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The role of insulin‑like growth factor 2 
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Abstract 

Insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs) family belongs to a highly conserved family of RNA-
binding proteins (RBPs) and is responsible for regulating RNA processing including localization, translation and stabil‑
ity. Mammalian IMPs (IMP1-3) take part in development, metabolism and tumorigenesis, where they are believed to 
play a major role in cell growth, metabolism, migration and invasion. IMPs have been identified that are expressed in 
ovary, placenta and embryo. The up-to-date evidence suggest that IMPs are involved in folliculogenesis, oocyte matu‑
ration, embryogenesis, implantation, and placentation. The dysregulation of IMPs not only contributes to carcino‑
genesis but also disturbs the female reproduction, and may participate in the pathogenesis of reproductive diseases 
and obstetric syndromes, such as polycystic ovary syndrome (PCOS), pre-eclampsia (PE), gestational diabetes mellitus 
(GDM) and gynecological tumors. In this review, we summarize the role of IMPs in female reproductive pathophysiol‑
ogy, and hope to provide new insights into the identification of potential therapeutic targets.
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Introduction
Insulin-like growth factor 2 (IGF2) mRNA binding pro-
teins (IMPs or IGF2BPs) belong to a highly conserved 
family of RNA-binding proteins (RBPs), which function 
to regulate the localization, stability and translation of 
mRNA and fine-tune the physiological function of the 
proteins encoded [1]. Members of the IMP family include 
IMP1–3 in mammals; Vegetal-1 mRNA-binding protein 
(Vg1RBP/Vera) in Xenopus laevis; zipcode-binding pro-
tein 1 (ZBP1) in chickens; murine coding region determi-
nant-binding protein (CRD-BP) in mice; and Drosophila 

IMP (dIMP) [2, 3]. IMP1 is an ortholog of CRD-BP and 
ZBP1, which are respectively involved in the preven-
tion of c-MYC degradation and the regulation of β-actin 
mRNA localization [4, 5]. Vg1RBP/Vera, also known as 
K homology domain-containing protein overexpressed 
in cancer (KOC), and human IMP3 are also orthologs 
[6]. Homologs of human IMP2 have been identified as 
IGF2BP2a and IGF2BP2b in Danio rerio. Moreover, the 
p62 protein, a 62  kDa isoform generated by IMP2, has 
been identified as an autoantigen in human hepatocel-
lular carcinoma [7]. Mammalian IMPs (IMP1–3) were 
originally discovered in studies of embryogenesis [8] and 
subsequently recognized as oncofetal proteins. IMPs play 
a critical role in many cancers [9–11] and metabolic dis-
eases [12], due to their role in the regulation of cell pro-
cesses including cell proliferation, metabolism, invasion 
and migration. Immunohistochemistry and western blot 
studies of adult female gonadal tissue report expression 
of IMP1–3 in the ovary and placenta [13]. Accumulating 
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evidence has shown that IMPs are involved in many 
aspects of reproductive physiology such as oocyte devel-
opment [14], ovulation [15], implantation [16] and 
placentation [17]. Recent studies have implicated the dys-
regulation of IMPs in polycystic ovary syndrome (PCOS) 
[18], pre-eclampsia (PE) [19–21] and gestational diabe-
tes mellitus (GDM) [22], in addition to endometrial and 
ovarian cancers [23, 24]. There are few relevant reports 
systematically describing the function of IMPs in female 
reproductive physiology and pathology. Thus, we pre-
sent the first comprehensive review of the roles of IMPs 
in female reproductive pathophysiology and provide 
insights into potential underlying etiological mechanisms 
of female reproductive disorders.

Overview of IMPs
The protein structures of the three identified human 
IMPs (IMP1-3) are highly similar in domain order, and 
share an overall amino acid sequence identity of 56% [25]. 
Their canonical structure contains two RNA recognition 
motifs (RRM) located in the N-terminal region and four 
nuclear ribonucleoprotein (hnRNP) K homology (KH) 
domains in the C-terminal region [8]. The RRMs may 
help to stabilize IMP-mRNA complexes (protein-RNA 
complexes), and the KH domains mainly contribute to 
the binding of RNA [26]. Structural analyses indicate that 
binding of the KH domains 3 and 4 to mRNA induces a 
conformational change in the transcript, and therefore 
helps RBPs to assemble higher-order complexes through 
sequence-specific interactions, providing evidence for 
their high binding affinity and specificity [8, 27]. The long 
half-life of IMP-mRNA complexes confers high stabil-
ity [28]. Moreover, RNA-binding motifs permit IMPs to 
bind cooperatively with more than one RNA simultane-
ously, permitting dimerization and formation of stable 
complexes.

