 785 nm laser
wavelength of the Renishaw inVia confocal Raman microscope
with a grating of 1200 L/mm was selected for the analysis of
the dried biological samples. Overall, the choice of 785 nm as
excitation wavelength is advantageous for biological samples, as
it provides sufficiently strong Raman signals while minimizing
sample damage, reducing fluorescence, and providing a larger
penetration depth.16−18 The laser was operated at 73 mW
output power, and the light was focused onto the sample
through a 50× long distance objective. A total of 20
accumulations were performed with an exposure time of 1 s.
Data Preprocessing and Exploratory Data Analysis.

First, 25 spectra were taken from each subject at different
points on the periphery of the droplet. The embedded software
of the commercial Raman system removes cosmic rays, which
no longer affects further data processing methods such as
background (baseline) reduction or averaging. Two prepro-
cessing methods were employed: asymmetric Whittaker
baseline correction and standard normal variate (SNV)
transformation. Baseline correction was employed to address
baseline drifts and distortions in spectral data and to enhance
the accuracy and reliability of the quantitative analysis by
handling asymmetric features and noise.19,20 Besides, SNV
transformation removed multiplicative baseline variations due
to sample thickness, scattering, instrumental response, etc.,
without altering the shape of the spectra.21,22 Then, 25 spectra
belonging to one subject were averaged to create a single
representative spectrum per subject. This step is essential for
reducing random noise, improving signal-to-noise ratio, and
capturing the overall spectral signature.23

Various machine learning models were used for data
analysis, all of which are suitable for handling complex data
sets. The first five models integrated PCA with classifiers such
as LDA, SVM, NB, LR, and RF. In these models, PCA reduces

the dimensionality while preserving as much variance as
possible. Another set of five models used PCA, however, prior
to applying the classifiers as before, the Fisher score feature
selection method was applied considering class labels. This
method helps to select the most discriminative features for
classification tasks. A third set of models solely relies on the
previously stated classifiers without a PCA or Fisher score.
This makes it possible to examine the performance of the
classifiers on the raw data set directly after preprocessing.
Finally, PLS-DA is employed as a stand-alone model for
handling multicollinearity in data by incorporating class labels
directly into the model fitting process. The benefits of using
those machine learning models include their ability to handle
high-dimensional data sets and to identify the most relevant
features for classification.

■ RESULTS AND DISCUSSION
Comparative Spectral Analysis. Averaged spectra of lung

cancer and healthy control were analyzed, as illustrated in
Figure 1, as well as three discrete Raman shift regions in Figure

S1A,C in the Supporting Information, allowing a comprehen-
sive study of specific molecular vibrations. These three regions
allow a more targeted analysis of specific vibrations and
corresponding molecular alterations associated with lung
cancer, further supporting the utility of Raman spectroscopy
as a diagnostic technique.
Figure S1A emphasizes the spectral range of 610−990 cm−1

of the Raman shift, which corresponds to ring vibrations, ring
breathings, and skeletal stretching of chemical groups such as
tryptophan, tyrosine, or nucleic acids. The range between 990
and 1016 cm−1, corresponding to the symmetric ring breathing
mode of phenylalanine, was intentionally excluded. Due to its
pronounced and sharp intensity, its presence can overshadow
and suppress other relevant peaks in the selected regions.
Figure S1B focuses on the vibrational frequency range of
1016−1360 cm−1, emphasizing the occurrence of distinct
vibrational stretching and bending modes as well as
deformation modes and the amide III region. Here, spectral
features provide information about the secondary structure of
proteins and conformational changes in nucleic acids, which
are also essential for understanding the molecular alterations
associated with lung cancer. Figure S1C targets the range of
1360−1720 cm−1 which encompasses mostly C�C stretching
and the amide I region offering insights into the secondary
structure of proteins, such as α-helices.
Comprehensive Visualization of Selected Compo-

nents and Variables. Figure 2 embodies an in-depth
representation of the multivariate structure within the data

