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Abstract. Ligation of CD95 (APO-1/Fas) cell surface 
receptors induces death in apoptosis-sensitive cells. In- 
duction of apoptosis in adherent  gamma interferon-  
stimulated HT-29 and COLO 205 colon carcinoma cells 
by cross-linking CD95 with anti-APO-1 monoclonal an- 
tibody resulted in detachment of the cells from hyalur- 
onate starting about i h after antibody exposure. Loss 
of adhesion was paralleled by a substantial reduction of 
the multifunctional cell surface adhesion molecule 
CD44. As evidenced by cycloheximide treatment,  this 
effect was not caused by impaired protein synthesis. 
Deplet ion of surface CD44 was also not due to mem- 

brane blebbing, since cytochalasin B failed to inhibit as- 
cension from hyaluronate. Instead, ELISA and time ki- 
netics showed increasing amounts of soluble CD44 in 
the supernatant of CD95-triggered cells. SDS-PAGE 
revealed that soluble CD44 had an apparent molecular 
mass of about 20 kD less than CD44 immunoprecipi- 
tated from intact cells. Thus, CD95-triggering induced 
shedding of CD44. Shedding is a novel mechanism op- 
erative in early steps of CD95-mediated apoptosis. 
Shedding surface molecules like CD44 might contrib- 
ute to the active disintegration of dying epithelial cells 
in vivo. 

PoPVos]s is an irreversible intracellular program in- 
duced by a variety of internal and external stimuli 
and which leads to the cell's extinction. Apoptosis 

does not cause any tissue reaction except phagocytosis 
(Cohen and Duke, 1992). An early feature of cells under- 
going apoptosis in tissues is detachment from neighboring 
cells or the basement membrane (Searle et al., 1982). This 
also applies to colonic epithelium where senescent entero- 
cytes undergo apoptosis, detach from the basement mem- 
brane, and are released into the gut lumen (Gavrieli et al., 
1992; Str~iter et al., 1995). There is good evidence that this 
phenomenon is maintained in colonic carcinoma cell lines 
in vitro. Induction of apoptosis in HT-29 cells by factors 
like transforming growth factor [3, etoposide, or teniposide 
leads to detachment from the substratum, and cells are 
found in the supernatant (Oberhammer et al., 1993; Des- 
jardins and MacManus, 1995). 

CD95 (APO-1/Fas) is a 48-kD cysteine-rich type I trans- 
membrane glycoprotein and is a member of the tumor ne- 
crosis factor receptor family (Itoh et al., 1991; Oehm et al., 
1992). Upon cross-linking of CD95 by antibody (Trauth 
et al., 1989; Dhein et al., 1992) or by its natural ligand, 

CD95-positive cells undergo apoptosis, provided the cells 
are sensitive. It has been shown that CD95 is expressed at 
high levels on colonic epithelial cells along the crypt axis 
and at the mucosal surface (M611er et al., 1994). CD95 is 
often down-modulated in colon carcinoma in situ and on 
colon carcinoma cell lines (MOller et al., 1994). Stimula- 
tion of cells by gamma interferon (IFN-~), 1 however, in- 
creases CD95-expression (MOller et al., 1994) and sensi- 
tizes cells for CD95-induced cell death (Yonehara et al., 
1989). 

CD95 ligand is a 40-kD type II membrane protein be- 
longing to the tumor necrosis factor family of cytokines 
(Suda et al., 1993; Smith et al, 1994; Takahashi et al., 
1994). Like other members of this cytokine family, CD95 
ligand exists in a membrane-bound and soluble form 
(Dhein et al., 1995). CD95 ligand in its biologically active 
form is a trimer (Nagata and Golstein, 1995). 

CD44 is a type I transmembrane glycoprotein involved 
in homo- and heterotypic cell adhesion and cell-matrix in- 
teraction. The CD44 core protein of 37 kD is N and O-gly- 
cosylated to an 85-95-kD form, the so-called standard 
(CD44s) or hematopoietic form or, by linkage of chon- 
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droitin sulfate, to a 180-220-kD form (Goldstein et al., 
1989; Jalkanen et al., 1989; Stameneovic et al., 1989). An 
intermediate-size form of 110-160 kD shows similar gly- 
cosaminoglycan substitutions as the hematopoietic form of 
CD44 and is primarily expressed on epithelial cells (Brown 
et al., 1991; Stamencovic et al., 1991). Further structural 
complexity of the CD44 molecule comes from alternative 
splicing of at least 10 exons of the CD44 gene, giving rise 
to the so-called CD44 variants with altered adhesion prop- 
erties (Gtinthert, 1993). CD44 molecules act as receptors 
for fibronectin (Jaikanen and Jalkanen, 1992), type I and 
IV collagen (Carter and Wayner, 1988), and sulphated 
proteoglycan (Toyama-Sorimachi and Miyasaka, 1994). 
The most selective CD44 ligand, however, is hyaluronate 
(Stamencovic et al., 1989). 

