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Abstract
Background: Currently available methods to predict splice sites are mainly based on the
independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence.
Apart from often being computationally expensive, this approach is vulnerable to several problems
– hence the need to develop novel strategies.

Results: We propose a method, based on a novel multiple genome-EST alignment algorithm, for
the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions)
due to independent single EST alignments to the genomic sequence our approach performs a
multiple alignment of transcript data to the genomic sequence based on the combined analysis of
all available data. We recast the problem of predicting constitutive and alternative splicing as an
optimization problem, where the optimal multiple transcript alignment minimizes the number of
exons and hence of splice site observations.

We have implemented a splice site predictor based on this algorithm in the software tool ASPIC
(Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools
by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient
transcript alignment and adopts dynamic programming for the refinement of intron boundaries.
ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the
detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl
and Unigene databases and also implements an upload facility.

Conclusion: Extensive bench marking shows that ASPIC outperforms other existing methods in
the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also
requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web
resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.

Background
The completion of several genome projects has, rather sur-
prisingly, revealed that despite a remarkable heterogeneity
in organism complexity and genome size, the variation in

total gene number is much less pronounced, with a less
than a 10-fold increase in gene number between prokary-
otes (e.g. E. coli) and vertebrates (e.g. human) [1].
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Table 1: Benchmark comparison of ASPIC with other similar tools

ASPIC ASAP ASD ACEVIEW

GENE #introns 
(#novel)

#TS #EST/splice #introns 
(#ASPIC)

#TS #introns 
(#ASPIC)

#TS #introns 
(#ASPIC)

