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Abstract

We describe a general solution to the problem of determining diagnostic accuracy without the use of a perfect reference
standard and in the presence of interpreter variability. The accuracy of a diagnostic test is typically determined by
comparing its outcomes with those of an established reference standard. But the accuracy of the standard itself and those
of the interpreters strongly influence such assessments. We use our solution to examine the effects of the properties of the
standard, the reliability of the interpreters, and the prevalence of abnormality on the measured sensitivity and specificity.
Our results provide a method of systematically adjusting the measured sensitivity and specificity in order to estimate their
true values. The results are validated by simulations and their detailed application to specific cases are described.
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Introduction

The practice of medicine increasingly relies on diagnostic

measurements to guide physician decisions and treatment

algorithms and consequently there is increasing pressure to

develop novel devices with better diagnostic accuracy. But

validating an improved or novel diagnostic presents the funda-

mental and vexing problem of how to assess test accuracy. The

accuracy of a new diagnostic test, or any detector, depends on its

properties of sensitivity and specificity. These are the relative

frequency of the occurrence, respectively, of true positives in the

subpopulation of individuals with abnormality, and of true

negatives in the normal subpopulation. Clearly, correct assessment

of the accuracy of the new test requires that the true status of the

patient be independently and reliably accessible. The classical

validation paradigm involves applying the new test to each

member of the study population together with an existing

reference test called a "gold standard" with an assumed, maximal

if not perfect accuracy. The validation is straightforward if the new

diagnostic is an inexpensive or easier to use version of an existing

gold standard against which accuracy of the novel device can be

measured. But comparison to a submaximal, imperfect reference is

biased, limiting accuracy assessments to that of the imperfect

reference. The classical validation approach is especially prob-

lematic when the new device purports to vastly improve on the

gold standard, which is of course the goal. This is a general

problem as true gold standard diagnostics are rare in medicine [1–

7]. This fundamental problem with validation retards medical

progress, can be prohibitively costly to work around, and may be

a significant contributor to the persistence of costly systematic

errors in treatment [8]. The validation problem is compounded

when the results of both the test and the reference depend on the

interpretation of experts, and as is typical in medicine, when

certified experts have clinically significant disagreements in

classifying test results. This may occur in the form of disagree-

ments among a group of experts (inter-rater variability) or

disagreement with one’s own previous classification (intra-rater

variability). Such inter- and intra-rater (IIR) variability is

commonly quantified by computing a kappa statistic from data

[9]. We developed an analytical solution that uses kappa to correct

errors in assessing test accuracy by comparison to an imperfect

reference test. The implications of the solution are explored and

validated by numerical simulations, and it is applied to data from

studies of the assessment of the accuracy of various diagnostic

procedures.

Methods

We sought a way of systematically adjusting the measured

accuracy of the test in order to determine its true accuracy given

the accuracy of the standard and the variability of the interpreters.

We used the following notation: the true patient state is denoted X

which takes on one of the values A or N where A could be

considered as abnormal or positive and N as normal or negative.

The state of each patient is measured by the test and leads to the

output x~a or n: State x is then accessed by an interpreter that
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generates the interpretation x’~a’ or n’: The state of each patient

is also measured by the standard and leads to the output x0~a0 or

n0, which is interpreted as x’0~a’0 or n’0: The unconditional

probability of A, denoted (A)~1{(N), is the prevalence of the

positive cases. We write the conditional probability of an event u

given v as (uDv): The true accuracy of the test is expressed by its

sensitivity s~(aDA) and specificity p~(nDN). The accuracy of the

standard is expressed by s0~(a0DA) and p0~(n0DN): The

sensitivity and specificity of the interpreter that interprets the test

are, r~(a’Da) and q~(n’Dn) and those of the interpreter that

interprets the standard are r0~(a’0Da0) and q0~(n’0Dn0). Figure 1
summarizes our notation and definitions. Supporting Information

Appendix S1 contains details of the analysis described in this

section.