To investigate detachment of cells upon induction of ap- 
optosis, we used HT-29 and COLO 205 colon carcinoma 
cell lines as models for epithelial cells. We show here that 
one of the early phenomenon of CD95-induced apoptosis 
is the loss of surface CD44 by proteolytic cleavage. This 
loss of CD44 abrogates the hyaluronate-binding capacity 
and therefore contributes to the early detachment of ad- 
herent cells seen during CD95-induced cell death 

Material and Methods 

Reagents 
3,4-dichloroisocoumarin (CDI), 1,10-phenanthroline, Na-p-tosyl-L-lysine 
chloro-methyl ketone (TLCK), cytochalasin B, leupeptin, cycloheximide, 
etoposide, okadaic acid, and propidium-iodide (PI) were purchased from 
Sigma Chemical Co. (St. Louis, MO). Boc-Asp(OBzl)-CMK was obtained 
from Bachem (Heidelberg, Germany). IFN-'v was a gift from Knoll Phar- 
maceuticals (Ludwigshafen, Germany); hyaluronate was purchased from 
Boehringer-Mannheim GmbH. (Mannheim, Germany). 

Antibodies 
CD44s(AB-1) [lgGi isotype], CD44s(F10-44-2) [IgG2a isotype], CD29 
(P4C10) [IgG2~ isotype], and FITC-conjugated goat anti-mouse IgG affin- 
ity purified IgG were purchased from Dianova (Hamburg, Germany). 
CD44s(MEM85) [IgGl isotype] was purchased from Serva (Heidelberg, 
Germany). CD21(1F8) [IgG1 isotype] and CD30(Ki-1)[IgG3 isotype] were 
obtained from Dako (Copenhagen, Denmark). CD95(anti-APO-1) [IgG3 
isotype] and P A d  [IgG1 isotype] were generated by the laboratories of 
two of us (P.H. Krammer and G. Moldenhauer, respectively). 

Cell Culture Conditions 
Human colon carcinoma cell lines HT-29 and COLO 205 were purchased 
from American Type Culture Collection (Rockville, MD). Cells were kept 
in RPMI 1640 (GIBCO, BRL, Gaithersburg, MD) containing 10% fetal 
calf serum (FCS; PAA, Linz, Austria), 5 mM L-glutamine, 100 U/ml peni- 
cillin, and 100 ixg/ml streptomycin at 37°C, 5% CO2-atmosphere and were 
cultured on either plastic or hyaluronate. Culture plates were coated with 
hyaluronate (5 mg/ml) by incubating plates overnight at 4°C. Finally, pre- 
coated plates were blocked with BSA and cells were added. To sensitize 
cells to CD95-triggered apoptosis, HT-29 and COLO 205 were treated 
with 100 U/ml IFN-3, for 72 h (MOiler et al., 1994). Apoptosis was induced 
by cross-linking surface CD95 with 500 ng/ml anti-APO-1 (Dhein et al.. 
1992). To remove adherent cells from culture plates, cells were incubated 
with trypsin/EDTA (Biochrom-KG, Berlin, Germany) for 5 min at 37°C. 
Subsequently, cells were washed twice with either RPMI or Hank's salt 
solution. 

DNA Fragmentation Assay 
For DNA fragmentation analysis, a pellet of 106 cells was lysed in 20 p.l ly- 
sis buffer (0.5% N-lauroylsarcosine, Sigma Chemical Co.; 10 mM EDTA; 

50 mM Tris, pH 8.0; 0.5 mg/ml proteinase K) for 1 h at 50°C. After addi- 
tion of 5pA of RNAse (1 mg/ml) and further incubation of 1 h at 50°C, ly- 
sates were electrophoresed in a 2% agarose gel containing ethidium bro- 
mide and photographed under UV illumination. Characterization of high 
molecular weight (HMW)-DNA damage was achieved by subjecting sam- 
ples of sarcosyl-lysates (1% N-lauroylsarcosine, Tris-buffer, 2mg/ml pro- 
teinase K, pH 8.0) to pulse field gel electropboresis on 1% agarose gels 
The separated fragments were stained with ethidium bromide and photo- 
graphed under a transilluminator. DNA fragments were compared to a 
lambda DNA ladder 