Figure 1. Averaged Raman spectra per class.
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set while providing interconnected insights into PC and latent
variable (LV) spaces.
Figure 2A,B depicts score plots derived from the first and

second PCs (PC1−PC2) and the second and fifth PCs (PC2−
PC5), respectively. They accounted for 42.12, 15.4, and 5.77%
of the total variance. The first PC (PC1) captured the highest
amount of variation, with subsequent components (PC2, PC5)
explaining the remaining variance in a decreasing order. The
presented choice of PCs goes beyond the traditional approach.
A high Fisher score associated with PC2 solidifies its role as a
dominant axis, achieving a clear separation between lung
cancer and the control group. PC3 and PC4, although not
initially considered, produced results of 11.84 and 8.67%,
respectively. These components are categorized as less
significant according to the Fisher Score, or in other words
less significant for classification.
Interestingly, our analysis also flagged PC5, a subsequent

component, based on its elevated score. Thus, PC2 and PC5
were selected using a robust, data-driven approach that
provides intriguing insight into the potential multivariate
structure of lung cancer. Furthermore, Figure 2D,E portrays a
score plot for LV1−LV2 and LV2−LV3, respectively,
determined through PLS-DA. The purpose of PLS-DA is to
find the multivariate relationship between a data set (X) and
response variables (y). Here, LVs are linear combinations of
predictors that explain the maximum covariance with the
response variable and thus enable efficient classification.
The loading plots shown in Figure 2C for PC1, PC2, and

PC5 and in Figure 2F for LV1, LV2, and LV3 show the
influence of each original variable on the derived characteristic
features. Loadings are essentially the coefficients or correla-
tions between original features and selected components or
variables. They indicate how much each feature contributes to
or detracts from selected features, offering insights into spectral
signatures.24 On the other hand, the regression vector (RV) for
three LVs shown in Figure S2 in the Supporting Information
offers a numerical representation of the degree and direction of
influence that each LV has on the dependent variable. This

condensed information on variable interplay accurately reflects
the impact of each LV on the model outcome.
Table 1 elucidates the relevant features by detailing peak

assignments from loading plots of PCs and the RV of LVs. It
indicates the molecular groups responsible for each dominant
peak that contributes to the observed differences. Relevant
features are PC1, PC2, PC5, and RV, associated with
vibrational modes detected in Raman spectra. For instance,
the vibrational mode associated with the C−C twisting mode
of phenylalanine is detected by all four features, which
indicates its importance and high variance in the data set.
Conversely, C−C stretching mode backbone (α�helix
conformation) and C�C stretching mode of tyrosine are
uniquely captured by PC5, indicating that it represents a
feature with lower variance. Moreover, the inclusion of
regression coefficients, as opposed to the loadings of the
PCs, is driven by our objective to quantitatively assess the
relative influence of each spectral feature on the distinction
between healthy and lung cancer samples. Regression
coefficients reflect the influence of each feature on
classification, with their absolute values indicating the strength
of distinction, regardless of whether they are positive or
negative. The instances of “none” signify the absence of certain
vibrational modes in RV. This indicates that these specific
modes do not significantly contribute to or are not detected in
the differentiation process captured by the RV.
Performance of the Models. The evaluation of the

models focuses on two main aspects: (1) accuracy for
quantifying the proportion of correct predictions made by
the model relative to the total number of input samples and
(2) receiver operating characteristic (ROC) curve for visual-
izing and measuring a trade-off between true positive rate
(sensitivity) and false positive rate (1-specificity).
A comprehensive evaluation strategy was employed with

four distinct approaches to assess the performance of five
machine learning classifiers LDA, SVM, NB, LR, and RF
alongside a separate evaluation for PLS-DA. Four specific
approaches were executed: the first incorporated PCA for data

Figure 2. 2D visualization of the discrimination between lung cancer patients (orange) and healthy controls (blue). (A) Score plots of PC1−PC2,
(B) PC2−PC5, (D) LV1−LV2, and (E) LV2−LV3. (C) Corresponding loadings of PC1, PC2, and PC5, and (F) loadings of LV1, LV2, and LV3.
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reduction; the second combined PCA with Fisher score to
select the most prominent PCs; the third focused solely on
classifiers; and the fourth was devoted to PLS-DA. The data set
was split into training and test sets with an 85:15 ratio.
Hyperparameter tuning was done using Randomized-
SearchCV, with 6-fold cross-validation on the training set.
This was executed across 20 iterations to find the best
hyperparameters. After these optimal settings were confirmed,
each classifier was iteratively tested 100 times to further
scrutinize model stability and performance. Cross-validation
helps assess the performance and generalization ability of the
models by minimizing the risk of overfitting or underfitting. By
evaluating the model on unseen data in each iteration, cross-
validation can provide a reliable estimate of how likely the
model is to perform well on new, unseen samples.25,26

PCA + Classifiers. This approach is based on an iterative
assessment that sequentially incorporates the first 10 PCs.

