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ABSTRACT

Purpose: Radioiodine therapy (RAI) has traditionally been used as treatment 
for metastatic thyroid cancer, based on its ability to concentrate iodine. Propositions 
to maximize tumor response with minimizing toxicity, must recognize the infinite 
possibilities of empirical tests. Therefore, an approach of this study was to build a 
mathematical model describing tumor growth with the kinetics of thyroglobulin (Tg) 
concentrations over time, following RAI for metastatic thyroid cancer.

Experimental Design: Data from 50 patients with metastatic papillary thyroid 
carcinoma treated within eight French institutions, followed over 3 years after initial 
RAI treatments, were included in the model. A semi-mechanistic mathematical model 
that describes the tumor growth under RAI treatment was designed.

Results: Our model was able to separate patients who responded to RAI from 
those who did not, concordant with the physicians’ determination of therapeutic 
response. The estimated tumor doubling-time T( d  was found to be the most informative 
parameter for the distinction between responders and non-responders. The model 
was also able to reclassify particular patients in early treatment stages.

Conclusions: The results of the model present classification criteria that could 
indicate whether patients will respond or not to RAI treatment, and provide the 
opportunity to perform personalized management plans.

INTRODUCTION

Radioiodine therapy (RAI) has been used in the 
treatment of metastatic thyroid cancer since the 1940’s [1]. 

This therapeutic radiation is based on the ability of well-
differentiated papillary or follicular thyroid cancer cells 
to absorb and concentrate iodine. However, these cells 
show reduced expression of the sodium/iodide symporter 
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(NIS) and thyroid peroxidase (TPO) compared to thyroid 
epithelial cells, which may account for the lower values 
of radioiodine uptake and effective period in thyroid 
cancer tissue. The efficacy of radioiodine therapy not 
only depends on the physiological targeting of the isotope 
treatment used in these studies, but also on the following 
additional factors:

1. The ability to up-regulate iodine transporter 
expression by increased Thyroid-Stimulating Hormone 
(TSH) levels, with either endogenous TSH or recombinant 
human TSH.

2. Optimal patient selection for RAI based on tumor 
characterization for NIS expression by molecular imaging.

3. The use of supra-physiologic thyroid hormone 
replacement to achieve TSH suppression between 
therapeutic cycles.

Iodine-avid metastases from thyroid cancer are 
generally sensitive to RAI and associated with excellent 
prognosis. Best responders to RAI are patients with 
highly avid metastases without structural correlate 
on high-resolution imaging studies, most frequently 
occurring in young subjects [2]. Often, distant metastatic 
lesions that are not ablated with 131I, may lose the ability 
to concentrate isotope 131I, possibly due to the clearance 
of well-differentiated tumor cells, and the persistence 
and expansion of less differentiated cells. Under 
these circumstances, 131I becomes ineffective and the 
treatment paradigm of progressive disease shifts toward 
a molecular-targeted therapy, which combines kinase 
inhibition and anti-angiogenic effects.

Currently, dosing regimens of RAI are typically 
selected based on clinical experiment and indicate tumor 
response in terms of serum thyroglobulin (Tg  levels, 
post131I therapy scintigraphy and anatomical imaging. 
However, treatment schedules that refer to administered 
131-I activities and time interval between cycles are 
purely empirical.

Various dosimetric approaches have been proposed 
in order to achieve an optimal ratio of tumor to healthy 
tissues absorbed dose. Individual dosimetry provides a 
personalized therapeutic approach by maximizing the 
radiation absorbed dose to the tumor with preservation 
of at-risk organs [3]. From a radiobiological standpoint, 
however, there are many differences between internal and 
external radiotherapy. During radionuclide therapy, the 
cells and organs irradiated on, last not only for seconds or 
minutes, but also continuously over a long period of time, 
while the same absorbed dose is delivered. Therefore, the 
radiobiological model is complex and needs to be adjusted 
to radionuclide therapy. Beyond the model, dosimetry 
often requires prolonged, demanding procedures in order 
to collect measurements such as, blood and urine samples, 
acquisition of emission images at multiple time-points, 
and measurements of external dose rates [4]. Lastly, there 
are still unidentified individual susceptibilities to radiation. 
Furthermore, there is a crucial concern of potentially over/

under dosing patients. Therefore, it is of major importance 
to develop alternative or complementary strategies.