The measured sensitivity and specificity of the test are

s’~(a’Da’0) and p’~(n’Dn’0). We assume that the outputs are

independent when conditionalized on the patient state and that

the interpreters are not influenced by each other or by the other

device. These lead to a pair of coupled linear equations that relate

the measured and true accuracies of the test:

s’~ (A)(rzq{1)̂ss0s{(N)(rzq{1)p̂p0pz(A)(1{q)̂ss0z(N)rp̂p0
(A)̂ss0z(N)p̂p0

p’~{(A)(rzq{1)�ss0sz(N)(rzq{1)�pp0pz(A)q�ss0z(N)(1{r)�pp0
(A)�ss0z(N)�pp0

ð1Þ

where we have introduced the coefficients ŝs0,p̂p0,�ss0, and �pp0 which

are functions of s0,p0,r0, and q0: Since it is linear in s and p, this
pair of equations is easily inverted to estimate the true test

accuracy from the measured accuracy, given the prevalence,

the accuracy of the standard, and interpreter sensitivity and

specificities.

The interpreters’ sensitivity and specificity are in general not

available. Instead interpreter performance is traditionally mea-

sured as reliability and represented by a kappa statistic. We

worked with Fleiss kappa, k~(P{�PP)=(1{�PP) by exploiting

a relationship between k and interpreters’ sensitivity and

specificity. We chose Fleiss kappa because it is readily generaliz-

able to multiple categories. In the definition of k, P is the observed

proportion of interpreters that agree on a result. Using the

assumption that the interpretations of the test and standard are

independent when conditionalized on the patient state, this was

written as a function of the accuracies of the test and interpreter:

P~½(A)sz(N)(1{p)�½r2z(1{r)2�

z½(A)(1{s)z(N)p�½q2z(1{q)2�:
ð2Þ

The proportion of agreements that would be expected by

chance alone, �PP, corresponds to the lower bound of interpreter

performance and it occurs if the interpreter is guessing purely

randomly. Then the interpreter’s accuracy falls to its chance level,

r~(A) and q~1{(A): Substituting these into Eq. 2 leads to
�PP~(A)2z(1{(A))2:
At this point, given the interpreter properties k and k0, the

following approach is available for determining the relationship

between the test’s measured and true accuracies: Assume r~q, so

that Eq. 2 simplifies to P~r2z(1{r)2 and allows r to be solved

for in terms of P: Then replace P by utilizing the definition of

kappa and substitute for P in terms of prevalence in order to

obtain:

Figure 1. Notation and the set-up used in assessing a diagnostic test.
doi:10.1371/journal.pone.0052221.g001
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r~
1

2
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4(A)(1{(A))(1{k)

p� �
: ð3Þ

Consequently the interpreter sensitivity and specificities can be

eliminated from Eq. 1 in favor of the prevalence, (A), and

interpreter reliabilities, k and k0, and the equation can be solved

for s and p. Alternatively, the interpreter properties can be chosen

in a way that is consistent with Eqs. 2 and 1, which yields a range

of solutions for the true test accuracy, as described in Supporting

Information Appendix S1. The range may in some cases be

sufficiently narrow, as discussed in Results, so that the solution

from the first approach provides a good representation. Eq. 3

implies that r?1 as k?1.

It is instructive to consider a special case of Eq. 1 which

illustrates the way it is consistent with existing literature and

extends it for interpreter variability. Accuracy adjustments that do

not take into account interpreters has previously been worked out.

E.g. Table 1 of [10] indicates that the measured specificity can be

defined as d=(czd) where c and d are given by Eqs. (3) and (4) in

[10]. When the substitutions are made for c and d, the result

simplifies to our Eq. 1 with r~q~r0~p0~1 (perfect interpreta-

tion accuracy). A similar relationship is found for the sensitivity.

Another special case of Eq. 1 occurs when the test and standard

properties are identical, that is s~s0, p~p0, e.g. two instances of

the test are used instead of a test and a standard. In this case,

determining the true accuracy involves the solution of a pair of

coupled quadratic equations, which is easily achieved numerically

by using a multidimensional Newton-Raphson method. This

implies that the assessment of a test can be done in the complete

absence of a reference standard. This approach may in fact prove

preferable even if a standard is available, if the accuracy of the

standard is not known with sufficient precision.