Immunocytochemistry 
Acetone-fixed cytospin preparations of cells were incubated for I h with 
primary monoclonal antibodies at appropriate dilutions. A biotinylated 
anti-mouse antibody, streptavidin/biotin-peroxidase (Amersham Corp., 
Buckinghamshire, UK), and aminoethyl-carbazole (Sigma Chemical Co.) 
served as a detection system for the primary antibody resulting in an in- 
tense red precipitate. After counterstaining with Harris ~ hematoxylin. 
slides were mounted with glycerol gelatine. 

Flow Cytometry 
We used several methods to analyze antigen expression, DNA content, or 
both in parallel. The first procedure was to resuspend 10 ~ cells in 50 ~l 
Hank's salt solution containing 0.1% sodium azide, 1.5% Hepes, and 2°/,, 
FCS. 50 ~l of diluted primary antibody was added and incubated on ice 
for 1 h. After washing, FITC-conjugated goat anti-mouse lgG at appro- 
priate dilution was added. The cell suspension was incubated on ice for 1 
h. Cells were washed in Hank's  salt solution and immediately analyzed by 
flow cytometry on a FACScan © (Becton Dickinson lmmunocytometry 
Sys., Mountain View, CA) using LYSYS I1 software. To quantify cells 
with advanced DNA degradation, we used a procedure similar to that de- 
scribed by Nicoletti et al. (1991). A pellet containing 1 × 106 cells was gen- 
tly resuspended in 500 I~1 hypotonic fluorochrome solution containing 
0.1% Triton X-100 (Sigma Chemical Co.), 0.1% sodium-citrate, and 50 
p~g/ml PI. The cell suspensions were placed at 4°C in the dark overnight 
before flow cytometry analysis of cellular DNA content. To compare the 
immune phenotype of apoptotic and nonapototic cells, cells were immun- 
ostained with antibodies as described above. Subsequently, cells were 
washed with Hank's salt solution and then fixed m 2 ml ice-cold ethanol 
and incubated on ice for 1 h. After washing, cells were resuspended in 250 
pA staining solution containing PI (80 iJ.g/ml) and RNAse (0.4 ~g/ml) in 
PBS. Cells were kept in the dark at room temperature for 15 rain and then 
incubated at 4°C overnight before analysis. 

Enzyme-linked Immunosorbant Assay (ELISA) 
Soluble CD44 in the culture supernatant was quantified using a soluble 
CD44s ELISA kit (Bender MedSystem, Vienna, Austria) containing 
CD44s (SFF-2) [lgG1 isotype] and polyclonal anti-mouse lgG1 as detec- 
tion system. Samples were measured at 450 and 620 nm reference wave- 
length, respectively. 

