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Abstract

Epithelia remove dying or excess cells by extrusion, a process that seamlessly squeezes cells 

out of the layer without disrupting their barrier function. New studies shed light into the 

intricate relationship between extrusion, tissue mechanics, and development. They emphasize the 

importance of whole tissue-mechanics, rather than single cell-mechanics in controlling extrusion. 

Tissue compaction, stiffness, and cell–cell adhesion can impact the efficiency of cell extrusion and 

mechanisms that drive it, to adapt to different conditions during development or disease.

Epithelia cells work collectively together to provide a tight barrier to all the organs that 

they encase, often acting as the chief functional cells of each organ. Yet, cells turnover at 

high rates within these sheets by cell death and division that could potentially threaten this 

barrier. To maintain a healthy, functional tissue and barrier, excess, apoptotic, and often 

transformed cells are selectively eliminated by the process of extrusion. Extrusion can not 

only eliminate less fit cells, preserving the function of the tissue but can also act during 

development to help shape tissue and differentiate new cells. Epithelial cell extrusion ejects 

cells out of the layer without disrupting the epithelial barrier by collectively contracting 

an intercellular ring of actomyosin basolaterally [1]. Based on our current knowledge, live 

apical cell extrusion appears to promote most epithelial cell death in vertebrates [1–3]. 

However, during Drosophila development, most extrusion occurs basally into the tissue 

through activation of the apoptotic pathway [4]. In vertebrates, basal cell extrusion can drive 

developmental dedifferentiations [5–7] and can be co-opted by cancer cells to invade the 

underlying tissue [4].

Tissue compression promotes cell extrusion

Epithelia are an intrinsic tensile fabric that are exquisitely responsive to stretch and 

compression forces. If there are too few cells, as after wound recovery, the epithelium 

will experience stretch, which can induce cell division [8–10]. If there are too many 

cells, or compressive forces during morphogenesis, cells can experience crowding, which 
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induces live cell extrusion [2,3]. In this way, extrusion can limit compression forces 

and regulate epithelial cell density, to prevent carcinomas from developing [4]. In the 

developing pupal notum of Drosophila, tissue compaction activates the apoptotic pathway 

by mechanically down-regulating the epidermal growth factor receptor/extracellular signal 

regulated kinase (EGFR/ERK) pathway, which activates the pro-apoptotic protein Hid as 

well as cell extrusion [11••]. Alternatively, differential ERK activation can cause cell 

survival in stretched cells adjacent to the extruding cell as they close the gap. Unlike 

constitutive activation of ERK that causes cell extrusion [12], ERK pulses in surrounding 

cells inhibit caspase activation, protecting the epithelium from clusters of cells dying and 

extruding simultaneously, which would compromise its barrier function [13,14].

The stretch-activated ion channel (SAIC) Piezo1 controls crowding-induced live cell 

extrusion in cultured epithelial monolayers and developing zebrafish epidermis [3] and 

SAICs regulate live extrusion in mouse secondary palate fusion [15]. Although cell 

density typically increases by cell division or morphogenetic movements, wound repair 

in embryonic zebrafish can also cause crowding-induced extrusion [16]. Inhibiting SAICs 

during wound healing results in impaired cell removal and, instead, enhanced proliferation 

in crowded regions. Extrusion in this system could help eliminate damaged cells or those 

experiencing replicative stress [17] from rapid division required for tissue repair to ensure 

that substandard cells do not accumulate, following wounding.

Furthermore, exogeneous forces can also regulate crowding-dependent extrusion of 

endothelial cells during development. In early zebrafish dorsal aorta development, cyclic 

stretch generated by blood flow increases the dorsal aorta diameter and reduces endothelial 

cell extrusion [18••]. However, over time endothelial cells migrate ventrally towards the 

area where blood flow causes greater deformation, increasing cell density and causing cell 

extrusion. Importantly, a loss of function mutation in polycystic kidney disease 2 (pkd2), 

a mechanosensitive channel, increases cell extrusions in this ventral convergence zone, 

indicating that Pkd2 prevents endothelial cell extrusion in the dorsal aorta, in contrast to 

Piezo1’s role in promoting it in epithelia [3].