#TS

ABCB10 12(0) 2 12.42 12(12) 1 Not Found 13(12) 3
ACADM 21(1) 15 31.52 15(14) 6 Not Found 22(20) 14
ACTN2 23(0) 28 19.09 20(20) 1 22(22) 4 23(23) 8
ADAM15 41(4) 67 40.07 13(13) 4 29(29) 11 56(37) 25
ADAMTS4 8(0) 3 8.63 7(7) 1 8(8) 4 8(8) 3
ADORA1 13(1) 10 4.69 8(8) 4 12(12) 9 10(9) 7
ADORA3 15(13) 5 6.13 2(2) 2 Not Found 3(2) 3
AGL 40(1) 12 14.48 38(38) 1 Not Found 39(39) 10
AGRN 41(4) 21 16.98 35(32) 1 Not Found 45(37) 11
AGT 7(2) 17 52.86 4(3) 1 Not Found 9(5) 8
AHCYL1 26(4) 35 48.50 19(19) 5 19(19) 4 26(22) 13
AKR7A2 9(1) 6 73.33 6(6) 1 7(7) 2 31(8) 15
ALDH9A1 17(4) 10 39.29 11(11) 2 Not Found 16(13) 7
ALPL 15(0) 8 19.47 14(13) 3 13(13) 3 17(15) 9
AMPD1 14(0) 4 7.64 13(13) 1 Not Found 45(14) 12
ANGPTL1 6(0) 3 10.50 5(5) 1 Not Found 6(6) 4
ANGPTL3 6(0) 5 19.17 6(6) 2 Not Found 8(6) 7
ANXA9 15(1) 3 14.40 13(13) 1 14(13) 2 16(14) 6
AP4B1 18(0) 22 14.61 12(12) 1 17(16) 12 16(16) 14
APCS 2(1) 5 62.50 1(1) 1 Not Found 1(1) 1
ARHGEF2 32(1) 37 15.19 22(22) 3 26(25) 6 35(31) 17
ARHGEF11 47(1) 9 7.70 42(42) 2 41(40) 6 46(45) 17
ARHGEF16 14(2) 12 18.64 10(10) 1 Not Found 15(12) 5
ARNT 26(1) 14 11.73 20(18) 1 22(21) 3 38(26) 14
ARPC5 4(1) 2 120.75 3(3) 1 4(2) 2 6(3) 4
ARTN 8(0) 10 5.25 7(7) 4 6(6) 3 7(7) 10
ATAD3A 22(2) 10 36.41 16(16) 2 Not Found 58(21) 27
ATP1B1 11(2) 12 59.27 7(7) 1 10(9) 4 11(8) 10
ATP2B4 29(3) 11 8.07 22(22) 5 23(23) 3 26(26) 14
Clorf10 2(0) 1 7.00 2(2) 1 Not Found 2(2) 2
Clorf26 22(0) 7 7.91 17(17) 1 Not Found 23(22) 6
C1QB 3(1) 3 25.67 5(2) 3 5(2) 3 6(2) 5
CAPZA1 15(4) 15 68.40 11(11) 2 10(9) 3 12(11) 7
CTRC 9(1) 4 36.22 8(8) 1 Not Found 8(7) 3
DMRTA2 2(0) 2 1.00 1(1) 1 Not Found 2(2) 1
DPH2L2 12(1) 11 31.25 10(10) 7 12(11) 12 12(11) 14
EPHA2 20(1) 8 13.45 16(16) 1 17(17) 7 20(19) 8
EYA3 20(0) 9 11.40 15(15) 1 Not Found 21(20) 10
FBXO2 9(0) 6 13.67 9(8) 2 6(5) 3 9(8) 5
FCGR3B 7(0) 5 22.57 4(4) 1 Not Found 7(7) 6
FUCA1 11(3) 8 18.00 8(8) 2 Not Found 7(7) 2
GBP2 17(3) 8 27.82 12(12) 2 Not Found 26(14) 10
GMEB1 12(1) 5 16.67 9(9) 2 11(11) 3 11(11) 6
HNRPR 20(2) 38 45.70 16(15) 7 12(12) 7 21(18) 17
LGALS8 22(2) 25 16.00 12(11) 4 13(13) 4 27(19) 21
LRRN5 3(0) 3 3.00 5(3) 2 Not Found 5(3) 4
LYPLA2 15(0) 14 96.07 14(14) 6 Not Found 15(14) 14
MASP2 11(0) 5 7.00 11(11) 2 11(11) 5 11(11) 6
MOV10 35(4) 42 25.29 29(29) 7 24(23) 8 33(31) 21
NPPB 2(0) 1 30.50 2(2) 1 Not Found 3(2) 3
PAFAH2 18(3) 11 15.06 12(11) 2 13(13) 5 16(14) 8
PALMD 8(0) 9 35.63 7(7) 1 Not Found 9(8) 8
PEX10 12(1) 13 21.58 6(6) 1 10(10) 7 12(10) 11
PINK1 10(2) 15 40.20 7(7) 2 Not Found 9(8) 10
PTPRU 38(3) 15 12.89 20(20) 1 Not Found 35(35) 9
RHOC 17(3) 5 8.35 13(2) 7 15(1) 9 39(14) 31
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However, the level of protein complexity in humans and
other vertebrates is much higher than expected from the
estimated gene number. Alternative splicing, leading to
the generation of multiple transcripts from single genes, is
believed to be the major mechanism expanding protein
diversity in higher organisms [2]. These transcripts can
differ both in the untranslated (UTR) and in coding
regions. Thus, using a different combination of donor and
acceptor splice sites, transcripts encoding different pro-
teins can be produced with alternative UTRs regulating
their fate in the cell. Indeed, recent large scale genomic
studies have shown that alternative splicing occurs in 40–
60% of human genes [3] and that it is a likely determinant
of species-specificity since an unexpectedly low level of
alternative splicing pattern conservation has been
observed in pairs of orthologous genes [4]. Recent studies
have also shown that alternative splicing is important for
determining developmental- and tissue-specific- gene
expression [5,6]. Aberrant splicing forms are also associ-
ated with human diseases [7]. For these reasons, there is a
growing interest in the high-throughput identification of
alternative splicing forms in human and other organisms
[8].

Recently, there has been a growing interest in the design
of computational methods to predict alternative splicing.
Published methods may be classified in three groups:
methods based on the comparison of expressed sequences
to each other (i.e. [9], [10], [11]), methods based on the
alignment of ESTs to the genomic sequence [12-14] and
more recently methods that combine the previous two
approaches, i.e. EST comparison and genome compari-
son, as proposed in [15] and [16]: we call such methods
multiple EST alignment methods. A wide ranging discussion
of the limitations of the first two methods has been pre-
sented and it has been shown that combining the two
approaches leads to clear improvements in alternative
splicing identification [16]. Computational methods may

be also classified according to the computational
approach used to produce EST alignments. Indeed, it must
be pointed out that the majority of tools uses BLAST, sim4
or most recently BLAT to map ESTs to the genome (see
Table 1 in [11]). These tools are often error prone when
aligning ESTs because they have not been designed to con-
sider either the relationship between ESTs and their corre-
sponding genomic sequences or sequencing errors in ESTs
– for example the presence of large gaps, short exons or
specific constraints on the alignment near intron
boundaries.