The function of IMPs in the regulation of RNA metabo-
lism has been widely studied, including RNA localization, 
stability and translation. IMPs are found to be predomi-
nantly expressed in the cytoplasm where they form 
messenger ribonucleoprotein (mRNP) granules around 
the nucleus which function to transiently “lock” target 
mRNAs. IMP1 granules have been shown to be particu-
larly prevalent in neurons and oocytes. Compositional 
analysis has identified the exon-junction components, 
CBP80 and poly(A)-binding protein in IMP1-containing 
mRNP granules; the presence of which represents pre-
translational status. IMP1 has also been shown to medi-
ate transport of β-actin mRNA to the leading edge of 
motile cells.

IMPs were originally discovered as mRNA-binding 
proteins capable of binding to the 5’ untranslated regions 
(5’UTR) of IGF2 [8]. The IGF2 gene generates numerous 

mRNAs with different 5’UTRs. The human IGF-2 gene 
is a complex transcription unit driven by four promot-
ers. Each promoter directs transcription of a different 
RNA designated leader. Four designated leaders of IGF2 
have different translational properties. IMP1-3 have 
been shown to regulate the translation of IGF2 through 
binding with the IGF2 mRNA designated leader 3 rather 
than IGF2 mRNA designated leader 4 in a rapamycin-
sensitive manner. The co-translational phosphorylation 
of IMP1 is catalyzed by mTOR complex 2, which medi-
ates initiation of IGF2-L3-luciferase mRNA translation 
by cap-independent internal ribosomal entry [29]. IMP2 
may also be phosphorylated by the mTOR complex 1 to 
promote translation of IGF2 mRNA by internal riboso-
mal entry [30]. Knockout of IMP3 results in the inhibi-
tion of translation of IGF2 and reduction in the levels of 
both intracellular and secreted IGF2 [31]. The IMP-IGF2 
pathway has been implicated in the pathogenesis of many 
diseases. For example in immune thrombocytopenia, 
inactivation of IMP1-IGF2 signaling, caused by overex-
pression of miR-98-5p, has been shown to repress the 
phosphatidylinositol 3-kinase (PI3K)/Akt pathway and 
play a role in the deficiency of mesenchymal stem cells 
[32]. In cases of hypoxic-ischemic brain injury, activation 
of IMP2-IGF2 signaling, mediated by RNA-binding motif 
protein 3, promotes neural stem cell and progenitor cell 
proliferation and differentiation in the sub-granular zone 
[33]. In chicken myoblasts, the inhibition of IMP3-IGF2 
pathway elicited by let-7b repressed cell proliferation has 
been found to be involved in the pathogenesis of dwarf-
ism. In the female reproductive system, IGF2 has been 
universally found in follicular fluid [34], granulosa cells 
(GC) [35] and theca cells [36], and plays a role in folli-
culogenesis [37] and embryogenesis [38]. IGF2 is mainly 
secreted from granulosa cells, and collaborates with IGF1 
to stimulate steroid hormone synthesis and promote pro-
liferation of GCs through acting on IGF1R [39]. IMPs 
may therefore contribute to the normal physiology and 
pathological conditions of the female reproductive sys-
tem through the regulation of IGF2. Other mechanisms 
of action of IMPs in the female reproductive system are 
described below.