Finally, in some applications the accuracy of the standard as

well as its interpretation reliability may be perfect, s0~p0~k0~1:
This corresponds to a situation where the patient state is directly

observable. An example would arise in the assessment of, say,

a rapid screening test which is desirable for its efficiency and cost-

effectiveness, and whose result can be verified infallibly by means

of, say, an expensive and possibly invasive procedure which is not

feasible to use in a large population or in the field. Eq. 1 then

reduces to s’~(rzq{1)sz1{q and p’~(rzq{1)pz1{r:
Further assuming r~q leads to:

s~(s’zr{1)=(2r{1), p~(p’zr{1)=(2r{1) ð4Þ

provided r=0:5: The value of r in practice tends to be less than

but generally near unity. Eq. 4 implies that the measured accuracy

is biased toward the value 0:5 as a result of the variability of

interpretation. For example if the sensitivity and specificity are

both higher than 0:5, then the measured values will be biased

downward, s§s’ and p§p’. This bias is eliminated if r~1:
One of the ways in which Eq. 4 is useful is the following:

interpretation is often an inseparable part of a test; that is, the

clinically relevant accuracy is not that of the test alone but that of

the test combined with the interpretation of its result. Hence, once

the true accuracy of the test, s and p, has been determined by Eq.

1 or any other method, the performance of the combined system,

the test and its interpretation, can be determined from Eq. 4 by

solving for s’ and p’:

Results

Effects of Interpreter Reliability
We examined the effects of interpreter variability on the

difference between the measured and true accuracy of the test. For

this purpose we fixed the value of prevalence at (A)~0:79, the
measured accuracy was s’~0:87 and p’~0:48, and the accuracy

of the standard was s0~:99 and p0~0:9: The variability of the

test and standard interpreters were taken to be equal, k~k0: This
is a realistic assumption provided any possible differences between

the standard and test have no direct influence on the interpreters’

performance. These values were chosen in order to conform to our

discussion at the end of this section of an actual set of experiments

where the present analysis was used to elucidate the results. Fig. 2

shows that the true accuracy of the test (thick solid curves)

calculated from Eq. 1 rises rapidly with decreasing k: Many other

features associated with Eq 1 are illustrated in Fig. 2. For example,

the set of values of interpreter sensitivity and specificity consistent

with a given k generates the shaded region shown in Fig. 2. The

thin black curve represents the true accuracy when the standard is

replaced by a device that is identical to the test, and the true

accuracy is determined by solving the coupled quadratic equations

that arise from Eq. 1. It is also helpful to examine the accuracy of

the combined system that consists of the test together with the

interpreter, since the test results may in practice be inseparable

from its interpretation. This is plotted as the the thick dashed curve

in Fig. 2. Although lower than the accuracy of the test alone, as

expected, it is significantly greater than the measured value.

The thick gray curve is the true accuracy based on Eq. 4. Since

this equation is based on assuming that the standard and its

interpreter are perfect its estimate differs from that of Eq. 1,

drastically in the case of specificity. The asymmetry is attributable

to the fact that the standard’s actual specificity is substantially

lower than 1: As the interpreter’s reliability increases the true

accuracy of the test (shown by the solid black curve) converges to

a value that is higher than the measured accuracy. This difference

is due to the imperfection of the standard. On the other hand,

when standard accuracy is perfect, s0~p0~1, the true accuracy

(shown by the solid gray curve) does converge on the measured

accuracy as k?1 as expected.

Fig. 2 indicates that the bias introduced is much greater for the

specificity than for the sensitivity. This asymmetry arises entirely

from the interaction of prevalence with interpreter variability. To

see an example of this let both test and standard be nearly perfect

(s&p&s0&p0&1) and note that the measured specificy is

proportional to the probability of the event, n’ & n’0, that is, the
simultaneous occurence of a normal reading in both the reference

and test. This can occur either by the true state being A and both

interpreters misreading it or the true state being N and both

interpreters correctly reading it. The probability of the former is

&(A)(1{r)2 and that of the latter is &(N)r2: As the prevalence

Table 1. Accuracies of EEG0 and EEG1.

s0 p0 s p

1 1 .97 .64

.99 .99 .97 .66

.99 .90 .99 .68

.98 .98 .97 .68

.98 .90 .99 .70

.90 .98 .98 .81

doi:10.1371/journal.pone.0052221.t001
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becomes large, the former dominates. But its value is much smaller

than that of the latter since the interpreter reliability is usually near

unity, r&1: For example (A)~0:79 and k~0:6 jointly imply

r~0:91 (when r~q). Hence with increasing prevalence the true

negative event is increasingly observed only through the co-

incidence of two improbable events, namely through simultaneous

misinterpretation. Consequently the measured specificity is

severely biased downward. If the prevalence becomes small, on

the other hand, the direction of this discrepancy between

measured sensitivity and specificity is reversed.