In this paper we propose a method that is not based on
traditional BLAST-like (or BLAT-like as in [17]) alignment
tools for spliced alignment, but which relies on a new
heuristic for multiple EST alignments that allows – as in
[12] – the use of a high number of insertions/deletions
and specific scoring criteria for the spliced alignment in
order to generate more accurate splice site predictions (see
[18]). Indeed, even recent tools such as BLAT [19] produce
erroneous alignments when used for EST-genome com-
parison as observed in [17] and require further corrections
to the alignments produced. For example BLAT tends to
create many small gaps in the alignment in cases of low
sequence quality.

Through a combined analysis of all EST data and their
genomic alignments our heuristic method aims to reduce
over predictions of splice sites due to EST sequence errors
or erroneous single EST alignments. This goal is achieved
by minimizing the set of splice sites that is compatible
with a multiple alignments of all transcript data. This
approach overcomes the limitations of methods that
(incorrectly) assume independency of single transcript-
genome alignments. Indeed, tools based on independent
single EST alignments (for example, Spidey [14] and
Squall [20]) may produce false splice forms that would

SDC3 6(2) 5 5.33 4(3) 2 8(4) 5 9(5) 6
SDHB 11(0) 12 97.27 9(9) 3 Not Found 13(11) 11
SERPINC1 12(2) 7 18.75 8(8) 2 8(8) 3 16(10) 11
SFPQ 12(3) 11 74.75 9(9) 1 9(9) 3 17(9) 25
TARDBP 21(3) 20 29.38 15(13) 4 9(9) 4 18(16) 15
TCN2 13(1) 10 26.15 9(9) 2 12(12) 4 13(10) 11
TOR3A 15(2) 9 19.20 9(9) 4 11(11) 8 15(13) 12
VAMP3 5(0) 3 80.60 6(5) 2 6(5) 3 7(5) 10
Total 1009(94) 11.9 28.3 753(721) 2.3 495(461) 5.1 1194(905) 9.7

ASPIC results from a random sample of 64 human genes from Chromosome 1 compared to those from the ASAP, ASD and AceView resources. 
The first column reports the HUGO name of the examined gene. The ASPIC data include the total number of predicted introns (novel introns in 
brackets), the minimum number of compatible transcripts and the average number of ESTs supporting gene splices. Introns with 2 non canonical 
splices are accepted by ASPIC only if confirmed by at least two ESTs. For the other resources the number of predicted introns (in brackets those 
also predicted by ASPIC) and the minimum number of compatible transcripts are reported. Other resources: AceView (July 2003 and August 2004 
releases), ASD (July 2004) and ASAP (July 2004).

Table 1: Benchmark comparison of ASPIC with other similar tools (Continued)
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not be supported by a combined multiple alignment of all
ESTs against the genomic sequence.

Implementation
Methods
Our method is based on the formalization of the problem
of detecting splice sites as an optimization problem (Mul-
tiple EST Factorization Compatibility, MEFC) as proposed
in [15]: it implements an heuristic that extends – and
greatly improves – a basic algorithmic approach proposed
by the same authors in [15]. An evident shortcoming of
computational methods to predict splice sites is repre-
sented by the large number of false positive predictions
produced by these methods. To overcome this limitation,
we propose that an optimization criterion may be
required to construct a multiple transcript alignment: the
objective function of such a criterion is to minimize the
number of exon predictions and hence of alignment-
inferred splice sites. There is theoretical evidence for this
assumption which is also supported by several real cases
encountered while analyzing EST alignments. Indeed,
such an optimization criterion is required when there are
multiple possible adequate alignments of an EST region
(or candidate exon) to the genomic sequence, even when
restrictive rules are used (i.e. GT – AG splice sites) to
restrict the alignment to biologically plausible solutions.
The use of the optimization criterion, the combined EST
analysis and the fact that our method is entirely based on
a novel alignment procedure all differentiate our
approach from those previously presented. The method
we propose here is also different from the ones suggested
in [21] and [11] where a combined analysis of EST align-
ments is done after all EST alignments have been gener-
ated. The method we propose also aims to reduce the
computational time as in [20], while retaining a high
accuracy of predictions. It is specifically designed to proc-
ess a whole gene and large number of ESTs – the databases
currently contain about 6 millions human ESTs and the
number is growing rapidly. As shown in [20], computa-
tional times for a single EST alignment may range from a
fraction of a second to the several seconds required by
programs such as sim4 [22].