The important approach is to determine which 
protocols would be the most effective to patients with 
minimal cumulative RAI activity in order to reduce 
potentially secondary side effects [5]. This ideal 
scenario is limited by the fact that empirical tests have 
infinite possibilities. A reasonable approach, however, is 
to construct a mathematical model capable of describing 
how the actions of the drug effects the characteristics 
of cancer and host. Once models are applied to actual, 
available population data, they must be validated by a 
variety of validation techniques. At that time, models 
could be granted the next level of investigation: 
simulating various in silico protocols of treatment 
administration. From this stage, the optimal outcome 
will surface, depending on the models development 
based on the project focus.

A key challenge that remains is interpreting the 
reality of the produced optimal scheme, such that the 
results should be in accordance with actual predications 
[6]. Currently, a rising effective strategy relies within 
“PK-PD” (pharmacokinetic-pharmacodynamic) models. 
As an example of proof of concept, we mention the 
phase I clinical trial named “Model 1” which was 
carried out in the framework of metastatic breast cancer 
and whose administration of the docetaxel-epirubicin 
doublet was entirely managed by a mathematical model 
[7, 8]. The results of this work allowed for the success 
in distributing the maximum tolerated doses over 14-
day cycles, while respecting haematological toxicity 
constraints. Similarly, a mathematical model designed 
an ongoing Phase Ia/Ib clinical trial, for patients with 
metastatic NSCLC or malignant pleural mesothelioma. 
This model directed the oral administration of 
vinorelbine by metronomic schemes, which ensured 
optimal anti-angiogenic effects and acceptable 
haematological toxicities. Finally, more recently in Serre 
and al. a mathematical model was proposed to optimize 
the management of coupling RTX-Immunotherapy 
(Anti-PDL1, Anti-CTLA4) [9].

In metastatic thyroid cancer, serum thyroglobulin 
( Tg  levels are a major surrogate marker of responding 
to RAI. Hence, the aim of the work was to build a 
semi-mechanistic mathematical model that describes 
the tumor growth under RAI treatment using the 
thyroglobulin levels T( )g . Note, that the main goal of 
the proposed model is not only to describe the time 
course of thyroglobulin, but rather the tumor doubling 
time (Td) of the disease under RAI treatment. We have 
chosen to draw as much information as possible from 
the Tg, the measure of which is the most reproducible 
with the minimum of bias between two different centers. 
Therefore, we voluntarily decided not to introduce 
imaging data into the model.



Oncotarget39169www.impactjournals.com/oncotarget

RESULTS

Patients’ characteristics and outcomes

50 patients were enrolled in the study, where the 
ages ranged from 8 to 55 years with an average age of 29 
years. Patients were initially treated by total thyroidectomy 
with lymph node dissection, with the exception of 3 cases, 
followed by RAI. pTNM stage was pT1/pT2 in 7 cases, 
pT3/T4 in 43 cases, N1/Nx in 47/3 respectively, and M1 
in all cases. Patients were treated with a fixed RAI activity 
ranging from 3.7 to 5.5 GBq, apart from one case. The 
youngest patient of 8 years old, exceptionally, received 
1.85 GBq for their first treatment. A fixed administration 
of RAI activity every 6-8 months was the most frequently 
prescribed schedule. The mean cumulative activity was 
22.2 GBq. Eighty percent of the patients were clinically 
classified as responders with the following criteria (all 
present): decrease in stimulated Tg values over the time, 
decrease of tumor uptake or number of RAI-avid foci 
on post-therapy whole body scan (WBS), absence of 
newly diagnosed lesions on WBS, and absence of disease 
progression on regular radiologic evaluations.

Performance of the prediction model

The parameters for our model were estimated using 
data from 50 patients treated for metastatic thyroid cancer.

For each patient throughout the treatment duration, 
empirical data for the concentration of stimulated Tg 
was available at each treatment cycle, prior to RAI 
administration. This data was used in the parameterization 
process for our model.

The population and inter-individual variability 
values for the model parameters were of the Nonlinear 
Mixed Effect Models (NLME) type. The six parameters 
of the final model, ρ λ, , , , ,a k T Ne d 0 , were estimated using 
Monolix software (version 2016R1 Antony, France: 
Lixoft SAS, 2016). These parameters were assumed to 
be log-normally distributed amongst the individuals in 
the population, to insure biological relevant values. For 
the residual error, a normal distribution with proportional 
variance was chosen.