Distribution of IMPs in the ovary
Expression of all three IMPs have been identified in adult 
ovarian and placental tissue. The physiological expres-
sion of IMP1–3 exhibits a biphasic pattern during devel-
opment. IMP1–3 first appears in the oocyte and persists 
from pre-fertilization to the stages of zygote and blas-
tocyst during early embryogenesis, and is then found 
to decline until murine embryonic day 10.5–12.5, when 
expression increases again [13]. In the adult human 
ovary, immunohistochemical studies indicate that IMPs 
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are expressed in the cytoplasm of resting and growing 
oocytes, as well as GCs of small and growing follicles, 
with strong immunostaining of IMP2 and weak immu-
nostaining of IMP1and IMP3. In human fetal ovaries, 
strong immunostaining of IMP3 and weak immunostain-
ing of IMP1 were restricted to developing follicles from 
32  weeks gestation, while IMP2 immunostaining was 
ubiquitous. Evidence from immunohistochemical analy-
sis suggests that IMP1–3 may therefore play several dif-
ferent roles in folliculogenesis.

IMPs in embryogenesis
After fertilization, the early embryo undergoes maternal-
to-zygotic transition (MTZ), which is the stage during 
which regulation of development, previously controlled 
by maternal factors, changes to be under the control of 
new genetic products from the zygotic genome. The tran-
sition includes two distinct processes: first, the maternal 
information (mRNAs and proteins) is gradually cleared; 
second, zygotic transcription is activated [40]. Many 
maternal factors are present from oocyte to embryo and 
directly regulate early development in vertebrates, such 
as egg activation, embryonic cell division, and cytoskel-
eton assembly [41–43]. Maternally inherited mRNAs 
are stable during the first few hours of embryonic devel-
opment, and then subsequently degrade [40]. During 
the MTZ, initiation of zygotic transcription, known as 
zygotic genome activation (ZGA), is mediated by mater-
nally derived factors [44]. Although the exact timing 
of ZGA during MTZ remains uncertain, some genes 
involved in the process have been identified. IMP3 acts as 
an RNA stabilizer during early development, and deple-
tion of maternal IMP3 destabilizes maternal mRNAs 
prior to MTZ and leads to severe developmental defects, 
including abnormal organization of the cytoskeleton 
and aberrant cell division [45]. Moreover, overexpres-
sion of IMP3 enhances the stability of its target mater-
nal mRNAs, decelerates clearance of maternal mRNA, 
and inhibits MTZ, resulting in developmental delay [45, 
46]. Thus, maintaining a balance of IMP3 is essential for 
normal early development. Deletion of IMP2 has been 
shown to cause early embryonic developmental arrest by 
targeting the 3’UTR of CCAR1 and RPS14 during ZGA 
[38]. IMP2 also enhances IGF2 mRNA stability and pro-
motes IGF2 translation. In  vitro experimentation sug-
gests that supplementation of culture media of derived 
mouse embryos with IGF2 remarkably improves the pro-
portion of embryos that successfully develop compared 
with a control group (IMP2♀+/♂+), but exerts no effect 
on IMP2−/−female-derived embryos (IMP2♀−/♂+). This 
effect of IGF2 has also been observed in human embryos 
[38]. The data suggest that IMP2 is involved in ZGA in 
part by regulating the stability and translation of IGF2.

Embryo implantation is a dynamic and complex repro-
ductive process regulated by a series of molecular and 
cellular events with its ultimate success based on the 
established uterine receptivity [47, 48]. Both abnormal 
hereditary and epigenetic modifications can affect uter-
ine receptivity and therefore disturb embryo implan-
tation and result in spontaneous abortion [49, 50]. 
Whole-genome bisulphite sequencing and differentially 
methylated region (DMR) analysis showed that 21,391 
DMRs were found to be hypomethylated in the receptive 
endometrium of goats on day 15 of gestation compared 
with the pre-receptive endometrium on day 5 of gesta-
tion. The methylation ratio of IMP2 has been found to be 
lower in the receptive endometrium of goats than in the 
pre-receptive endometrium, while methylation ratios of 
IMP3 and IGF1R genes are higher [33], which may be a 
compensatory response. Abnormal expression of IMPs in 
endometrium may affect embryo implantation by affect-
ing uterine receptivity. Many members of the let-7 family 
have been found to inhibit IMP expression by binding to 
the 3’UTR of IMP mRNA in various cell types. IMP1 has 
been identified as a target of let-7a [51, 52], let-7b [53], 
let-7f [54] and let-7i [55]. IMP2 has been identified as 
a target of let-7a [56], let-7b [57, 58] and let-7i [55] and 
IMP3 has been identified as a target of let-7b [59] and 
let-7i [55]. Interestingly, the expression of members of 
the let-7 family has been found to be lower in endome-
trial samples with endometritis than in clinically healthy 
endometrium, in particular let-7e and let-7f that are 
repressed in both subclinical and clinical endometritis, 
which may disturb uterine homeostasis and affect uterine 
receptivity [58]. Therefore, IMPs may potentially play a 
role in establishing endometrial receptivity, mediated by 
members of the let-7 family.