Another SAIC, TRPC1, promotes extrusion by polarizing neighbouring cells towards a 

cell fated to extrude. Here, a calcium wave initiates from RasV12-transformed cells and 

travels to surrounding cells in both cultured MDCK monolayers and zebrafish embryonic 

epidermis [19]. TRPC1 then activates calcium waves in neighbouring cells to promote actin 

polymerization necessary to extrude the cell. It is not yet clear if TRPC1 is activated by 

stretch in response to the extruding cell contracting or by propagation of the initial calcium 

wave via gap-junction and IP3 receptor activation. Yet, this work highlights how a network 

of SAICs collaborate to successfully extrude a cell. While all these systems appear to 

use different signaling processes to trigger extrusion in response to compression, they all 

appear to act through calcium waves, suggesting a conserved pathway throughout species. 

Additionally, on a single cell level, compression tends to promote cell extrusion and death 

whereas stretch promotes cell migration and survival.
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Tissue-level intercellular tension regulates extrusion rates

Given that compression promotes cell extrusion, the stiffness of a given tissue can play an 

important role in regulating overall rates of extrusion. Recent studies suggest that increasing 

overall stiffness by expressing a constitutively active Rock kinase reduces cell extrusion in 

flies [20], whereas reducing it in fish embryos by inducing extensive apoptosis enhances 

extrusion rates [21,22]. By contrast, cells within the midline of Drosophila pupal abdomen 

preferentially extrude as epithelial cortical tension increases, measured by recoil from laser 

ablation [23••]. Here, caspase activation promotes cortical tension but is not sufficient to 

drive this change, as blocking caspase activity with P35 expression significantly reduces 

interfacial tension, but inducing apoptosis with reaper expression does not increase it. The 

findings that higher tissue tension promote apoptotic extrusion in some cases but decrease it 

in other cases suggest that other factors are at play.

Tissue-level contractile tension modulation is also important for live cell extrusion, which 

promotes most epithelial cell death in vertebrates. Recent work shows that high cortical 

tension within the monolayer prevents apical oncogenic cell extrusion of H-RasV12 cells 

[24••]. Healthy cells can sense and extrude neighbouring H-RasV12 cells from the epithelium 

through a cell-competition-driven process termed epithelial defence against cancer (EDAC) 

[25]. Here, depletion of caveolin-1 increases the phospholipid Ptdlns(4,5)P2 within the 

plasma membrane that, in turn, recruits the formin FMNL2 promoting actin polymerization 

and cell contractility. Notably, caveolar-dependent tension regulation is only necessary in 

the wild type cells neighbouring H-RasV12 cells, rather than in the mutant cells themselves, 

showing the importance of differential regulation of tensions to allow extrusion.

Different actomyosin structures mediate cell extrusion

Depending on the state of the epithelium, actomyosin contraction can adapt to ensure 

a defective cell is eliminated by extrusion. Typically, cortical actomyosin first contracts 

apically within the extruding cell [1,26] followed by basolateral contraction of an 

intercellular network of actomyosin cables in the surrounding cells that act together to 

squeeze a cell out apically (Figure 1) [1]. Neighbouring cells can also send actin protrusions 

beneath the extruding cell to expel it and seal the epithelium, in conjunction with the 

contractile cable or in the absence of it (Figure 1) [27,28]. The mode of extrusion used 

depends on the strength of cell–cell versus cell-matrix adhesion [29••]. Interestingly, 

knocking-down a-catenin, the linker between the adherens junctions and the actin cortex, 

reduces cell–cell interfacial tension, promoting cell extrusion via basal protrusions (Figure 

1). Conversely, expressing a form of a-catenin that constitutively recruits vinculin, reinforces 

actin at the cell cortex and shifts extrusion towards the actomyosin contractile mechanism. 

In this way, epithelial cell density can regulate the mode of cell extrusion in cultured cells, 

with cells grown in low densities, having higher attachments to matrix being extruded 

through basal protrusions, and those at higher densities with greater cell–cell than cell-

matrix adhesions promoting canonical contractile extrusions (Figure 1) [27]. Because intact, 

mature epithelial tissues in vivo typically have stronger cell–cell adhesions, the basal cell 

protrusion extrusion mechanism may be reserved for situations where epithelia are not yet 

mature or are recovering from wounds.
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In Drosophila, different extrusion mechanisms may be employed depending on the state 

of the tissue during development. In fly development, pulsed medioapical actomyosin 

contraction may help reduce the apical cell surface extrusion to promote extrusion (Figure 

1) [30–32]. In pupae, two different mechanisms drive extrusion in separate abdominal 

epidermal cell populations [23••]. At early stages of pupal development, an extrusion 

mechanism that depends on cortical actomyosin contraction removes apoptotic epithelial 

cells at the border of histoblast nests [23••,33]. Later, however, epithelial cells near the fly 

midline extrude by combined contraction of cortical and medial actomyosin networks [23••]. 