Models were evaluated on five classifiers, which are LDA,
SVM, NB, LR, and RF, using the output of PCA as input
variables.
The results presented in Figure 3A and Table S1 show that

the optimal range for the number of PCs to be considered is

between 6 and 8. This range effectively captures the most
significant variance within the data set, thereby contributing to
the predictive power of the models. Model performance
showed no significant improvement beyond these selected
numbers, reinforcing the fact that subsequent PCs contain less
information that is critical for classification.
Based on the observations, PCA + LDA and PCA + SVM

maintain their edge, delivering mean accuracies of 0.85 ± 0.13
and 0.84 ± 0.16, respectively, at 7 PCs. This suggests that LDA
and SVM are particularly proficient at distinguishing between
classes in a feature space constrained to the first 7 PCs. The
prevalence of linearly separable features within the data set is
evident. LDA and SVM, which excel under such conditions,
therefore perform notably well. Conversely, PCA + NB returns
a lower mean accuracy of 0.77 ± 0.14 with 6 PCs, while PCA +

Table 1. Raman Spectral Band Assignments for Human
Blood Plasma as Reported in the Literature

peak
positions
(cm−1)a vibrational modes PCs

regression
coefficients

619−624 C−C twisting mode of
phenylalanine

PC1,
PC2,
PC5

−0.021

641−643 C−C twisting mode of tyrosine PC1, PC5 none
698−701 n(C−S) trans(amino acid

methionine)
PC2, PC5 0.031

756−758 symmetric ring breathing of
tryptophan

PC1,
PC2,
PC5

0.051

822 out of plane ring breathing
tyrosine

PC5 −0.021

855−856 ring breathing mode of tyrosine PC1, PC5 none
874−878 arginine PC2 0.041
897−901 monosaccharides (b-glucose),

(C−O−C) skeletal mode
PC2, PC5 none

939 C−C stretching mode backbone
α�helix

PC5 none

1000−1004 symmetric ring breathing mode
of phenylalanine

PC1,
PC2,
PC5

−0.067

1029−1033 C−H in-plane bending mode of
phenylalanine

PC1, PC2 −0.017

1104 C−C vibration mode of the
gauche-bonded chain

PC5 −0.017

1123−1127 proteins; C−C phospholipids
stretching

PC2, PC5 0.031

1156−1157 C−C/C−N stretching mode PC1, PC2 −0.024
1204−1210 tryptophan and phenylalanine

n(C−C6H5) mode
PC1, PC5 0.029

1232−1269 amide III PC5 0.023, 0.014
1397−1404 glutathione PC5 −0.025
1436−1438 C−H deformation PC2, PC5 0.068
1513−1528 carotenoids (C�C) PC1,

PC2,
PC5

−0.042

1548−1553 tryptophan PC5 0.028
1587−1589 C�C stretching PC2, PC5 −0.022
1604−1606 C�C stretching mode of

phenylalanine and tryptophan
PC2 −0.016

1619 C�C stretching mode of
tyrosine and tryptophan

PC5 none

1666−1671 amide I: α�helix PC2, PC5 0.066
aPeak positions are reported concerning the following features: PC1,
PC2, and PC5, and the RV of the first three LVs LV1, LV2, and
LV3.27−29

Figure 3. Accuracy of comparative classification performance.
Hatched bars indicate the highest accuracy presented in each graph
per classifier. The error bars reflect the standard errors. (A) PCA with
the first 10 PCs as inputs for various classifiers: LDA (blue), SVM
(green), NB (cyan), LR (purple), and RF (orange). (B) Same
procedure as in (A), but here with selected PCs by Fisher score
feature selection before applying the classifiers. (C) Only classifiers
without dimensionality reduction. (D) The first 5 selected LVs.
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RF scores 0.80 ± 0.17 at 8 PCs. These results imply that RF
may necessitate a slightly higher dimensionality, i.e., more PCs,
for a more diverse feature set to build its ensemble of decision
trees effectively. Besides, these algorithms either require more
complex features or are not as effective in a reduced feature
space. PCA + LR performs competitively with a mean accuracy
of 0.83 ± 0.15 at 6 PCs, illustrating its capability but still
slightly trailing behind PCA + LDA and PCA + SVM.
PCA + Fisher Score + Classifiers. In contrast to the

previous section, here, PCA was implemented with the
maximum number of components. Fisher’s score was
subsequently applied to rank the relevance of features. The
most significant features were selected across iterations,
creating a cumulative list of the important features. Then,
the top 10 most frequently recurring features were selected for
further model evaluation. Notably, even as the feature list was
extended to encompass these 10 components, the model
consistently exhibited high accuracy. This aligns with the
expectation that the Fisher score effectively identifies the most
discriminative features, thereby enabling the achievement of
stable and notable accuracy with even a limited set of
components.
Highlighting the results compiled in Figure 3B and Table S1,