Effects of Prevalence and Standard Accuracy
We show in the left panel of Fig. 3 the influence of prevalence

on the measured accuracy. As the prevalence increases the figure

shows that the difference between the true and measured

specificity rises steeply while that for the sensitivities decreases.

Increasing imperfection of the reference standard affects these

results by overall raising of the solid black curves (not shown). The

measured accuracy (horizontal dashed lines) was given by s’~0:87
and p’~0:48 and the interpreter reliabilities were k~k0~0:5:
Standard accuracy was given by s0~:99 and p0~0:9: The

increase in prevalence increases the difference between measured

and true specificities, and decreases the corresponding difference

in sensitivity, through the mechanism described in the previous

paragraph. The right panel of Fig. 3 shows the impact of the

accuracy of the standard. We have kept the measured accuracy

constant while varying the accuracy of the standard and keeping

the sensitivity equal to the specificity (s0~p0). The figure shows

that decreasing standard accuracy sharply increases the downward

bias on both the specificity and the sensitivity. Prevalence was

(A)~0:79 and k~k0~0:7: Solid gray curve is the adjustment

from Eq. 4 which corresponds to perfect standard and perfect

standard interpreter. Dashed gray curve is from [10] or,

equivalently, from Eq. 1 with r~q~r0~q0~1 (perfect in-

terpretation accuracy).

Simulations
In order to verify the validity of our analysis we performed a set

of simulations where patient states were randomly generated in

accordance with the fixed value of the prevalence (A)~0:79 and

test true accuracy s~0:99 and p~0:68: The true properties of the
test and standard were used in generating the results, x and x0, of

the test and reference for each patient state. Each result was read

by two simulated interpreters which created a pair of interpreta-

tions in accordance with fixed values of interpreter reliabilities k
and k0: Data were generated for 5120 subjects. We calculated the

sensitivity and specificity of the interpreted test by comparing the

result to those of the interpreted standard. These were plotted as

the red crosses in Fig. 4. We also estimated the prevalence and

kappa from the data and used them in Eq. 1 to estimate the true

accuracy, plotted as open circles. The adjusted values based on Eq.

4 were plotted as filled gray circles. Green circles represent

adjusted values from [10] or from Eq. 1 with r~q~r0~q0~1:
In the top panel of Fig. 4 we took the standard to have the

properties s0~:99 and p0~0:9, and the standard and test

interpreters to have the same reliability. The adjustments based

on Eq. 1 provided a good estimate of the true properties of the

test. The statistical deviations of the estimate around the true

values are a result of the finite size of the study population and

are unrelated to the adjustment formulas. Therefore we used

a large number of subjects to reduce these deviations. The

simulation results closely follow the features revealed in Fig. 2,

such as the severe downward bias on measured specificity, the

insufficiency of the adjustments based on assuming perfect

standard or perfect interpreters, and the convergence, as k?1, of
the measured accuracy to values different than the true

accuracies due to the imperfection of the standard.

In the bottom panels of Fig. 4 the simulations were repeated

with a perfect standard, s0~p0~k0~1: In this case the

adjustments based on Eq. 1 and Eq. 4 agreed exactly. Since the

standard in bottom panels was perfect, the assumption of perfect

interpretation reliability (as in [10]) completely erased the

difference between measured values and those adjusted from

[10] resulting in exact coincidence of red crosses with the green

dots. Note that the generation of the data in the simulations does

not use the analysis described in the Methods, hence the

simulation results provide a reasonable verification of our analysis.