The shift in which extrusion mechanisms is used could depend on whether the extruding 

cells are taller than the cells that replace them, differential signalling, or tissue maturity 

at different stages of development. Supporting the latter idea, embryonic wound repair in 

Drosophila occurs through medial actomyosin contraction within the wounded cell at early 

stages of development, but by a supracellular actomyosin cable at later stages [34]. How 

could tissue maturity affect the mode of epithelial gap closure? In the case of the fly pupal 

abdomen, cortical tension increases significantly as the larva develops [23••], while the 

levels of E-cadherin at cell–cell junctions decrease (Figure 1) [23••,35••]. Because interfacial 

tension depends on cell–cell adhesion and the contractile cortex, the mechanical context may 

dictate constriction modes during extrusion.

Cell–cell junctional remodelling during extrusion

Apart from their role in regulating tissue tension, adherens junctions are important to 

ensure efficient cell ejection and tissue integrity upon extrusion. Cell–cell and cell-matrix 

interactions must be tightly orchestrated to allow adhesion between new neighbors once a 

cell exits. During apoptotic cell extrusion in the fly pupa, the levels of adherens junction 

molecules decrease in a caspase-3-dependent manner, once actomyosin contraction begins 

(Figure 2) [33]. Cell–cell adhesion downregulation around the extruding cells promotes 

efficient cell removal, but it is not necessary for this process as embryos expressing 

the caspase inhibitor p35, which blocks E-cadherin downregulation, reduces but does not 

prevent extrusion. E-cadherin endocytosis in transformed cells and their neighbours is 

important for cancer cell removal via EDAC, suggesting that reducing cell–cell junctions 

helps enable extrusion [36]. In cells in culture and zebrafish embryos, transient tension 

release around extruding cells upon apoptotic injury activates Src kinases (Figure 2) [37]. 

In turn, Src activation reduces α-catenin and vinculin at cell interfaces perpendicular to the 

extruding cell to reduce interfacial tension and enable neighbouring cell elongation that will 

cover the space created by the cell’s exit.

While reducing cell–cell adhesions helps a cell detach, there is a growing body of evidence 

that E-cadherin is necessary for efficient extrusion in all systems. E-cadherin is required for 

extrusion, acting as a mechanotransductor to stimulate RhoA activity in the neighbouring 

cells in response to contractility within the extruding cell (Figure 2) [28]. E-cadherin is 

also important for F-actin organisation and contraction at the border between the extruding 

and the neighbouring cells [38] and to transmit forces and ensure barrier function in the 

surrounding tissue [39] (Figure 2). Similarly, delaminating cells maintain strong cell–cell 

adhesions with their neighbours until they get extruded from fly leg imaginal disk epithelia 

[40,41]. Interestingly, the classic epithelial to mesenchymal transcription factor Snail was 
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recently found to promote basal cell extrusion from monolayers while retaining E-cadherin 

[42], a departure from the view that E-cadherins are transcriptionally downregulated before 

invasion and trans-differentiation. Finally, mathematical modelling suggests that the relative 

apicobasal levels of adhesion and contraction regulate the direction of extrusion [43].

How might cell extrusion simultaneously require cell–cell junctions and their 

downregulation? One possible way to interpret these seemingly opposing findings is that 

extrusion intrinsically needs cells connected within a monolayer or cells would just detach 

with no ability to preserve the functional barrier paramount to an epithelium. However, 

cells that are less adherent or weaker within the tightly woven fabric of a monolayer could 

make them more primed to extrude. Ultimately, cells with very tight contacts will have to 

loosen them, to enable their removal. Clearly more studies will help resolve this apparent 

contradiction.

One possible mechanism for controlling cell–cell junctions during extrusion is endocytosis. 