The first estimations showed that parameters 
ρ λ,� ,�a  had weak variability, with relative standard error 
(R.S.E) <2%. These parameters were subsequently fixed. 
Parameter �βTd  proves the classification is statically 
significant with a p-value of 1.4e-005. The results 
obtained for the estimation of population parameters are 
summarized in Table 1.

Classification of responders vs non-responders

The model distinguished two groups of patients. 
The kinetics of stimulated Tg values for both groups 
is represented in Figure 1. The variation of the tumor 

doubling time under treatment, represented by parameter 
Td , illustrates the distinction within these patient groups 
as: responders vs. non-responders. Td  was considered a 
key quantitative index of treatment effectiveness. The 
mixture procedure implemented in Monolix accurately 
separated patient groups: Group 1 (cat1) and Group 2 
(cat2) for non-responders and responders, respectively. 
From Table 1, we have that 27.5% of patients were 
classified as non-responders and 72.5% as responders, 
from the mixture parameters π

1 2, .  These results are in 
accordance with the physicians’ classification of 80% 
responders.

The non-responder group was classified by Td  
having a mean of 9.8 months, with a R.S.E of 16%, and 
responders were classified by Td  having a mean of 66.6 
months, with a R.S.E of 44% (Table 1). We can see a clear 
separation of groups by the Td in the boxplot (Figure 
2). A visual check scheme was done that showed all 
empirical percentiles were within the corresponding 90% 
pharmacodynamic confidence intervals (Figure 3).

Selected cases

Figure 4 shows that with using only partial data 
for Tg, the model was still able to classify the patients 
accordingly. This dynamic is showed under Patient(s) 
31,33 _(PD). Regarding patient 31, the model predicts 
their status as a non-responder depending on an estimation 
of their T , d  as 6.36 months, which is a relatively short 
doubling time in the setting of thyroid cancer. The status 
was also accurately predicted with the first 4 stimulated 
Tg-values (Td  of 9.46 months) (Figure 4). Similarly, 
patient 33 was classified as a responder with estimation 
of the Td  of 69.8 and 68.2 months, with respectively 5 
or 4 stimulated Tg-values (Figure 4). These two patients 
provide evidence that the status could be predicted with 
the first stimulated-Tg values.

DISCUSSION

In the recent years, mathematical modeling has 
gained an increased role for optimizing therapeutic 
strategies in oncology [6]. This present study shows 
mathematics can be used to model the Tg kinetics during 
RAI in metastatic thyroid cancer patients, and could 
provide perspectives for possibly applying modeling in 
the clinical decision making process.

This study suggests that it would be possible to 
distinguish the earliest possible responding patients by 
estimating the tumor doubling-time parameter, T ,d  for 
each patient that follows 3 to 4 treatments. This work 
could be used as a tool to help guide clinicians to treat 
more efficient administration, by having the potential to 
minimize the administration dose and/or frequency of RAI 
iodine 131. The model was able to distinguish between 
responders or non-responders to RAI with agreement 
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with the clinical classification based on Tg kinetics and 
physicians imaging. The proposed model takes into 
account several biologically relevant parameters and the 
effect of RAI, including the estimated effect. The model 
showed that the tumor doubling-time T( d , was the most 
informative parameter for distinguishing responder from 
non-responders and could be used as a new classifier. 
From a mathematical standpoint, the parameters of this 
model were estimated with minimization algorithms, 
which makes it possible to find key parameters relative for 
a given patient, the best fit between the observed values 
of stimulated T , g

 and the predicted curve calculated 
from the equations of the model. The mixture algorithm 

implemented in the software Monolix split the population 
into two classes: responders and non-responders to RAI. 
The p-value for mixture parameter βTd , p = × −1 4 10 5.

, which proves the classification is statically significant. 
Classification was discordant for 2 patients between the 
models’ classifier and the physician’s treatment response 
assessment. Since, these patients exhibited a slight 
decrease in Tg without progression, they were classified 
by the physicians as responders.