The software tool ASPIC (Alternative Splicing PredICtion)
has been designed and implemented in a user-friendly
web-server accepting as input a gene sequence and tran-
script data, typically a Unigene cluster related to the gene.
Major features of ASPIC include its applicability to the
analysis of splice variants in several organisms, and the
fact that it collects together several sources of information
on splice sites in a single web-based tool.

ASPIC also provides a minimal set of transcript isoforms
explaining all alternative splice events occurring among
the set of transcripts considered. Furthermore, it includes

a module for detecting and scoring splice junctions
(canonical and non-canonical) by using quality measures
based on [18] and [23]. An extensive benchmark compar-
ison of ASPIC with respect to other similar tools [24,25]
shows that our method calculates the location of splice
sites with high sensitivity and accuracy but still retaining
an high computational efficiency such that in [20].
Remarkably, ASPIC differently from [20] combines EST
alignment to splice site prediction.

Algorithm overview
In the following, we will use the term EST to denote a
transcript and genomic sequence to refer to a gene related to
a set of transcripts. We will use G to denote a genomic
sequence, that is, a sequence over alphabet Σ = {A, C, G,
T} ∪ {N}, with N denoting any nucleotide. Genomic
sequences containing sequence repeats or short exons
may be alignable to the same EST sequence in a number
of equally probable ways. This fact further complicates the
problem of identifying the correct exon-intron structure.
However, it is reasonable to assume that a correct exon-
intron structure can be obtained by aligning all EST
sequences so that regions that are common to different
ESTs are aligned to the same region of the gene. This
assumption leads to the framing of the problem of pre-
dicting gene structure from a set of ESTs as an optimiza-
tion problem as introduced in [15] with the MEFC
problem (Minimum EST Factorization Compatible with a
genomic sequence). In this context, the gene structure pre-
diction problem has an instance consisting of a set of EST
sequences and a genomic sequence: the question is to
compute the constitutive exons of the genomic sequence
and the factorization of each EST into such genomic exons
with the objective of minimizing the number of predicted
exons.

In fact, as illustrated in the examples below, a minimum
length exon-factorization of a genomic sequence would
forbid multiple unsupported EST alignments. However,
with real data, situations frequently occur where multiple
EST alignments are generated and additional criteria to
find an exon-factorization are required, thus justifying (as
discussed in the following sections) the use of the optimi-
zation criterion in our method.

1. Terminal EST factors may be short (10–30 bp in length)
and may have multiple plausible alignments to the
genomic sequence, particularly when the EST sequence
contains errors.

2. Part of a factor may be repeated along the genomic
sequence. A theoretical example of this situation, and how
optimization may be used to find correct predictions, is
reported in Fig 1. Additional file 1 illustrates a specific
Page 4 of 16
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example of this situation, occurring in the Unigene cluster
related to the human AMY2A gene.

3. Short repeats may occur in the genomic sequence and
EST sequences may contain errors near splice junctions.

The MEFC problem: definition
In the following we introduce some basic notions that
allow us to define the MEFC problem and describe the
method we propose to face it.

We recall that there are four main patterns of alternative
splicing that potentially may occur in nature [2]:

The figure illustrates two gene-factorizations into 7 and 4 pseudo-exons of the genomic sequence GFigure 1
The figure illustrates two gene-factorizations into 7 and 4 pseudo-exons of the genomic sequence G. Let S1, S2 and S3 be EST 
sequences in S agreeing to the genomic sequence G, where sequence S1 = ABDEF, S2 = ABCDE and S3 = BDEFG, each letter in {A, 
B, C, D, E, F, G} denotes a sequence (A). In (B) and (C) two alternative EST-genome alignments of sequences S1, S2 and S3 are 
represented: each EST factorization of Si associated with the EST-genome alignment is shadowed. Pseudo-exons in the gene-
factorization are colored white, while introns are in grey. Segments labelled by letters represent regions of the genomic 
sequence that align to a substring of the input sequence of the corresponding letter. Note that an approach that aligns inde-
pendently each sequence S1, S2 and S3 to G, one after the other, may produce the gene-factorization <A, B, C, D, F, E, G> con-
sisting of 7 pseudo-exons (B), while the one minimizing the number of pseudo-exons provides only 4 pseudo-exons (C). 
Indeed, there are EST factorizations of each Si that are compatible or variant compatible with the gene-factorization GE = <AB, 
C, DE, FG>. More precisely, <AB, DE, F> is an EST-factorization of S1 that is compatible to GE. Then <AB, C, DE> is an EST-fac-
torization of S2 compatible to GE. Finally, <B, DE, FG> is an EST-factorization of S3 compatible with GE (C).