Pulse-chase Labeling of Cells, Incubation with 
Monoclonal Antibodies In Situ, Immunoprecipitation, 
and Enzymatic Treatment of Precipitates 
HT-29 cells preincubated with 100 U/ml IFN-~/for 3 d were biosyntheti- 
cally labeled with a mixture of [35S]methionine and -cysteine. To this end. 
two tissue culture flasks (75-cm 2 growth area) containing a semiconfluent 
cell layer were washed twice with RPMI 1640 medium without methionine 
and cysteine (ICN Flow Laboratories, Kelkheim, Germany). Adherent 
cells were incubated with 10 ml RPMI 1640 medium without metionine 
and cysteine and supplemented with 5% dialyzed FCS and 2 mM 
glutamine for 1 h at 37°C, to which subsequently 2 mCi [35S]methionine 
and [35S]cysteine solution (Promix, specific activity >1000 Ci/mmol, Am- 
crsham-Buchler, Braunschweig, Germany) was added. After a labeling 
period of 1 h at 37°C, the supernatant was washed off and cells were 
chased in complete RPMI 1640 medium containing lif0 U/ml IFN-~ for 16 h 
at 37°C. After washing with complete medium, cells in one flask were 
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treated in situ with 3 ml anti-APO-1 monoclona/ antibody (500 ng/ml), 
whereas cells in the control flask were subjected to the same amount of 
CD30(Ki-!) monoelonal antibody, which served as an isotype-matched 
!ow control. Supernatants were harvested and centrifuged for 30 rain at 
i 2.000 g befole further processing. Cells of both flasks were washed twice 
with PBS and detached by means of 0.25% EDTA. Supernatants were 
precleared for immunoprecipitation by two nonspecific precipitations us- 
ing protein A-Sepharose CL-4B (50% saturation: Pharmacia Fine Chemi- 
,;ais, lJppsaia, Sweden). Cells were solubilized in lysis buffer containing 
U!~:~ Nonidet P-40 and proteinase inhibitors (10 mM PMSF and 20 mU/ml 
aorotinin, both from Sigma Chemical Co.). Insoluble material was re- 
~noved by ceutrifugation at 12000 g for 31) rain. The cell lysate containing 
supernatant was precleared by three sequential cycles of nonspecifie pre- 
~;ipitatlon using affinity-purified polycloual mouse IgG at 15 p~g/500/xl ly- 
~ate together with 100 ~li5f)0 ~,1 lysate protein A-Sepharose CL-4B. For 
:~p,~cific immunoprecipitation, samples either from the supernatant or 
~com the ceil lys~ate were mixed with t0 Izg of purified monoclonal anti- 
!~ody and 20 ~1 protein A-Seplaarose CL-4B. After overnight incubation 
~t ,~,'~C with gentle rotation, the adsorbent was washed extensively and 
,~hen boiled in reducing SDS .;ample buffer. Samples were subjected to 
?AGE emptoymg a discontinuous buffer system. Gels were enhanced by 
treatment with DMSOtPPO and fluorographed on Kodak X-OMAT AR 
tilm (Rociaester. NY). To remove N-linked sugar moieties from the pre- 
cipitated molecules, the washed adsorbents were resuspended in 100 mM 
Tris/HCl, pH 8,0, containing 0,5% SDS, 1% 2-mereaptoethanol. and 10 
mM EDTA, and then were boiled and centrifuged. The supernatants were 
incubated with 0.5 U/sample endoglycostdase F/N-glycosidase F (Boeh- 
rmger-Mannheim Gmbtt) for 3 h at 37°( ". Subsequently, treated immuno- 
precipitates were reconstituted with threefold-concentrated reducing sam- 
izie buffer and run on SDS-PAGE. 

Results 

"~ss of Adhesion Is an Early Event in 
CD95-mediated Apoptosis 

HT-2q and C O L d  205 cells were grown as monotayers on 
plastic and on hyaluronate precoated surfaces. 24 h after 
treatment with UV irradiation (10 min), etoposide (100 IxM), 
or okadaic acid (10 nM), ceils showed morphological signs 
of apoptosis such as nuclear and cytoplasmatic condensa- 
tion and, in the case of treatment with okadaic acid or UV 
irradiation, membrane blebbing. After about 24 h, most 
ceils featuring these morphological characteristics re- 
mained sessile. Although the surface membrane was still 
intact (as evidenced by PI exclusion), DNA fragmentation 
was in an advanced stage (see Fig. 4). Ascension of the 
cells into the supernatant started between 24 and 36 h and 
was significant after about 40 h. This observation was in 
fine with previous experiments on HT-29 cells in which the 
topoisomerase II inhibitor teniposide caused loss of adhe- 
sion, which was definitely preceded by internucleosomal 
DNA cleavage, as a very late event in drug-induced apop- 
tosis (Desjardins et al., 1995). 

In contrast, after induction of apoptosis by anti-APO-l,  
the first alteration that was microscopically visible was the 
detachment of an increasing number of cells beginning at 
about 1 h after antibody administration. After 3 h of anti- 
body treatment, adherent cells and cells in suspension 
were harvested and analyzed separately for morphology 
and DNA fragmentation. In cytospin preparations, a ma- 
jor subset of detached cells showed morphological criteria 
of apoptosis whereas sessile cells were essentially intact 
(data not shown). Hypodiploid DNA content was only ob- 
served in floating cells and not in adherent cells (Fig. 1). 
The experiment was repeated with cells grown on un- 
coated plastic and yielded comparable results. 

Figure i. I ) N A  f r a g m e n t a t i o n  m e a s u r e d  by flow cy to m e t ry  
(Nicolet t i  el al.. 1991). (Left) HT-29  cells af ter  72 h IFN-3, treat-  
ment with scarcely detectable DNA degradation. (Right) After 3 
h of anti-APO-1 treatment. Cells in suspension were separated 
from those remaining adherent. Only detached HT-29 cells show 
characteristic apoptotic DNA fragmentation with lower fluores- 
cence activity. 