Figure 2. The effect of kappa on accuracy. True accuracy of the test from Eq. 1 (thick solid black curve) and from Eq. 4 (gray curve) with standard
accuracy s0~:99 and p0~0:9, and with no standard (thin solid black curve). The range of accuracy (shaded region) is associated with varying
sensitivity and specificity of the interpreter. Test and reference interpreter reliability are equal, k~k0: Measured accuracy were s’~0:87 and p’~0:48
(horizontal dashed line). The prevalence is (A)~0:79: Thick dashed black curve shows the accuracy of the test combined with the interpreter.
doi:10.1371/journal.pone.0052221.g002

Assessing Diagnostic Tests

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52221



Accuracy of Blinded EEG
We applied the above method to the results of an assessment

of the diagnostic characteristics of EEGs that were interpreted

without access to patient information or technician’s annotations

of the recording. This investigation was part of a clinical study

recently conducted in the emergency departments (ED) of SUNY

Downstate Medical Center and Kings County Hospital in

Brooklyn, New York. The study was approved by the joint

institutional review board (Approval Number: 10-053) and

registered on a clinical trial website (ClinicalTrials.gov,

#NCT01355211). The study enrolled 260 patients who were

in altered mental status. A 30 minute EEG recording was made

from each subject shortly after their enrollment in the study. The

EEG was interpreted and its results were conveyed to the ED

attending to be used in patient care. The interpreter, who was

selected from a team of 7 epileptologists, had full access to the

medical information related to the patient during the interpre-

tation. The EEGs were then deidentified, the EEG technicians’

annotations were removed, and they were reinterpreted off-line.

We refer to these unblinded and blinded readings as EEG0 and

EEG1, respectively. EEG1 was interpreted by two randomly

selected distinct members of the team of epileptologists and the

two sets interpretations of EEG1 were used to determine k: The
results below are for the study population of 141 subjects who

had complete data and for whom both interpreters of EEG1

were different than the interpreter of EEG0.

Since each subject had an EEG0 and EEG1, the study closely

conformed to the classic assessment paradigm considered in this

Figure 3. The effects of prevalence and standard accuracy. Left panel: Accuracy of test (solid black) as a function of prevalence. The measured
accuracy (horizontal dashed line) is constant at s’~0:87 and p’~0:48: Standard accuracy s0~:99 and p0~0:9: Right: Accuracy of test as a function of
the accuracy of the reference standard (s0~p0). Solid gray curves are from Eq. 4 which corresponds to perfect standard and perfect standard
interpreter. Dashed gray curves are from [10] which corresponds to perfect interpreters.
doi:10.1371/journal.pone.0052221.g003

Figure 4. Verification of the analysis by simulations. Simulated clinical study with 5120 subjects where prevalence (A)~0:79, test true
accuracy (solid black horizontal line) s~:99 and p~0:68: Measured test accuracy (red crosses) computed by randomly generating results in
accordance with the true accuracies and interpreter reliability, and calculating the relative frequency of true v false positive v negative events.
Adjusted test accuracy from Eq. 1 (open circles), from Eq. 4 which corresponds to perfect standard and perfect standard interpreter (gray dots), and
[10] which corresponds to perfect interpreters (green dots). Top panels:s0~0:99 and p0~0:9, k~k0: Bottom panels: s0~p0~k0~1:
doi:10.1371/journal.pone.0052221.g004
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paper. EEG0 was the standard and EEG1, which lacked

annotations and patient information, was the test. The interpreta-

tions placed each EEG into one of multiple predetermined

categories. For the purposes of this discussion we coded them into

the groups Abnormal v Normal. The prevalence of abnormality in

EEG0 was (A)~0:79: The interpreter reliability was computed

from the data as k~0:5 which is in the range of moderate

agreement. Taking into account the prevalence, this corresponds

to the fact that a randomly chosen pair of interpreters have a 91%
chance of agreeing on the classification of an EEG.

The measured accuracy of EEG1 were s’~0:87 and p’~0:48:
Note that the low measured specificity is consistent with the high

prevalence. Table 1 shows the accuracy of EEG1 adjusted using

Eq. 1 by assuming a variety of values for the accuracy of EEG0

and k~k0~1: As expected, lowering the assumed accuracy of

the standard increases the estimate of the true accuracy of the

test. As one plausible scenario consider the 3rd row of Table 1

where EEG0 has submaximal performance and EEG1 is

somewhat less accurate than EEG0. This could have come

about through the lack of annotations which presumably caused

a neglibile increase in false negatives but a larger one in false

positives since annotations play a role in artifact rejection. Hence

the specificity of EEG1 was lower than that of EEG0. However,

in the 3rd row both the sensitivity and specificity of EEG1, :99
and :68, are considerably higher than the measured values.