(A)

(B)

(C)

A A B C D D E F G

A D F
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B D E F G
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A D F

A B C D E
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1) exon-skipping; 2) mutually exclusive exons; 3) compet-
ing 5'/3' ends; and 4) intron retention. While the first two
splicing modes simply determine whether an exon is used
or not during splicing, in the third mode the transcript
splicing variants derive from competing partially overlap-
ping exons. Finally, intron retention occurs when an exon
is present in a transcript, while in another it appears with
a missing internal region.

Then, a gene factorization GE of G is a sequence <f1, ..., fn>
of n substrings fi of G, we define pseudo-exons, such that G
is given by the concatenation of the pseudo-exons fi inter-
spersed by other substrings called introns. In particular, a
pseudo-exon defines a contiguous genome region corre-
sponding to and/or containing one or more exon splice
variants.

An EST factorization of an EST sequence S is an ordered
sequence <s1, s2, ..., sk> such that S = s1s2 ... sk, where each
substring si is called a factor of the EST S. The edit distance
ed(x, y) between two sequences x and y measures the
number of mismatches in the alignment of x and y.

We define an EST factorization <s1, s2, ..., sk> compatible
with a gene-factorization GE of a genomic sequence G if
there exists a sequence of genomic pseudo-exons

 of G such that for each factor sj, with 2 ≤

j ≤ k - 1, ed(sj, ) is bounded by a given parameter bound,

factors s1 and sk differ from a suffix of pseudo-exon  and

a prefix of , respectively, by a number of alignment

mismatches bounded by bound.

Because of alternative splicing, we further provide the
notion of EST factorization variant compatible with a gene-
factorization GE. This is simply obtained by requiring in

the previous notion that ed(sj, factor( )) is bounded by a

given parameter bound, where factor ( ) is a prefix, suffix

or even a proper factor of the pseudo-exon .

An EST factor sj, corresponding to a gene exon factor( )

is defined as internal or external depending on whether
both donor and acceptor splices are or are not present,
respectively at its genome boundaries after alignment.
Thus, factors s1, sk of the EST factorization <s1, s2, ..., sk> are
called external factors while s2, ..., sk-1 are called internal
factors.

In other words, an EST factorization is induced by an
alignment of the EST to exons of the genomic sequence.

Each EST factor must correspond or align to an exon. The
external EST factors can correspond to a fragment (a prefix
or a suffix) of the relative exons.

By using the above stated notions, the MEFC problem is
defined as follows. The instance of the problem consists of
a genomic sequence G and a set of EST sequences (tran-
scripts), while a solution consists of one gene-factoriza-
tion GE of G and EST factorizations that are compatible or
variant compatible with GE. Thus an optimal solution in
the MEFC problem (that is an optimal gene-factorization
and optimal compatible EST factorizations) is the one
that minimizes the number of distinct pseudo-exons in
the gene-factorization of the genomic sequence.

Generation of nearly optimal compatible genome-EST 
alignments
The ASPIC software implements an heuristic method for
the MEFC problem stated before.

The general structure of the method consists of:

(a) an initial pre-processing of the genomic sequence,

(b) two main procedural phases applying criteria to min-
imize splice sites.

In the following we provide a detailed description of the
method by first describing the initial pre-processing phase
and then the main algorithmic steps of the two phases.

Pre-processing of the genomic sequence
The alignment of a single EST factor to the genomic
sequence is based on the notion of a component: a compo-
nent is a substring of the genomic sequence that perfectly
matches a portion of an EST factor. The length of a com-
ponent is a critical parameter used to accelerate the align-
ment of EST factors as well as for finding error-free
matching regions between ESTs and the genomic
sequence. Indeed, components of a given length (for
example 15 bp) may have very few occurrences on a
genomic sequence, thus making the process of locating
EST factors very fast. For this reason, the length of a com-
ponent is computed automatically as a function of the
gene sequence length, but it can be also modified by the
user as an input parameter. The algorithm starts with an
initial pre-processing of the genomic sequence G that con-
sists in building a hash-table containing all occurrences of
each component in G. Thus a key list of components (i.e.
substrings of the genome) provides the entry of a Hash
Table used to speed up the alignment process of an EST
factor to the genomic sequence. Since the algorithm
locates the intron regions by validating the splice sites
using first the GT-AG rule, a second hash-table for all GT

f f f fi i i ik1 2 3
, , , ,…

fij

fi1

fik

fij

fi j

fi j

fi j
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and AG occurrences on the genomic sequence, is initially
computed and stored.