CD95-mediated Ascension from Hyaluronate Is Due to 
Early Depletion of Surface CD44 

1"o investigate whether CD95-mediated loss of adhesion 
was due to changes in the adhesion receptor profile of the 
cells, expression of surface molecules was examined by im- 
munocytochemistry and flow cytometry. In fact, HT-29 
and C O L d  205 cells exhibited a significant decrease in 
surface levels of a comprehensive panel of adhesion mole- 
cules. However, the early and extensive depletion of sur- 
face CD44 was most impressive (Fig. 2). For further speci- 
fication, floating and adherent cells were measured 
separately. While sessile cells still expressed CD44, cells in 
the supernatant were almost completely devoid of surface 
CD44. Many of these CD44-negative cells did not yet ex- 
hibit cytoptasmatic or nuclear condensation (data not 
shown). Pretreatment with cytochalasin B, a drug which 
disrupts microfilaments and interferes with the formation 
of apoptotic bodies (Cotter et al., 1992), failed to decrease 
the anti-APO-l induced depletion of CD44 (data not 
shown) in contrast to integrin-type adhesion receptors 
(yon Reyher, U., J. StrOller, T. Barth, A.R. Gtinthert, K. 
Koretz, G. Moldenhauer, P.H. Krammer, and P. M611er, 
manuscript submitted for publication). Consistently, cells 
grown on hyaluronic acid were still ascending into the su- 
pernatant by similar treatment with anti-APO-1 and cy- 
tochalasin B (data not shown) while detachment was ex- 
tensively delayed when grown on plastic or collagen (v. 
Reyher et al., submitted). 

Kinetics revealed that CD95-mediated decrease of CD44 
clearly preceded advanced DNA fragmentation (Fig. 3); ! 
h treatment of HT-29 cells with anti-APO-I led to a signif- 
icant depletion of surface CD44, while no loss of DNA was 
detected by flow cytometry. After 2 h, about 90% of cells 
were CD44-negative and an hypodiploid DNA content 
was detected in about 25%. Only 3 h after antibody admin- 
istration, nearly all nuclei exhibited DNA fragmentation. 

In comparison, after inducing apoptosis in HT-29 cells 
with either UV irradiation, okadaic acid, or etoposide, 
CD44 depletion was only significant in UV-exposed cells. 
In this case, the decrease started after about 18 h and was 
preceded by DNA breakdown. Okadaic acid and etopo- 
side failed to induce significant reduction of CD44 surface 
expression during the first 36 h, although most cells 
showed advanced DNA fragmentation and nuclear con- 
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Figure 2. Immunostained cytospin preparations of HT-29 cells, CD44 expression before (a), after 1 h (b), and after 2 h (c) of anti-APO-1 
treatment. The cells show a significant decrease of CD44 expression during APO-l-mediated apoptosis. Many of the cells show com- 
plete depletion of surface CD44 after 1 h, while characteristic morphological characteristics for apoptosis, e.g., nuclear or cytoplasmatic 
condensation, are not yet visible. Adherent cells were removed with Trypsin/EDTA. 

densation (Fig. 4). These data collectively suggest that as- 
cension of  epithelial cells from hyaluronate caused by ex- 
tensive depletion of surface CD44 may be specific for 
CD95-mediated apoptosis. 

It is generally accepted that H M W - D N A  cleavage, giv- 
ing rise to D N A  fragments of >50  kb, precedes the ladder 
formation, indicating internucleosomal D N A  breaks (Ober- 
hammer et al., 1993; Weis et al., 1995). To correlate loss of 
surface CD44 with ongoing D N A  fragmentation, we si- 
multaneously analyzed samples of CD95-triggered HT-29 
cells by pulse field and conventional D N A  gel electro- 
phoresis. As shown in Fig. 5, H M W - D N A  fragments ap- 
peared in parallel with loss of CD44 after 1 h, whereas a 
characteristic D N A  ladder indicating internucleosomal 
cleavage was seen only after 3 h when H M W - D N A  frag- 

ments disappeared due to further digestion. This indicates 
that detachment from hyaloronate and decrease of CD44 
surface expression is an early event during CD95-triggered 
apoptosis, occurring at the time the early H M W - D N A  frag- 
ments appear. 