From our example of selected patients, we show the 
model predicts the same classification as non-responders 
or responders, with full or partial data. Observing patient 
31, the model predicts their classification as a non-

Table 1: Estimations of Population Parameters 

Parameter Value S.E. (S.A.) R.S.E. (%)

Population

 N   z
1.12e+009 1.2e+003 0

 k   e 0.319 0.068 21

 λ 3.86e-009 - -

 ρ 0.00407 - -

 a 0.0169 - -

 Td 9.8 1.6 16

 βTd 1.92 0.44 23

Interindividual Variability

 N   z
2.05e-007 - -

 k   e 1.16 0.23 20

 λ 2.47 0.34 14

 ρ 0 - -

 a 0 - -

 Td 0.3 - -

Mixture

 b 0.372 0.031 8

 πcat1 0.275 0.089 32

 πcat2 0.725 0.089 12

Group Parameters

 Td cat=1 9.8 1.6 16

 Td cat=2 66.6 29 44

Parameter estimates are displayed based of the estimation outputs from Monolix software. The values for the population 
parameters were found, along with their inter-individual variability. The bottom three values correspond to the confirmation 
of the mixture algorithm. Bottom: Mixture algorithm from Monolix used to estimate the mode.
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responder, with only using the first five measurements 
of the observed stimulated Tg  from the initial eight, 
subsequently after 4 treatments of 131I an activity of 3.7 
GBq. With only these first few measurements of Tg,  
the estimation of Td  is 9.46 months, which although 

is a short amount of time, was found to be sufficient to 
classify Patient 31 in group 1 (Fig.4, Patient 31_PD) as 
a non-responder. The same classification was accurate 
while saving three additional treatments. Similarly, using 
only the first 4 values of T ,g  the estimation of the Td  for 

Figure 1: Observed Stimulated Tg Classification of Patients. Observed stimulated Tg values of patients. This figure represents 
the group classification visualized by the mixture algorithm by the model, which separates the patients according to the pace of the 
thyroglobulin evolution curve.

Figure 2: Tumor Doubling Time Group Classifications. The boxplot above separates the groups via the tumor doubling, from 
non-responder Td average 9.8 months, and responder Td average 66.6 months.
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patient 33 is 68.2 months, which is very large, but also 
sufficient to see that the patient 33 was in the responders 
group (Fig.4, Patient 33_PD). The same classification was 
accurate while saving two additional treatments. We could 
deduce that these patients were over treated, however, this 
remains speculative in the absence of a randomization.
Patient 31 was recognized as non-responders after the 
third treatment, but received three additional doses of 
5.5 GBq over a period greater than 40 months, which 

were excessive, and perhaps could have been avoided 
if there would have been a criterion to characterize 
non-responders. Likewise, the model predicted that the 
T  g  for patient 33 was constantly decreasing after the 
fourth treatment, and was subsequently classified as a 
responder. However, this patient received an additional 
two treatments of 3.7 GBq, which could be unnecessary to 
achieve the same results. Moreover, we have investigated 
by stimulation, the option of increasing the activity from 

Figure 3: Visual Predicted Check Scheme. A visual predicted check scheme was done that showed all empirical percentiles were 
within the corresponding 90% pharmacodynamic confidence intervals.

Figure 4: Patient Example Predictions. Model fits for two patients classified as non-responder (P31) and responder (P33). The top 
2 subfigures represent the full patient stimulated Tg data and model fits. The bottom two represents the same patients, while using less 
stimulated Tg data points. The importance of this figure is to demonstrate that while having limited data, the model can still classify patients 
to whither they will respond or not to treatment.
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the start of treatment from 3.7 Gbq to 5.5 Gbq every 
four months over 80 months, in order to verify whether 
the patient would have responded to a higher density 
treatment over shorter cycles. However, our results show 
that Patient 31 remained as a non-responder.

In the recent years, several models have been 
proposed in oncology for improving drug delivery 
and efficacy [7–15]. We have also developed a similar 

approach in the evaluation of patients with high serum 
prostate specific antigen (PSA) levels with excellent 
preliminary results in the distinction between benign 
and malignant prostate lesions [16–18]. Our preliminary 
results open new perspectives for individualized 
management of patients. As this has already been done 
in certain phase I studies [7, 19], the model here could 
bring guidance for clinicians towards improving adaptive 

Figure 5: Schematic Model Diagram. A represents the activity of radioiodine, N, represents the metastatic thyroid cancer cell count 
and Tg, represents the thyroglobulin concentration. Solid lines depict model flow between compartments. Dashed lines depict interactions 
between compartments.