Phase 1: iterative computation of all EST internal factors
The first phase is an iterative processing of each EST in the
set S = {S1, ..., Sm} such that the general i iteration pro-
duces an alignment of each EST in the set {S1, ..., Si}
compatible with a partial gene-factorization of G – the
generation of an EST alignment against the genomic
sequence implying an EST factorization. The generic step
of the iteration in our algorithm consists of finding the
next factor sj of a partial EST factorization <s2, ..., sj-1> and
the corresponding exon along the genomic sequence. In
this phase the EST-factorization is produced using a crite-
rion, called concatenating exons, to minimize the number
of exons. This criterion consists of concatenating two or
more consecutive EST factors into a unique exon when-
ever a true exon may have been over factorized because of
repeated regions in the genomic sequence (see as an
example Figure 1).

More precisely, given the alignment of the internal factors
<s2, ..., si> of an EST, then the genomic alignment of a new
EST factor si+1 is computed in four main steps.

In step (1) the EST suffix to be aligned after factor si is
divided into consecutive strings x1, x2, ..., xn of the prede-
fined length of a component. Indeed, the first possible
genomic location of EST factor si+1 is determined by find-
ing the leftmost string xj of the EST suffix that is a compo-
nent and allows the optimal alignment of the entire EST
factor si+i (see Fig. 2(a), (b)). In step (2), for each occur-
rence of a component xj along the genomic sequence, a
genomic region of maximal length containing xj is opti-
mally aligned in linear time and space (using the edit-dis-
tance within a Kband [26]) to the new EST factor si+1, until
a compatible alignment is found (i.e. few errors are
allowed and possibly canonical splice sites are located).
Note that step two may fail to compute the new EST factor
si+1, whenever the previous EST internal factors <s2, ..., si>
do not allow the generation of an EST-factorization com-
patible with the partially computed gene-factorization.
Indeed, some EST factors may have been incorrectly com-
puted because of a wrong alignment of the EST sequence.
Backtracking allows the relocation of exons. This consists
of trying alternative occurrences in the genomic sequence
of components of previous factors starting from si up to s2.

Once the location of factor si+1 is determined, the concate-
nating exon criterion is applied in step (3) which consists
of testing whether one or more consecutive EST factors
preceding factor si+1 can be concatenated to si+1 to obtain a
unique factor s such that it optimally aligns to the
genomic sequence. In this case, s replaces a list of consec-
utive EST factors, thus minimizing the number of exonic

regions in the gene-factorization (see for example exons
AB and DE in Figure 1(C) produced by the application of
concatenating exon criterion to A and B first, and then to
D and E). Clearly, after the minimization, the new EST fac-
tor si+1 as well as previous factor si are redefined so that the
EST alignments define a smaller number of exons.

Finally, in step (4), a dynamic programming (DP) algo-
rithm is used to refine the intron boundaries between the
defined EST factors si and si+1. This crucial step of the algo-
rithm is detailed in the next section Refining intron
boundaries.

Observe that the location of a new EST factor si+1 is based
on the use of a single component (that is a perfect match-
ing region) and that such a component is located on the
factor by testing consecutive positions in the EST suffix
after factor si. This approach may imply that several posi-
tions after the right end of EST factor si are skipped before
placing the left end of the new factor si+1. Indeed, in such
cases the placement of factor si+1 may imply an extension
(or a reduction) of the right end of previous factor si thus
optimizing exon definition (see Fig. 2(c)). This strategy
makes the alignment process more flexible and faster with
reference to other approaches (such as BLAT [19]) that
apply strict matching criteria.

Indeed a feature of ASPIC alignment algorithm is that it
allows a fast exact location of the alignment regions of EST
factors without necessarily comparing all EST sequences
against large portions of the genomic sequence. Conse-
quently, ASPIC also allows EST alignment in the presence
of a relatively high number of errors that are located in
specific regions. Moreover, even though the alignment
process relies on dynamic programming (DP) it turns out
to be very fast in most of the cases, as indeed DP is only
applied to short portions of the EST and genome
sequence.