Depletion of  Surface CD44 Is Not Due to Impaired 
Protein Synthesis 

To determine whether the decrease/loss of CD44 was due 
to lack of synthesis and expression of new surface mole- 
cules, we inhibited protein synthesis of HT-29 cells using 
cycloheximide (5 ixg/ml). By measuring the decline of sur- 
face CD44 levels after cycloheximide treatment, the half- 
life of CD44 on HT-29 cells was determined to be about 12 h 

A~ a 

Fluorescence activity of DNA 

= b  

Oh l h  2h  3h  

k_ k_L 
Fluorescence activity of CD44 surface expression 

Figure 3. Kinetics of DNA fragmentation 
(a) in comparison to CD44 cell surface ex- 
pression (b) analyzed by flow cytometry. 
These data show significant loss of CD44 
cell surface expression as early as 1 h after 
triggering of apoptosis by anti-APO-1, 
while DNA degradation is not yet detect- 
able (black histogram, CD44; white histo- 
gram, CD2I, used as a negative control). 
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Figure 4. CD44 cell surface expression (black histogram) in com- 
parison to DNA fragmentation (white histogram) in HT-29 cells 
after UV irradiation and after treatment with okadaic acid or eto- 
poside. (a) HT-29 cells before treatment showing no DNA frag- 
mentation (first) and clear-cut CD44 surface expression (second). 
CD21 was used as negative control (third). (b) HT-29 cells after 
10 min UV irradation showing an almost complete DNA frag- 
mentation after 24 h, while surface level of CD44 has just slightly 
declined. (c) HT-29 cells during exposure to etoposide showing 
progressive DNA fragmentation after 36 h, while the level of 
CD44 surface expression has decreased to a minor extent. (d) 
HT-29 cells during exposure to okadaic acid. DNA fragmentation 
starts between 18 to 24 h and is completed after 36 h. Only a 
slight decrease in surface CD44 is detectable after 36 h. 

(data not shown). This is in keeping with published data of 
the kinetics of CD44 surface expression as determined by 
pulse chase experiments in T- lymphoma cells indicating a 
half-life of CD44 molecules is in the order of magnitude of 
8 h (Lokeshwar et al., 1991. Thus, the very different kinet- 
ics by which CD44 is lost from the cell surface after anti- 
APO-1 treatment are indicative for an active process. 

CD95-triggering Induces Soluble CD44 

CD44 is one of several surface molecules that can be shed 
by enzymatic cleavage. This was shown by cross-linking of  
CD44 (Bazil and Horejsi, 1992) and in phorbolester-stimu- 
lated leukocytes (Bazil and Strominger, 1994). To clarify 
whether shedding is operative in ant i -APO-l- t r iggered  
cells, supernatants were filtered using a 0.2-txm millipore 

Figure 5. Pulse field gel electrophoresis (A) demonstrates DNA 
fragmentation of HT-29 cells into fragments of ~50 kb, which ap- 
pear after 1 h of anti-APO-1 treatment and decrease because of 
further degradation after 2 and 3 h (Lane 1 control; lane 2, 1 h; 
lane 3, 2 h; and lane 4, 3 h of anti-APO-1 treatment; lane 5, 
lambda-ladder). DNA gel electrophoresis (B) showing cells after 
1 h of anti-APO-1 treatment (lane 1) and the characteristic DNA 
ladder formation (0.2-1.2 kb) appearing after 3 h of anti-APO-1 
treatment (lane 2). 

filter before analysis. In supernatants of untreated cultures 
of HT-29 and C O L O  25 cells, levels of  soluble CD44 were 
regularly low. After administration of anti-APO-1, levels 
of CD44 increased rapidly during the first 2 h (Fig. 6). 
These kinetics are in good accordance with the decrease of 
surface CD44 (Fig. 4). 