When the true accuracy of EEG1 is combined with the

interpreter performace, via Eq. 4, these correspond to sensitivity

and specificity :90 and :65:

Discussion

We have reported the development, formulation and validation

of an improved analytical solution for estimating the inherent

sensitivity and specificity of a diagnostic test. In particular the

improvement corrects for the bias in estimating these measures of

diagnostic accuracy when the results of the diagnostic and the

reference test against which it is compared both depend on the

unreliable interpretations of experts, which is commonly the case

in medicine. The corrected sensitivity and specificity measures rely

on knowing an index of the unreliability, specifically the kappa

statistic for the interpretation. We found that without this

correction, sensitivity and specificity are underestimated and the

extent of the inaccuracy differs for sensitivity and specificity as

a function of the prevalence of abnormality and the magnitude of

kappa. These findings suggest a new paradigm for future efforts to

estimate the operating characteristics of novel devices in the

absence of a true gold standard reference test, which is an

especially common case for novel medical diagnostics where

repeated testing on homogeneous populations is either impossible,

unethical or prohibitively expensive. In the absence of a true gold

standard, the new paradigm requires that the study design also

estimate kappa, either by prior study, or perhaps better, by

measuring it directly by designing the study to include multiple

expert interpretations of the same data. In fact, the bias introduced

by IIR variability is compounded by an imperfect reference

standard and the tools have not existed for adequately analyzing

and accounting for their combined effect. Here we have described

how such adjustments can be made, examined various special

cases, and illustrated the results with simulations and sample data

taken from studies of assessment of diagnostics procedures. The

correction formulas have been implemented in a convenient

format in Matlab and can be obtained by request from the

corresponding author.

The bias introduced by an imperfect reference standard on the

measured sensitivity and specificity of a new test has been

previously studied. It was shown that if the reference standard has

known characteristics these can be used to correct the measured

accuracy [10,11]. Although true accuracy of a test is independent

of the prevalence of abnormality, prevalence plays a prominent

role in the measured accuracy when the reference is imperfect. In

addition there are methods that can assess the performance of a test

in the absence of any reference standard by applying multiple

types of tests to multiple populations with different prevalences.

Originated by Hui and Walter [12] and further developed in

a Bayesian framework, these have been used widely in assessing

the accuracy of various tests in bioengineering, medicine, and

veterinary science [6,13–15]. These methods suffer from the

significant shortcoming that they require that multiple types of

tests and multiple populations be used, which can be impossible,

unethical or prohibitively expensive in certain medical circum-

stances. Such methods also rely, as we do, on the assumption that

the results of different tests on the same individual are assumed to

be conditionally independent. It is possible to circumvent this

assumption at the expense of the added complexity of modeling

the dependence [16]. As an example of how conditional

independence could be violated consider that the positive event,

a, in fact lumped together two distinct underlying categories, aI
and aII , where aI was always correctly classified in all

interpretations while aII was always misclassified. In this case

interpretations would remain correlated even when conditiona-

lized on A. If a similar situation held also for the negative event,

the reliability of interpretation would be perfect, k~1, while the

accuracy could have any value depending on the prevalences of aI
and aII and their counterparts in the negative category. Analogues

of this situation may arise, in particular, if the classification is being

performed by a deterministic automated algorithm.

We considered specific applications of test assessments to

illustrate the use of our method. They were selected because they

provide clear examples for the adjustment we propose. First

consider [1], which is a study that assessed the accuracy of anal

dysplasia screening for HIV infected adults by using as standard an

anal punch biopsy obtained at time of high resolution anoscopy

(HRA). The screening test was HRA cytology obtained by a HRA

operator at time of HRA. The measured accuracy were s’~0:66
and p’~0:9 with a prevalence of 0:24 in the study population. The