PCA + FS + LDA and PCA + FS + SVM achieve their peak
performance at 6 and 5 PCs, respectively, with mean accuracies
of 0.84 ± 0.14 and 0.85 ± 0.14. Intriguingly, SVM maintains a
near-identical performance with fewer PCs compared to the
PCA-only approach, hinting at the model’s resilience to the
reduction in dimensionality. LDA, however, experiences a
minor decrement in performance, suggesting that the extra
features isolated by FS may create a slightly more complex
decision boundary.
It is noteworthy that the performance of PCA + FS + NB

and PCA + FS + RF accomplishes mean accuracies of 0.81 ±
0.15 and 0.77 ± 0.16, while utilizing only 3 PCs. Naiv̈e Bayes
appears to benefit from Fisher score feature selection more
than it did with just PCA. This could indicate that FS succeeds
in isolating features that encapsulate class-discriminative
information on NB more effectively.
Conversely, the effectiveness of RF decreases, possibly

indicating that RF as an ensemble method requires a higher
level of feature complexity than the top 3 PCs can provide
through FS. PCA + FS + LR, in contrast, sustains its
performance, securing a mean accuracy of 0.84 ± 0.14 with 5
PCs. This consistency indicates its robustness and adaptability
to feature spaces curated by both the PCA and the FS.
In summary, the integration of the Fisher score as a feature

ranking has varying degrees of impact on the classifier
performance. While SVM and LR exhibit stability or slight
improvement, LDA, NB, and RF demonstrate nuanced shifts in
performance in this feature selection method. The observations
accentuate the utility of the Fisher score when paired with
PCA in optimizing classifier performance, particularly when
feature relevance is not uniformly distributed across the
dimensions.
Only Classifiers. In contrast to the prior approaches that

utilized PCA and PCA + FS for dimensionality reduction, this
section bypasses data transformation techniques to evaluate
classifiers in the original feature space. This approach offers a
more straightforward and unfiltered assessment of the
performance of each classifier. Direct application of the
classifiers to high-dimensional data sets provided insightful
results. As indicated in Figure 3C and Table S1, LDA emerged

as the top performer with a mean accuracy of 0.84 ± 0.14,
demonstrating its robust handling of high-dimensional data.
Surprisingly, NB, which is often considered a simple classifier,
also performed admirably, achieving 0.82 ± 0.13.
On the other hand, SVM and LR, both relying on finding

optimal hyperplanes for classification, recorded slightly lower
accuracies of 0.79 ± 0.15 and 0.80 ± 0.15, respectively,
suggesting potential challenges when dealing with high-
dimensional data, especially without the assistance of any
feature selection or extraction techniques. RF, an ensemble
method, demonstrated solid performance, as expected, given
its aptitude for high-dimensional data, yielding a value of 0.81
± 0.14.
The findings point out that certain classifiers, attributable to

their inherent algorithmic properties, can exhibit robust
performance, even in high-dimensional spaces, without the
aid of dimensionality reduction techniques. This can be
particularly valuable if it is desirable to retain the original
characteristics for the sake of interpretability or other analytical
considerations.
PLS-DA. Unlike PCA, PLS-DA considers class labels

directly during the extraction of LVs. The optimum number
of LVs, as shown in Figure 3D, was chosen with respect to the
model accuracy.
The performance of PLS-DA was commendable, achieving a

mean accuracy of 0.82 ± 0.14 using only three components.
This result highlights the effectiveness of PLS-DA in utilizing
class-specific information for classification, making it a potent
tool in high-dimensional data analysis. It also emphasizes the
efficiency of class-guided dimensionality reduction techniques
as they can produce more class-relevant features leading to
improved classifier performance.
ROC Curve. In conjunction with accuracy scores, ROC

curves and their corresponding area under the curve (AUC)
scores offer comprehensive performance metrics. ROC curve is
a graphical representation that illustrates the diagnostic ability
of a binary classifier system when its discrimination threshold
is varied. AUC score, ranging from 0 to 1, serves as a
comprehensive measure of classification performance; an AUC
score closer to 1 indicates a better classification performance.
As depicted in Figure 4A, models combining PCA with

various classifiers show considerable variations in their AUC
values. Notably, PCA + LDA and PCA + LR exhibit
remarkable AUC scores of 0.93 and 0.92, respectively, thereby
highlighting their excellent discrimination power. In compar-
ison, PCA + SVM performs commendably but slightly trails
behind with an AUC of 0.91. PCA + NB and PCA + RF
register lower AUC values of 0.90 and 0.89, hinting at their
lower efficiency in balancing the sensitivity and specificity.
In Figure 4B, model scores incorporating PCA, FS and