Early placentation is critical to both perinatal fetal 
growth and postnatal fetal and maternal health. Tran-
scriptome analysis performed during the implantation 
period revealed that there is overexpression of some 
placental growth factors, and IMP1 and IMP3 in human 
trophoblast ectoderm cells, as well as upregulation of 
corresponding receptors in the receptive endometrium 
[16], implying that these molecules play an important 
role in the early dialogue between the blastocyst and 
maternal endometrial cells. Cytotrophoblast cells are 
found to proliferate and differentiate into several different 
trophoblast lineages during early gestation [60] and dys-
regulated proliferation and differentiation of cytotropho-
blast cells can result in severe developmental disorders 
including intrauterine growth retardation and perinatal 
death [61, 62]. In sheep, rapid proliferation of tropho-
blast cells occurs in the process of conceptus elongation, 
which is essential for the implantation, placentation, and 
successfully establishing pregnancy [63, 64]. Knockout of 
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LIN28 (LIN28A and LIN28B) and the resultant increase 
in let-7 micro-RNAs (miRNAs) in day 16 trophectoderm 
cells have been shown to reduce the degree of elongation 
of the conceptus and down-regulate the expression of 
IMP1, IMP2, IMP3, HMGA1, ARID3B, and c-MYC. This 
results in impaired placentation, fetal growth restriction 
and reduced fertility in sheep [17]. Therefore it is clear 
that IMPs play a major role in many developmental pro-
cesses including ZGA, early embryonic development, 
implantation and placentation (Fig.  1), but the specific 
regulatory mechanisms employed in humans require fur-
ther exploration.

In mouse parthenogenetic embryos, the expres-
sion of IMP1 and IMP2 is perturbed compared to that 
in embryos which have been normally fertilized. As 
N6-methyladenosine (m6A) readers, IMPs recognize m6A 
modifications, which regulate splicing, translocation, sta-
bility, and translation. In mammals, the occurrence of 
abnormal m6A modifications during early development 
results in parthenogenetically activated oocytes that are 
not capable of developing to term [65]. Reduced expres-
sion of IMP1 elicited by miR-670 decreases the rates of 
cleavage and blastula formation in parthenogenetically 

activated embryos via the down-regulation of m6A 
expression [66]. This effect can be reversed by treatment 
with betaine or miR-670 inhibitor.

IMPs and female reproductive pathologies
IMPs and PCOS
Polycystic ovary syndrome (PCOS) is a common dis-
order of the ovary in women of reproductive age, and is 
characterized by hyperandrogenism, ovulatory dysfunc-
tion (anovulation or oligo-ovulation) and a polycystic 
ovarian morphology [67]. Most PCOS patients also suf-
fer from metabolic abnormalities, such as insulin resist-
ance and abdominal obesity which suggests potential 
adipocyte dysfunction, and these patients also have an 
increased lifetime risk of developing type 2 diabetes mel-
litus (T2DM) [68]. Multiple pathologic mechanisms have 
been found, however the exact etiology of PCOS is not 
fully understood.

In polycystic ovaries, early follicular growth is exces-
sive, resulting in massive ovarian preantral follicles, 
which become arrested and do not proceed to develop 
a dominant follicle. PCOS is also usually accompanied 
by high rates of GC proliferation and low rates of GC 