Cleaved CD44 Is Released into the Supernatant of  
CD95-stimulated HT-29 Cells 

HT-29 cells induced by IFN--y and pulse chase labeled with 
[35S]methione and -cysteine were incubated in situ for 3 h 
at 37°C with either CD95(anti-APO-1) or CD30(Ki-1) iso- 
type-matched control antibody. Supernatants of treated 
cells were immunoprecipitated with CD44(F10-44-2) (Fig. 7). 
The precipitate from ant i -APO-l - t rea ted  cells showed a 
broad band ranging from 130-170 kD under reducing con- 
ditions (lane B), whereas Ki-1 did not yield any specific 
precipitate (lane D). Deglycosylation of N-linked sugar moi- 
eties by treatment of the CD44 precipitate with endogly- 
cosidase F/N-glycosidase F resulted in a shift of the band 
to an apparent molecular weight of 110-150 kD (lane C). 
By contrast, immunoprecipitations of  Ki-1 antibody treated 
cell supernatants using the same F10-44-2 antibody exhib- 
ited only faint background bands (lane E). For compari- 
son, the cellular CD44 molecule was precipitated from cell 
lysates of an t i -APO- l - t r ea ted  HT-29 cells. Cleavage of 
N-linked sugars by enzymatic digestion revealed a reduc- 
tion in apparent molecular mass to 130-170 kD (lane G). 
The fact that the range of the precipitated bands was n o t  
reduced by endoglycosidase F/N-glycosidase F is notewor- 
thy. These data suggest an additional extensive O-glycosy- 
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Ftgure 6. ELISA or' soluble CD44 appearing in the supernatants 
cff IFN-y stimulated HT-29 and COLd 205 during APO-l-medi- 
ated apoptos~s. (Standard deviations were calculated on the basis 
of eight experiments for HT-29 and four e~periments for COL() 
205.) 

iation of the CD44 molecule. Taken together, results from 
the immunoprecipitations provide evidence that a shed 
form of CD44 from epithelial cells exists which is specifi- 
cally released upon treatment with anti-APO- 1. This form 
of CD44 is approximately 20 kD smaller in size than the 
authentic cell surface molecule. 

Protease Inhibitors Fail to Block Shedding of Su~ace 
CD44 Without Critically Interfering with the Apoptotic 
,Signal Cascade 

To determine the type of enzymes responsible for anti- 
APO-l-induced cleavage of surface CD44, several pro- 
tease inhibitors were used at standard effective concentra- 
tions (Beynon and Salvesen, 1989). In IFN-~, pretreated 
HT-29 and C O L d  205 cells, CD95-triggered detachment 
and shedding of CD44 were completely blocked by the 
serine protease inhibitor DCI (250 ~LM). However, at the 
same time, DCI inhibited DNA fragmentation as well as 
the occurrence of the typical morphology of apoptosis. 
This is in line with previous reports demonstrating that 
CD95-induced apoptosis is completely blocked by DCI 
(Los et al., 1995; Weis et al, 19951). TLCK (200)~g/m[), a 
serine and leupeptin (100 ixg/ml), and a serine/cystein-pro- 
tease inhibitor affected neither CD95-induced apoptosis 
nor apoptosis-associated loss of CD44. The metallopro- 
tease inhibitors 1,10-phenanthroline (5 raM) or E D T A  
(5 mM), slightly delayed DNA fragmentation but did not 
influence CD95-induced shedding of CD44 melecules. 
Likewise, Boc-Asp(OBzl)-CMK (50 ixM), which is a spe- 
cific interleukin-ll3 converting enzyme (ICE) inhibitor 
(Boudreau et al., 1995), completely blocked CD95-trig- 
gered apoptosis. Taken together, the protease responsible 
for shedding of CD44 could not be positively character- 
ized since the agents known to block shedding CD44 very 

Figure Z Comparative immunoprecipitation of [3SS]methionine 
and -cysteine pulse chase labeled CD44 molecules from culture 
~upernatants of HT-29 cells (lanes B-E) and from HT-29 cell ly- 
sates (lanes F-It). Before immunoprecipitation from superna- 
rants, cells were treated in situ either with antibodies APO-I (lanes 
B-D) or with Ki-I (lane E) for 3 h. Precipitation was done using 
the CD44-specific mAb F10-44-2 (lanes F and G) or an isotype- 
matched irrelevant mAb (lane D). Cell lysates from the HT-29 
carcinoma cell line were precipitated with mAb FI0-44-2 (lanes/: 
and G) or mAb PA-1 reactive with the transferrin receptor for 
control (lane tt3. Treatment of precipitates with endoglycosidase 
F/N-glycosidase F as indicated; molecular weight markers in 
!anes A and L Arrows mark the centers of the major band of 
CD44 molecules in different preparations. 

efficiently interfered with CD95 signaling in completely 
preventing apoptosis and. with it, shedding of CD44. 

Discussion 

We have shown that detachment of HT-29 and C O L d  205 
cells undergoing CD95-triggered apoptosis is a very early 
event in terms of ongoing DNA fragmentation, starting at 
the time HMW-DNA fragments first appear. The early 
loss of adhesion is paralleled by depletion of surface CD44 
due to proteolytic cleavage with truncated soluble CD44 
released in the supernatant. 