Phase 2: refining internal factors and placing external factors
This phase of the algorithm completes the computation of
all EST factorizations (i.e. EST alignments) by first correct-
ing all internal EST factors pre-computed in the first phase
in order to make all factorizations compatible with the
same gene-factorization GE of G minimizing the number
of splice sites. More precisely, the minimization relies on
the use of a criterion called merging splice sites. Merging
splice sites consists of comparing computed exons x and y
supported by EST factors to reduce the intron boundary of
x to the one of y or vice versa, whenever they differ at only
a few positions, likely because of sequencing errors in the
EST factors (see an example in Fig. 3). Clearly, this step
may avoid over prediction of splice sites due to the erro-
neous location of intron boundaries because of sequenc-
ing errors. This criterion is also implemented to allow the
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detection of possibly true splice variants determined by
competing 3' or 5' junctions induced by few bases (two
bases or more).

Finally, after the localization of EST internal factors, all
EST external factors are computed. The concatenating exons
and merging splice sites criteria are used again since errors
in EST sequences are more prevalent in terminal regions,
which may be as short as few bases – thus permitting sev-

eral alternative alignments. The procedure that finds exter-
nal EST factors tries to align the EST leftmost (or
rightmost) factor as a suffix (or a prefix) of some previ-
ously computed exon. If that is not possible, the factor is
placed in a new location in correspondence with a GT (or
AG) pattern and then the DP algorithm is used again to
refine intron boundaries.

Location of a new EST internal factor si+1 given previous computed factors s2, ..., siFigure 2
Location of a new EST internal factor si+1 given previous computed factors s2, ..., si. (a) Consecutive sequence components c1 ... 
cj are tested to find the first one that allows the identification of a genomic region that optimally aligns factor si+1 (i.e. alignment 
extension on one or both sides of the component): such a region is determined in (b) by the component cj. Figure (b) shows 
that some intervening positions (sequence x) may occur between factor si and si+1. Indeed, in this case the placement of si+1 

gives the correct right end of previous factor si, since the larger factor  inducing canonical splice sites on the genomic 
sequence can be optimally aligned before si+1 thus leading to an optimal location of both si and si+1.
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Refining exon-intron boundaries
Because of sequence repeats and sequencing errors in
ESTs, the exact location of splice junctions is a critical
issue [27]. Our method combines different strategies to
evaluate and hence improve the quality of splice data pro-
duced. These are listed below:

1. Finding intron boundaries via dynamic programming. A
first criterion used to find the exact location of intron
boundaries is the evaluation of alignment quality. We
have designed an algorithm, based on dynamic program-
ming (DP), to produce optimal alignments of regions
close to splice sites. It computes the genomic alignment of
a suffix w and a prefix y of two consecutive EST factors, si
and si+1, in order to locate in the genomic sequence the
optimal position for a single large gap corresponding to the
intron region. This gap may not be delimited by canonical
splice sites following the GT – AG rule, which is
recognized as a basic one for the validation of splice sites,
as more than 98.7% annotated splice sites in GenBank are
canonical in this respect [18]. Indeed, there may be differ-
ent optimal alignments leaving a gap with the same error
rate. Thus a second important algorithmic step is applied
by ASPIC to locate splice sites.

2. Canonical patterns and weight matrices. Whenever the
optimal alignment computed via DP does not lead to
canonical splice junctions, then the algorithm looks for
alternative alignments with the same error rate with pref-
erence for the couple of splice boundaries more frequently

represented in the weight matrix provided in [18] (see
Table 2 in [18]). If different alignments of the same qual-
ity (i.e. number of errors) are possible near intron bound-
aries, the choice of the alignment is done by using the
weight matrix. For example, the base-pairs GC-AG are
selected before the pair AT-AG if compatible with an
alignment of splice sites leaving the same number of
errors, as GC-AG is more frequent than AT-AG in the
weight matrix. Clearly, an high quality alignment may
also lead to the acceptance of splice sites with null fre-
quency in [18] matrices.

Example of intron detection in the human ATP1B1 (UG:Hs.291196) gene without (A) or with (B) the refinement of exon-intron boundariesFigure 3
Example of intron detection in the human ATP1B1 (UG:Hs.291196) gene without (A) or with (B) the refinement of exon-
intron boundaries. The first row shows the genomic sequence aligned to the EST sequences (below). In (A) four different 
introns are detected (A, B, C, D) that can be merged to only two (A, D) in B. Absolute coordinate (NCBI 35 assembly) are 
shown for each intron and acceptor/donor splice sites are in black-background.