Fig. 1  Abnormal expression of IMPs in the pathogenesis of PCOS
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apoptosis. GC is an important source of anti-Mülle-
rian hormone (AMH), IGF-1 and IGF-2 in the ovary. 
Elevated AMH has an antagonistic effect against the 
action of follicle stimulating hormone (FSH) on GCs, 
and represses the conversion of androgens to estro-
gens, therefore aggravating the androgen excess found 
in PCOS. Large numbers of GCs associated with exces-
sive amounts of small ovarian follicles, which have 
become arrested in part, account for the characteris-
tic polycystic morphology of the ovaries in PCOS. The 
expression of IMPs in PCOS patients is controversial 
and IMP2 may play a more important regulatory role 
in ovaries than IMP1 and IMP3. A recent microarray 
analysis identified that IGF1R, IGF2R, IMP2, IGFBP2 
and IGFBP7 were all found to be down-regulated in the 
cumulus cells from patients with PCOS compared with 
patients without PCOS [69]. In contrast, a recent study 
showed elevation of expression of IMP2 in GCs and 
ovarian tissue of PCOS patients compared with that of 
a control group [18]. This contradiction may be due to 
the small sample size of the earlier study. A genome-
wide association study (GWAS) showed that the high 
mobility group AT hook 2 (HMGA2) gene may be a 
high risk gene for PCOS and the expression of HMGA2 
in ovarian tissue and ovarian GCs of PCOS patients has 
been shown to be higher than that in a control group. 
IMP2 can be upregulated by overexpression of HMGA2 
and can promote GC proliferation by targeting the 
3’UTR of cyclin D2 (CCND2) and SERPINE1 mRNA 
binding protein 1 (SERBP1) mRNA [18]. In the ovary, 
IGF2, IGF1 and insulin are capable of synergistically 
stimulating androgen secretion from theca cells [70]. 
Abnormally elevated expression of IMP2 promotes the 
translation and stability of IGF2. Increased secretion 
of IGF2 stimulates the production of androgens from 
theca cells in ways that are synergistic with IGF1 and 
insulin, which helps to further explain the androgen 
excess found in PCOS patients.

Ovulatory dysfunction may be partially due to impaired 
oocyte maturation. In the zebrafish oocyte, IMP3 has 
been found to retard the progression of oocyte matura-
tion by repressing translation of cyclin B1 mRNA [71]. 
Upregulation of IMP3 in bovine oocytes is related to a 
lower vitrification temperature, which may affect stress 
prevention and oocyte recovery [72], however temper-
ature-dependent regulation of IMP3 in human oocytes 
remains unknown.

As mentioned earlier, many patients with PCOS have 
other concurrent metabolic disorders, such as insulin 
resistance, hyperinsulinemia, dyslipidemia and activa-
tion of proinflammatory factors, and these patients also 
have a long term risk of developing T2DM and obe-
sity [68, 73, 74]. A case–control study suggested that 

variants of T2DM risk genes are significantly more fre-
quently found in patients with PCOS than in healthy 
controls [75]. There is a transcription-regulatory mech-
anism involved in regulating insulin secretion and glu-
cose metabolism. Conditional inactivation of IMP2 has 
been shown to result in impaired insulin secretion from 
the islet cells of mice [76]. Reduced expression of multi-
ple miRNAs including let-7b-5p, miR-1-3p, miR-24-3p, 
miR-34a-5p, miR-98-5p, and miR-133a-3p, has been 
observed in the peripheral blood of T2DM patients 
compared with controls and expression levels appear 
to correlate with serum insulin levels, HbA1c levels and 
body mass index (BMI) [77]. These miRNAs target sus-
ceptibility genes for T2DM including CDKN2A, CDK5, 
IMP2, KCNQ1, and TSPAN8. These results suggest that 
the elevated expression of IMP2 observed in PCOS may 
also play a role in inducing insulin resistance in addi-
tion to the abnormal promotion of GC proliferation. 
The molecular mechanisms of IMP2 related to the regu-
lation of metabolism in PCOS remain to be confirmed. 
IMP1 is a critical regulator of fat metabolism and adi-
pogenesis, but whether IMP1 influences the metabolic 
abnormalities found in PCOS patients remains to be 
explored. Interestingly, a study reported that met-
formin was found to downregulate H19 via mediation of 
DNA methylation [78]. H19 is a long noncoding RNA, 
which harbors multiple let-7 binding sites and acts as a 
‘sponge’ to prevent let-7 from inhibiting expression of 
target genes [79, 80]. The data suggest that metformin 
may repress IMPs by downregulating the H19/let-7 
pathway of DNA methylation, which may be one of its 
therapeutic mechanisms. All in all, the antagonistic 
action of miRNAs and IMPs, as well as the regulation 
of IMPs on target genes are both essential for the physi-
ological and pathological processes involved in PCOS. 
IMPs are likely to participate in the pathogenesis of 
PCOS in a variety of ways (Fig. 2).