Constitutively adherent cells like epithelia and endothe- 
lia are often polarized and display different molecular rep- 
ertoires at their basal, lateral, and luminal surfaces. At the 
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basolateral surfaces, cell-cell and cell-matrix interactions 
take place that are mediated by different types of adhesion 
molecules. The interaction with the mlcroenvironmenl has 
a fundamental influence on cytoskeletal organization (Luna 
and Hitt, 1992) and gene regulation o[ the cells. Disrup- 
tion of epithelial cell-matrix (Meredith et al., 1993; Frisch 
and Francis, 1994) and cell-cell interactions (Bates et al., 
1994) was demonstrated to eventually cause apoptosis. 
This route to death, recently termed "anoikis" (Frisch and 
Francis, 1994), may be crucial in preventing seeding of de- 
tached epithelia and endothelia at other sites. The present 
paper provides data suggesting that a functional link be- 
tween loss of adhesion and apoptosis may be operative in 
both directions. We show that triggering CD95 on epithe- 
lial cells leads to loss of adhesion at early steps of pro- 
grammed cell death. Such a mechanism may be advanta- 
geous for homeostasis of an organism since getting rid of 
apoptotic epithelia by extrusion, e.g., into a lumen, may di- 
minish local phagocytic activity and thus stabilize the func- 
tion of epithelia as a barrien 

It is well known that adherent cells in vitro can be 
readily removed from the substratum when subjected to 
limited proteolysis. It has been speculated that this might 
in fact be the mechanism by which cells detach from adja- 
cent structures during apoptosis (Martin and Green, 1995). 
We show here that the multifunctional adhesion molecule 
CD44 is proteolytically shed from the cell surface early 
during CD95-induced cell death. These data, therefore, 
support the above assumption. 

The question arises, which protease is responsible for 
the CD95-mediated shedding of CD44? CD44 was re- 
ported to be proteolytically cleaved from the cell surface of 
phorbolester-stimulated leukocytes (Bazil and Strominger, 
1994) and upon cross-linking by specific antibodies (Bazil 
and Horejsi. 1992). Phorbolester-induced CD44 shedding 
was inhibited by 1,10-phenanthroline, EDTA, and DCI. 
hence by inhibition of metalloproteases and serine pro- 
teases, respectively. To investigate whether such proteases 
also account for CD95-induced cleavage of CD44, we ap- 
plied a similar panel of protease inhibitors as they were 
used in these studies. In our system, however, the cation 
chelators 1A0-phenanthroline and EDTA, as previously 
reported (Schulze-Osthoff, 1994), reduced the response Io 
anti-APO-1 treatment but had no influence on CD44 
shedding from apoptotic cells. Thus, it is highly unlikely 
that phorbol ester-induced metalloproteases are involved 
in this mechanism. On the other hand, DCI prevented de- 
tachment of cells and loss of surface CD44. This, however, 
turned out to be due to blocking of the apoptotic program 
per se. It has been shown that DCI prevent CD95-induced 
cell death in SKW6.4 (Los et al., 1995) and Jurkat cells 
(Wets et al., 1995), possibly by inhibition of ICE (Los et al., 
1995), which is a cystein-protease. ICE is a member of the 
family of ced-3-1ike proteases promoting apoptosis (for 
review see Martin and Green, 1995). Specifically blocking 
ICE by Boc-Asp(OBzl)-CMK had the published effect 
(Boudreau et al., 1995) in preventing apoptosis. In critical 
conclusion, the membrane-bound protease responsible for 
CD95-induced shedding of CD44 is as yet undefined. 

Studies of Williams and Henkart (1994) have demon- 
strated that injection of several proteases, including a 
serine protease, proteinase K, into the cytoplasm of cells 

results in apoptosis within a few hours. Interestingly, treat- 
ing HT-29 cells with extra-cellular proteinase K gave rise 
It) a very selective loss of surface CD44 in the same order 
of magnitude and with kinetics as seen during CD95-in- 
duced apoptosis (own unpublished observations) 

Shedding of surlace CD44 is likely to be an importan! 
factor in the death program since it contributes to loss of 
cell-cell and cell-matrix anchorage and, in addition, might 
cut off survival-sustaining signals (Shimizu et al., 1989: Ga- 
landrini et al., 1993; Ayroldi et al., 1995). 
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