Table 2: Description of Variables and Parameters of the model 

Variable Description Units

 A Radioiodine Therapy Activity GB           q

 N Tumor Cells cells

 T         g Thyroglobulin Concentration μg L/

Parameter

 a Delayed target iodine effectiveness rate mo1/

 T         d Tumor doubling time under treatment mo

 ρ Efficiency rate of iodine on tumor cells 1/GBq × mo)

 k          e Elimination rate of thyroglobulin from blood mo1/

 λ Concentration of thyroglobulin produced by one tumor cell μg /(L× mo)

The model is constructed with three variables, representing the interactions between RAI treatment, metastatic thyroid cells 
and thyroglobulin concentration. The five parameters of the model are described along with their corresponding units.
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treatment, after identifying the parameters for each patient. 
The use of a model could help clinicians tailor strategies 
towards personalized medicine.

Our patient population was very specific with 
small RAI positive lung metastases, explaining the high 
rate of response to RAI [2]. The next step would be to 
validate our model in another independent population with 
similar disease. After validation, a clinical study could 
be designed: empirical vs model-assisted decision. After 
3 cycles of RAI therapies, Tg levels could be inserted 
into the model. Based on the predicted tumor doubling 
time, the model will classify the patients with a certain 
percentage into a responder or non-responding group. The 
model could detect that the patient will not respond to 
RAI treatment. In this event, it could be suggested by the 
clinician to stop treatment, due to unnecessary secondary 
side effects, and potentially to find other more effective 
treatment options (TSH suppression alone, TKI). If the 
patient is classified to respond to RAI, the power of the 
model could suggest the duration response time, due to 
the delayed radioactive iodine effect which continues to 
act against cancer cells over time. In this event, the next 
treatment activity could be administered before the rise in 
Td is predicted. The advantage of this is to disperse the 
administration of RAI over time.

Our model allows for a quantitative interpretation of 
varying Tg concentration, according to the administered 
treatments. Using the model, the Tg concentration plays 
an intermediate role to provide an estimation of the Td 
doubling time, which was found as the key parameter 
representative of the evolution of tumor cells. The Td 
provides information to clinicians, which only partially 
reflects tumor behavior, and does not represent full 
accuracy to be used individually, but can be a tool to aid 
in the decision making process. The models classification 
of the tumor doubling time average estimates were 
66.6 months and 9.8 months for responders and non-
responders, respectively (p<10-3). The Td  was found to 
decrease over time for responders, a result suggesting 
that RAI could change the behavior of a treated tumor. 
The mechanism is still unknown, but has also been 
observed with anticarcinoembryonic antigen pretargeted 
radioimmunotherapy in progressive medullary thyroid 
carcinoma [20]. Similarly, studies have quantitatively 
found that the T ,d  was used as a parameter to monitor 
early response to treatment for brain cancer [21].

In clinical practice, when a patient is being 
monitored under treatment for various changes for 
thyroglobulin levels, clinicians are exposed to this data. 
Ideally, there are treatment decisions to be made at a given 
point during the treatment regimen. With limited data, it 
would be useful to have various criterions to assist with 
these decisions. We pointed out that the model classified 
patients with all the given data, and then with only the 
first few data points. The importance here is that if the 
model can still classify the responsiveness of patients 

early, then various treatment options could become more 
readily available; such as lowering or increasing RAI 
administrated activities, abolishing treatment, shifting to 
other approaches.

There are some additional parameters that might 
interplay and influence the reliability of the model. For 
example, the change in TSH can influence Tg levels, or 
the tumor size having small metastases <1mm, could be 
less sensitive to RAI, since most of the dose from beta 
particles are deposited outside these micrometastases 
[22]. However, these parameters would be difficult to 
realistically integrate into the model, but physicians could 
still consider its use and should maintain knowledge of the 
additional information that can be used in the interpretation 
of the model parameters. In some rare cases, stimulated 
Tg could be low despite the presence of distant metastases 
probably due to defects in Tg expression in tumor cells 
[23]. In this cases, the model can not be applied. The 
evaluation of post-therapy scan could help to identify 
these rare cases and prevent the application of the model.

Nevertheless, an extension of this work could also 
be envisioned for patients with refractory thyroid cancer, 
using more sophisticated mathematical models describing 
metastatic disease [11, 24] and joint administration of 
chemotherapy and TKI, in order to increase synergy 
effect and controlling toxicity [25]. Finally, we can also 
use the recent work to test whether one can derive a 
benefit from an abscopal effect in the synergy RTX and 
immunotherapy [9].

We can summarize our approach by acknowledging 
how mathematical modeling is a powerful tool, which 
provide novel insights from biology to physicians. In 
conclusion, this study shows that mathematical modeling 
accurately predicts Tg kinetics, which is foundational in 
the evaluation of RAI response. With the assistance from 
the model, the estimated tumor doubling time under RAI 
therapy (Td) can give us a direct understanding of disease, 
which could open new perspectives for computational 
benefits and collaboration in the clinical treatment decision 
making process.