IMPs and PE
Abnormal proliferation and differentiation of human 
placental trophoblasts result in abnormal trophoblast 
invasion and dysfunctional syncytialization, which are 
involved in the pathogenesis of PE [81]. As a serious 
pregnancy-related disease manifesting with hyperten-
sion and proteinuria, PE is one of the main conditions 
contributing to maternal mortality, perinatal death, 
preterm birth and intrauterine growth retardation 
[82]. The expression of miR-423-5p is increased in the 
placentas of pre-eclamptic patients and overexpres-
sion of miR-423-5p has been found to inhibit migra-
tion, invasion and proliferation as well as inducing 
apoptosis in HTR-8/SVneo cells via targeting IMP1 
[21]. Elevated expression level of miR-181a-5p in both 
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plasma and placenta of severe pre-eclamptic patients 
suppresses invasion and migration of HTR-8/SVneo 
cells by directly inhibiting IMP2 [20]. During normal 
pregnancy, IMP3 is highly expressed in human placen-
tal villi in the first trimester compared with the third 
trimester, particularly in cytotrophoblast cells and col-
umn trophoblast cells [19], therefore migration and 
invasion of trophoblast cells from the placenta in the 
first trimester are promoted compared with the third 
trimester [83]. Silencing of IMP3 notably represses 
the invasion and migration of first trimester human 
placental villi and decreases the mRNA level of IGF2 
and CD44 in HTR8/SVneo cells [19]. IGF2 is reported 
to activate and stimulate the PI3K/AKT pathway and 
promote the migration of ovine trophoblast ectoderm 
cells [84, 85]. In addition, the phosphorylation of AKT 
promotes the metastasis of multiple tumor cells. Lower 
expression of IMP3 has been observed in the placentas 
of PE patients compared with placentas from healthy 
women [19]. Therefore, these studies suggest that 
down-regulation of IMP3 mediates abnormal invasion 

and migration of placental trophoblast cells, probably 
via IGF2-PI3K-AKT pathways, thus contributing to the 
development of PE.

IMPs and gestational diabetes mellitus (GDM)
Meta-analyses of candidate gene studies and GWAS 
have identified multiple genes which are reproduc-
ibly associated with GDM, including TCF7L2, GCK, 
KCNJ11, KCNQ1, CDKAL1, IMP2, MTNR1B, and 
IRS1. These genes are also associated with T2DM 
[86]. Among pregnant women, the presence of poly-
morphisms in IMP2 has been shown to be highly cor-
related with the occurrence of GDM [87]. Rs4402960 
(IMP2) and rs1801278 (Gly972Arg, IRS1) have been 
shown to be significantly associated with a higher risk 
of GDM [88–90].

IMPs and gestational trophoblastic diseases
Gestational trophoblastic disease is caused by excess 
cellular proliferation of placental villous trophoblast 
cells, and includes a spectrum of cellular abnormalities 

Fig. 2  The effect of IMPs on parthenogenetic activation, zygotic genomic activation, early embryonic development, implantation and placentation
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including hydatidiform mole (HM), invasive mole, cho-
riocarcinoma, and placental site trophoblast tumor. 
HMs can be divided into complete, partial and inva-
sive HMs [91]. According to histopathological features, 
partial HMs appear to be similar to normal placenta, 
while complete and invasive HMs are more like chorio-
carcinoma with multiple abnormally expressed onco-
genes [92]. Most previous studies have shown that high 
expression of IMP3 is positively correlated with the 
occurrence or progression of cancer. Conversely, IMP3 
is strongly expressed in extravillous cytotrophoblasts 
in healthy placenta, with expression level gradually 
decreasing from partial HMs, to complete HMs to inva-
sive HMs [93]. The data suggest that IMP3 expression 
is negatively correlated with the malignant potential of 
HMs, but the direct mechanisms require further explo-
ration. In the study of choriocarcinoma, β-Catenin, as 
a critical mediator of the Wnt signaling pathway, pro-
motes the proliferation of human choriocarcinoma cells 
via the LIN28B/Let-7a/IMP1 pathway which medi-
ates inhibition of let-7a, promotes IMP1 expression 
and thereby promotes proliferation of JAR cells. High 
expression of LIN28B has been observed in choriocar-
cinoma tissue compared with normal placental villi. 
However, whether the expression of IMP1 in choriocar-
cinoma promotes cell proliferation needs to be further 
explored in clinical specimens [52].