classifiers present more consistent performances, ranging from
0.85 to 0.94. Interestingly, the AUC score of PCA + FS + RF
stands at 0.85, which is comparatively lower than those of
other classifiers like PCA + FS + LDA and PCA + FS + SVM,
which have AUC scores of 0.94. However, it is crucial to note
that PCA + FS + RF accomplishes this with only three PCs,
indicating a level of efficiency in capturing the essential
characteristics of the data. Moreover, its accuracy of 0.77 ±
0.16 is quite respectable and adds another layer to its value as a
classifier. This indicates that although it does not outperform
other classifiers in terms of AUC, it is still a competitive,
resource-efficient alternative that maintains a high degree of
accuracy.
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Without feature extraction or selection, standalone classi-
fiers, as illustrated in Figure 4C, exhibit robust AUC scores.
LDA, LR, and RF achieve AUC scores between 0.90 and 0.91,
testifying to their inherent strengths in managing high-
dimensional data spaces. Although NB lags slightly with an
AUC score of 0.86, it still represents a commendable
performance given the complexity of the data set. SVM
displays a respectable AUC score of 0.91 but suggests room for
potential optimization. The analysis continues in Figure 4D
with PLS-DA, a distinct method that incorporates class labels
into the feature extraction process. AUC value of 0.90 affirms
its effective implementation of class-specific information for
achieving high classification performance. This suggests that
the inherent features of PLS-DA, which take class labels into
account when generating LVs, allow for more precise
identification of true positives and true negatives.
In conclusion, a holistic evaluation of model performance,

integrating accuracy and AUC scores from ROC curves, reveals
distinct patterns in model efficacy. Specifically, models such as
PCA + LDA, PCA + FS + SVM, LDA alone, and PLS-DA
consistently demonstrate superior performance, while NB and
RF show enhanced results with the application of feature
selection techniques. These insights are crucial for choosing
appropriate models for particular tasks and data types, leading
to more precise and reliable predictions. It is important to
note, however, that these conclusions are intrinsically linked to
the unique structure of our data set and may not be directly
transferable to other data sets or applications.

■ CONCLUSIONS
This comprehensive study reaffirms the potential of Raman
spectroscopy as a promising tool for lung cancer detection. By
comparison of the Raman spectra of lung cancer patients and
healthy controls, significant differences in spectral features
were identified, highlighting the considerable potential to
provide insights into the molecular alterations associated with
lung cancer. For identifying these changes and elucidating

compositional and structural modifications that occur in
proteins, carbohydrates, lipids, nucleic acids, and other
biomolecules, it turns out that the entire spectral range of
the Raman spectra from human blood plasma is important.
In the presented analysis, PCA + LDA and PCA + FS +

SVM are leading in terms of accuracy, both falling within 0.85
± 0.14 and featuring AUC scores above 0.93. LDA stands its
ground with similar performance metrics, even without feature
extraction methods. PLS-DA, although slightly behind in
accuracy, holds a respectable AUC score of 0.90, signaling its
reliability. Among standalone classifiers, NB distinguishes itself
with a competitive accuracy of 0.82 ± 0.13. Overall, the
findings indicate that while PCA-enhanced models offer the
highest accuracy and AUC scores, simpler models like LDA
and PLS-DA remain robust choices depending on the specific
requirements of a given application. However, it turns out that
the inner structure of our data is very robust with respect to
different machine learning algorithms applied to Raman
spectra from dried blood plasma samples. Generally, the
inner structure and the intraclass and interclass variability of
the presented data set offer flexibility and freedom concerning
the choice of machine learning strategies.
In summary, this study highlights the potential of Raman

spectroscopy as a diagnostic tool for lung cancer detection and
emphasizes the benefits of employing machine learning models
to analyze spectral data for classification purposes. Further-
more, it highlights the role of model selection and the
importance of multivariate analysis methods in attaining
superior performance. It was shown that different models
could be optimally applied based on the specific needs of the
task, leading to more accurate and effective diagnostic tools,
which could lead to earlier detection, improved treatment, and
better patient outcomes. Using Raman spectroscopy data
supported by artificial intelligence offers a rapid and low-cost
technology for in vitro diagnostics. Once the model is validated
and calibrated for specific disease patterns, the proposed
technology can replace complex chemical analyses and, in
addition to classifying the disease, provide detailed insight into
biochemical changes in physiology in real time. The
technology is not limited to lung cancer and therefore has
the potential for a paradigm shift in medical diagnostics. With
the potential to revolutionize cancer diagnosis, these findings
are a significant step forward in medical research, offering new
hope to millions of people worldwide.
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