authors assumed that the standard and test were conditionally

independent given the disease status and that anal punch biopsy

had sensitivity and specificity of histopathologic anal HSIL as

reported by [17], s0~:74 and p0~:91: They estimated, using the

adjustment formula provided by [10], that the true accuracy was

s~0:89 and p~0:96: A shortcoming of their study, as the authors

note, is that they accepted the pathologists’ clinical report as fully

reliable and neglected the variability among pathologists reading

the same cytology and biopsy specimens. Although such variability

has been quantified in previous studies, the authors, to our

knowledge, had no available framework for incorporating it into

their assessment. We took k0~:94 and k~:88, representing the

higher end of the values reported in the literature [7], and used

Eq. 1 together with the values of measured test and standard

accuracy determined by [1]. The resulting true test accuracy were

s~:95 and p~1: Since the pathologist variability is an inseparable

part of the screening process, the clinically relevant accuracy is

that of the HRA cytology combined with the reading of the

pathologist. We calculated the true sensitivity and specificity of this

combined sytem as :93 and :98: Note that these are not only

higher than the measured values but also represent a significant
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readjustment of the authors’ own adjusted values, especially of

sensitivity.

Another example is provided by [13] who quantified the relative

performance of different diagnostic polymerase chain reactions

(PCR) in the diagnosis of T. brucei. They used a T. brucei s.l.

specific PCR (Test 1) and a single nested PCR targeting the

Internal Transcribed Spacer (IRS) regions of trypanosome

ribosomal DNA (Test 2). They employed a Bayesian formulation

of the Hui-Walter latent class model to estimate the performance

of the tests in the absence of a gold standard in the cattle, pig,

sheep, and goat populations in Western Kenya. We only discuss

the results for cattle. They report a prevalence of 0:091 and

adjusted sensitivity and specificities of :76, :998 and :64, :997, for
Test 1 and Test 2, respectively. The authors note that the

sensitivities are unexpectedly low considering the detection limits

of the PCRs themselves and they speculate that this may be due to

errors arising from sample storage elements of the testing system.

In particular, the subsample taken by punch may generate a false

negative due to localization of parasite DNA on the sample. Such

errors would generate imperfect reliability that could be measured

by kappa. The true accuracy may then be estimated via Eq. 1. For

example assuming k~k0~0:8, which corresponds to a misclassi-

fication error rate of 1:7% (from Eq. 3), leads to readjusted

sensitivity and specificities of :903, 1 and :758, 1, for Test 1 and

Test 2, respectively. Combined with the sampling error, the

readjusted accuracy of the tests are :89, 1 and :749, :998,
significantly higher than the authors’ adjusted values. Since the

authors had already adjusted for imperfect standard and do not

cite the measured accuracy, in our readjustment of their values we

took the standard to be perfect; however, this approach involves an

error since the effects of the standard and interpreter are not

additive, as Eq. 1 shows.

Finally consider [18], who studied the sensitivity and interrater

reliability of computed tomography (CT) perfusion and CT

angiography on the detection of early stroke and related

morbidities. They measured sensitivity in the range :79{:9: We

used the value s’~:9 for illustration. They did not report

specificity but, for the present purposes it sufficed to take

sensitivity and specificity to be equal. They also reported

k~:64: The prevalence in the study population was A~:37 and

their gold standard was final diagnosis of stroke made from follow-

up neuroimaging. While taking the standard to be perfect,

s0~p0~1, we found that the effect of introducing a variability

in the interpretation of the standard, k0~:86, which corresponds

to a misclassification error rate of 3:4%, was to give the true

sensitivity of the combined test and its interpreter as 0:95, based on

Eqs. 1 and 4. We also found that additionally incorporating a small

imperfection into the standard (s0~p0~:99) resulted in a true

sensitivity that equaled that of the standard.

Numerous studies invesigate accuracy and kappa separately

without quantitatively or conceptually linking them together [18–

25]. To our knowledge the work presented here is the first analysis

that has been carried out to meet the need for taking into account

IIR variability in the assessment of test accuracy. As shown in this

paper IIR variability has a large impact on the measured accuracy

and thus going forward, estimates of the accuracy of medical

diagnostics should be corrected for kappa and its combined

influence with the accuracy of the standard.

Supporting Information

Appendix S1 Details of the analysis whose results are presented

in the article. In particular, the derivation of the relationship

between the measured and true accuracy of a test.

(PDF)
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