MATERIALS AND METHODS

Study design

Clinical and biochemical characteristics, treatment 
regimens, and outcomes of metastatic thyroid cancer 
patients treated with RAI were retrospectively collected at 
eight referential institutions in France.

Eligibility criteria

The inclusion criteria were: papillary thyroid 
carcinoma demonstrated from initial pathological report, 
presence of diffuse lung metastases at diagnosis on post-
therapy scan, at least 3 courses of radioiodine (RAI) 
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therapy during follow-up, endogenous TSH stimulation 
(i.e., hypothyroidism) for preparation to RAI, at least 3 
years of follow-up after initial RAI ablation, pulmonary 
nodules <1 cm in diameter on CT, which are performed 
within the first 2 years post diagnosis.

Non-inclusion criteria were: presence of bone 
metastasis at diagnosis, other thyroid cancer histologic 
types or variants, and presence of anti-Tg antibodies at 
diagnosis.

Mathematical model

Our model was constructed to focus on the 
interactions between radioiodine activity, metastatic 
thyroid cancer cells, and thyroglobulin concentration. The 
model encompasses three compartments. The radioactive 
iodine activity (RAI) is the input compartment (A), which 
irradiates the tumor cells (N). The output of the model 
is reflected by the concentration of the thyroglobulin 
level (Tg). The given information used includes the 
administered quantity and frequency of the RAI activity 
and the post stimulated Tg levels, prior to each treatment 
administration. From these two given input and output 
sources, the model permits to deduce the unknown 
information for the tumor cell quantity (cells), which is 
representative of the disease state (Figure 5).

We let A t( )  represent the RAI activity at time t  and 
the constant a(inmonth-1), will describe the delayed target 
effect over time of the iodine on cancer cells, where the 
effect duration could be more than two times higher than 
the half-life of the iodine 131, which is 8 days, on average. 
If the activity A0  (GBq) is administrated at on the onset of 
each treatment, we have

It is important to note that the above equation does 
not describe the physical half-life of RAI, but rather its 
effect on cancer cells acting with a continuous, low dose 
irradiation flow. This assumption allows RAI to continue 
to kill off cancer cells slowly over time. Numerous studies 
have proposed other sophisticated models to describe 
tumor growth [11]. For example, it is known that in 
absence of treatment, tumor growth can be well described 
by a Gompertz model, as reported in several studies [26]. 
Nevertheless, our observation time range is limited to 3-4 
years, in which an exponential growth model provides a 
suitable approximation of tumor growth

To account for the effect of RAI on the tumor cells, 
the tumor growth can be modeled as:

where N0  is the initial size (in number of cells) of 
the tumor at the onset of treatment. As N0  is not given in 
the data, it is unknown, and therefore estimated. The tumor 
doubling time under treatment, T (inmonth)d , is assumed 
to be constant during the treatment period. Following 
this idea, Td is not the natural tumor doubling time, but 
rather takes the role as the tumor doubling time under 
RAI treatment. The constant ρ (GBq mo× −1)  becomes 
an efficiency parameter of the RAI effect on cancer cells.

We shall denote T tg ( )  as the concentration ( μg L/ ) 
of thyroglobulin at time t  in the blood.

With drug administration, we set that:

where k inmonthe ( )−1  is the constant elimination 
of thyroglobulin from the blood and the constant λ   
( )�µg L mo× ×− −1 1  denote the concentration of thyroglobulin 
per unit time produced by one cell, and T (0)g  denotes the 
first value of Tg  prior to the first treatment.

This last equation represents the evolution of 
thyroglobulin concentrations according to the treatment 
administered. It is important to note that our accumulated 
patient data did not include measurements for the exact 
direct tumor mass volume, as could be assessed by 
anatomical imaging. Thus, the tumor mass was estimated, 
and treated as an unknown parameter, N . 0  The model had 
estimated the tumor doubling time under treatment, Td, 
based on the previously measured stimulated thyroglobulin 
level (Tg) from data. Thus, N0  was indirectly estimated 
based on Tg, via the interactions through Td.

Hence, the proposed model is managed by 6 
parameters: ρ λ, , , , ,a k T Ne d 0  described in Table 2, along 
with the variables used.
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