IMPs and gynecological tumors
Overexpression of IMP3 is associated with an unfa-
vorable overall survival of patients with epithelial ovar-
ian carcinoma (EOC) [94], such as ovarian clear cell 
carcinoma (OCCC) [23, 95], ovarian serous carcinoma 
[96] and primary ovarian mucinous carcinoma [97]. 
Knockout of IMP3 inhibits cell proliferation, migra-
tion and invasion, and downregulates the translation of 
MMP-2 and MMP-9 in OCCC cells [98]. Elevated IMP1 
levels have been observed in ovarian carcinoma com-
pared with normal peritoneum [99]. IMP1 stabilizes 
c-MYC and β-TrCP1 MRNA transcripts and has been 
shown to promote cell proliferation in IGROV-1 ovar-
ian carcinoma [100]. IMP1 enhances the phenotype of 
invasive tumor cells by reducing the down-regulation 
of its miRNA-regulated target MRNA [101]. The effect 
of IMP1 on cancer-derived cells is conserved, while 
the roles of IMP2 and IMP3 vary in a cell-dependent 
manner. Immunohistochemistry has revealed strong 
staining of IMP3 and IMP2 in both ovarian serous 
carcinoma and tubal cancers and therefore IMP3 and 
IMP2 may be useful as biomarkers of pelvic high-grade 
serous carcinoma [102, 103].

Uterine leiomyomas (ULM) is characterized by histo-
logical and molecular heterogeneity. The pathogenesis 

of ULM is partially a result of several driver gene muta-
tions, such as MED12 mutation, HMGA2 overexpres-
sion, and biallelic FH inactivation [104, 105]. ULM 
with HMGA2 overexpression also has increased IMP2 
expression, as well as higher levels of AKT signaling 
and mitogenic activity than other ULM types. HMGA2 
has been shown to activate AKT signaling through 
upregulation of IMP2 in embryonic rhabdomyosar-
coma [106]. Knockout of HMGA2 in ULM cells causes 
inactivation of AKT signaling and upregulation of p16 
and p21, which eventually lead to cell arrest [107]. 
In uterine leiomyosarcoma, IMP3 is an independent 
marker of poor prognosis [108]. In addition, IMP3 was 
upregulated in HPV16-positive cervical cancer and 
precancerous tissues compared with normal tissues 
and facilitated aerobic glycolysis by stabilizing HK2 
mRNA, consequently promoting the malignant pheno-
type in cervical cancer cells [109].

Endometrial cancer is a common gynecologic malig-
nancy, which originates from the endometrium and is 
composed of heterogeneous populations of cells. Tra-
ditionally, it has been classified into two types, type I 
(estrogen-dependent) and type II (estrogen-independent) 
based on clinical and epidemiological features [110]. 
Pathologically, endometrioid carcinoma is the most com-
mon subtype of type I endometrial carcinoma, and type 
II generally includes serous carcinoma and clear cell car-
cinoma [111]. On the basis of immunohistochemistry, 
the key biomarkers that are useful in the differentiation 
of endometrioid and serous endometrial carcinomas are 
estrogen receptors, progesterone receptors, IMP3, p53, 
and p16 [52, 112].

Conclusions
In summary, IMPs are implicated in the physiology 
and pathology of the female reproductive system. As 
a biomarker, IMPs promise to be very useful in being 
able to monitor the healthy embryogenesis and oocyte 
maturation, and to predict the occurrence and progres-
sion of some female reproductive diseases (Table  1). 
The expression of IMP2 is increased in ovarian GCs 
of women with PCOS, while the expression of IMP1, 
IMP2 and IMP3 is decreased in the placental tissue 
of women with PE. There is an association between 
down-regulation of IMPs and some adverse pregnancy 
outcomes, however the exact mechanisms are not yet 
fully understood. Although the role of the IMP fam-
ily in tumorigenesis has been extensively explored, the 
role in diseases of the female reproductive system is 
still under investigation, with many studies conducted 
in other species and few in human tissue. Study limi-
tations including small sample sizes, inadequate meas-
urement methods and lack of control for confounding 
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Table 1  The role of IMPs in the embryogenesis, oocyte maturation, and female reproductive pathology