However, Hoshika et al. found, counterintuitively, that in Drosophila pupae, reduced 

endocytosis surprisingly leads to decreased E-cadherin and increases extrusion [35••]. The 

reduced E-cadherin presumably results from caspase-dependent degradation [33]. Here, 

because endocytosis reduces caspase activity, reduced endocytosis actually leads to reduced 

cadherin levels and increased caspase activation that would promote cell extrusion. Because 

E-cadherin and caspases mutually repress each other (Figure 2), both endocytosis and 

E-cadherin may play a protective role against apoptotic cell elimination in this system. Of 

course, it will be interesting to learn the role of E-cadherin regulation without the impact of 

caspases on live, apical extrusions that dominate in vertebrates.

Presumably other cell–cell junction components must be similarly regulated during 

extrusion. Septate junctions, the functional equivalent of tight junctions in Drosophila, 

remain intact during extrusion [33] as do desmosomal junctions [44]. Depletion of the 

desmosomal component desmoplakin results in disruption of the actomyosin ring around 

the extruding cell and failed extrusion. Down-regulation of the tight junction component 

Claudin6, promotes increased apical extrusion of cells in the Xenopus otic region reducing 

the otocyst size [45]. Thus, more work will determine how adherens and other junctional 

complexes are choreographed during both apical and basal cell extrusions.

Shaping development

The connection between tissue mechanics and cell extrusion is important in several 

morphogenetic processes, not only to eliminate unfit or extraembryonic cells but also to 

generate new shapes and tissues. For example, recent work in the developing zebrafish 

heart shows that proliferation and overcrowding in the myocardium results in tension 

heterogeneities with some cardiomyocytes expressing higher levels of apical actomyosin 

[46]. As a result, the hypercontractile cardiomyocytes delaminate from the myocardium to 

help shape the tissue from a monolayer to a complex three-dimensional structure.

Similarly, cells in the dorsal pericardium experience overcrowding due to cell proliferation 

and migration towards the midline [47]. Consequently, cells are completely extruded from 
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the tissue, creating a cluster of cells that will eventually give rise to the epicardium. 

Although most live extruding cells die due to lack of survival signals [3], these proepicardial 

cells are washed away by heartbeat-derived fluid flow to the pericardial cavity where they 

survive and contribute to morphogenesis. Notably, forces generated during extrusion can 

drive shape changes like the tissue folding of the Drosophila leg imaginal disks [40]. These 

results show that mechanical forces affect extrusion which, in turn, impact shape changes 

and cell fates.

Recent investigations have highlighted the impact of mechanics on extrusion during 

development. These findings have underscored the plastic nature of epithelia and how they 

cope with unwanted cells in different mechanical environments. Future work will need to 

address what regulates the mechanics that drive not only apoptotic cell extrusion but also 

live cell extrusion, which drives most epithelial cell death.
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Figure 1. 
The mechanical properties of the tissue influence the extrusion mode.

Apical cell extrusion (ACE) can be driven by basal lamellipodia crawling (left) or basal 

actomyosin cable contraction (centre-left). The switch between extrusion modes is mediated 

by cell density [27] and cell–cell junction strength [29••], with cells at higher densities 

and with stronger junctions extruding by cable contraction. Basal cell extrusion (BCE) 

can occur through the contraction of an apical cortical actomyosin ring (centre-right) or 

by medioapical actomyosin contraction (right). In Drosophila development the change in 

extrusion mode correlates with changes in cell adhesion and interfacial tension [23••], with 

cells extruding by medioapical contraction when tension increases, and E-cadherin levels 

decrease.
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Figure 2. 
Adherens junctions remodelling and roles during apoptotic cell extrusion.

Cells neighbouring and an extruding cell relax immediately, inducing the mechanosensitive 

activation of the Src family kinases at interfaces perpendicular to the extruding cell [37]. In 

turn, Src downregulates cadherins in these junctions promoting interface relaxation (centre-

left). Then, contractility is increased in the apoptotic cell which promotes RhoA activation at 

the border between the apoptotic and neighbouring cells in an E-cadherin mechanosensitive 

manner [28] (centre-right). E-cadherin is also responsible to recruit Coronin1B to these 

interfaces, resulting in actin bundling [38]. Endocytosis reduces caspase activation, while 

caspases and E-cadherin mutually supress each other in a positive feedback loop [33,35••]. 

All together, these interactions result in competent cell extrusion, where the interfaces 

around the apoptotic cell efficiently contract, while the perpendicular ones can elongate 

permitting gap closure without losing barrier function (right, blue arrows).
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