Condition Cell type/Species Key findings Proposed mediator Implications References

Embryogenesis MTZ Zebrafish oocyte IMP3 ↓ leads to 
abnormal cytoskeleton 
organization and cell 
division

Maternal mRNAs IMP3 depletion leads 
to severe developmen‑
tal defects

[45]

Zebrafish oocyte IMP3 ↑ inhibits 
maternal-to-zygotic 
transition

Maternal mRNAs Leads to developmen‑
tal delay

[46]

ZGA Mice IMP2 ↓causes early 
embryonic develop‑
mental arrest

Ccar1, Rps14, IGF2 Abundant IMP2 is 
essential for the 
embryo development

[38]

Implantation Human/Bovine Methylation ratio of 
IMP2↓and IMP3 ↑in 
receptive endome‑
trium

No data Predicts the estrous 
phase

[49, 50]

Placentation Human IMP1 and IMP3 ↑ Corresponding recep‑
tors

Early dialogue 
between blastocysts 
and maternal endome‑
trial cells

[16]

Ovine IMP1-3↓ LIN28, let-7 Increases the degree 
of elongation of the 
conceptus abnormal 
m6A modification

[64]

PA Mice The expression of IMP1 
and IMP2 is perturbed

No data during early develop‑
ment in PA embryos

[65]

Mice IMP1↓ miR-670 Regulates RNA meth‑
ylation in PA mouse 
embryonic develop‑
ment

[66]

Oocyte maturation Zebrafish oocyte IMP3 retards the 
progression of oocyte 
maturation

Cyclin B1 Represses oocyte 
maturation

[71]

PCOS Human IMP2↓in cumulus cells 
from PCOS patients

No data Predictive biomarker [69]

Human IMP2↑in GCs and ovary CCND2, SERBP1 Provides new insights 
into the dysfunction of 
GCs in PCOS

[18]

PE HTR-8/Svneo cells IMP1 inhibits apoptosis 
in HTR-8/Svneo cells

miR-423-5p A new light on the 
pathogenesis of severe 
pre-eclampsia

[21]

HTR-8/Svneo cells IMP2 promotes the 
invasion and migration 
of HTR-8/Svneo cell

miR-181a-5p The roles and molecu‑
lar mechanisms of 
IMP2 in PE

[20]

Human placenta IMP3 ↓in the placentas 
from PE patients

IGF2, CD44 Predictive biomarker [19]

GDM Human Rs4402960 (IMP2) No data Associated with a 
higher risk of GDM

[86–88]

Gynecological oncol‑
ogy

ULM/ULMS Human IMP2/IMP3 No data Predictive marker/
independent prognos‑
tic factor

[105, 108]

Cervical carcinoma SiHa cells IMP3 ↑ facilitate cell 
aerobic glycolysis

Hexokinase 2 A potential approach 
for cervical cancer 
therapeutics

[109]

Choriocarcinoma JAR cells IMP1 ↑ promotes cell 
migration and invasion

RSK2, PPME2 Aggravating the cho‑
riocarcinoma disease 
progression

[52]

Endometrial carcinoma Human IMP3 ↑, PR, L1CAM No data Histological subtyping 
in high-grade EECs

[112]

Ovarian carcinoma Human IMP1, IMP2, IMP3 and 
E-cadherin

No data Predicts disease recur‑
rence and survival

[97–99]

Abbreviation: MTZ Maternal-to-zygotic transition, ZGA Zygotic genome activation, PA Parthenogenetic activation, PCOS Polycystic ovary syndrome, PE Pre-eclampsia, 

GDM Gestational diabetes mellitus, ULM Uterine leiomyomas, ULMS Uterine leiomyomasarcoma
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factors preclude our ability to draw firm conclusions 
from the current evidence. More focused studies are 
needed to address these limitations in order to disen-
tangle the functions of IMPs and to clarify the clini-
cal value as a novel biomarker of female reproductive 
diseases.
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