(A)

GGCTTCAAACCTAAGGCAAGTAATATTTTAAATGA----ATAATGGGTTTTATTTTTAGCCTCCCAAGAATGAG
GGCTTCAAACCTAAGgc 165828305...Intron A...165830905 agCCTCCCAAGAATGAG    AI928921 + 165 ESTs 
GGCTTCAAACCTAAgg 165828304...Intron B...165830903 ttAGCCTCCCAAGAGAT-G    BG705986 + 1 EST 
GGCTTCAAACCTAAGgc 165828305...Intron C...165830906 gcCTCGCAAGAATGAG    BG699442 + 2 ESTs 
GGCTTCAAACCTAAGGCAAgt 165828309...Intron D...165830905 agCCTCCCAAGAATGAG    CR596103 + 1 EST 

(B)

GGCTTCAAACCTAA-GGCAAGTAATATTTTAAATGA----ATAATGGGTTTTATTTTTAGCCTCCCAAGAATGAG
GGCTTCAAACCTAA-Ggc 165828305...Intron A...165830905 agCCTCCCAAGAATGAG    AI928921 + 165 ESTs 
GGCTTCAAACCTAAAGgc 165828305...Intron A...165830905 agCCTCCCAAGAGAT-G    BG705986 + 1 EST 
GGCTTCAAACCTAA-Ggc 165828305...Intron A...165830905 ag-CTCGCAAGAATGAG    BG699442 + 2 ESTs 
GGCTTCAAACCTAA-GGCAAgt 165828309...Intron D...165830905 agCCTCCCAAGAATGAG    CR596103 + 1 EST 

Table 2: Splice sites in known and novel ASPIC-predicted 
introns

Splice Site Known introns Novel introns

N % N %

GT-AG 897 98.14 57 60.64
GC-AG 8 0.77 15 15.96
GT-other 3 0.33 5 5.10
other-AG 4 0.44 13 13.27
other-other 3 0.33 4 4.08
Total 915 94

Number (N) and percentage (%) of splice site types in known and 
novel ASPIC-predicted introns.
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Actually, the presence of sequencing errors may often
complicate the location of the correct splice sites junc-
tions. For these reasons, the use of agreement criteria
among EST alignments turns out to be crucial in many
practical cases to detect highly confirmed splice junctions
and thus to correct ambiguous alignments.

Moreover, in order to evaluate the quality of splice sites
we annotate each detected splice site, either donor or
acceptor, with a consensus sequence and a score: the score
derives from the formula and tabular nucleotide frequen-
cies reported in [23]. Indeed, conserved splice sequences
provide further evidence for splice junctions.

3. Congruence of ESTs on the location of splice sites. Since the
merging splice site criterion discussed in the previous sec-
tion is based on a combined analysis of all EST
factorizations, it is crucial also for validating intron
boundaries. Indeed, by comparing EST factors it is possi-
ble to discover sequencing errors in ESTs that show that
some intron boundaries must be considered as coincident
if few errors are tolerated (typically at most one error for
each splice site) or even by shifting the location of
canonical splice sites. For example, in many cases the GT-
AG rule may be applied to locate an EST factor boundary
in two very close locations of the genomic sequence, thus
making the choice of the alignment near intron bounda-
ries for a single EST difficult. In these cases, an
independent EST alignment does not allow the determi-
nation of the EST splice sites, while the presence of other
EST factorizations having a better quality alignment to the
genomic sequence may solve the aforementioned
dilemma because of the common compatibility to the
exon-intron structure. This situation is detailed in the
example shown in Fig. 3.

4. Filtering artifacts and locating gene strand. Our implemen-
tation has automatic procedures to locate the strand from
which each EST originates (independently from the clus-
ter annotation) and a filtering of possible artifacts and
polyA ends. Moreover, EST alignments of poor quality are
filtered out based on several criteria, including a percent-
age of sequence identity below the fixed cutoff.

As an example, Figure 3 reports the optimal alignments of
ESTs close to intron boundaries illustrating the need for
specific criteria to locate all plausible intron boundaries.
The basic criterion is the congruence of ESTs near splice
sites, combined with the use of known frequencies of
splice patterns (see [18]). ATP1B1 introns B and C (Fig.
3A) can disappear by merging them to intron A (con-
firmed by a large number of ESTs) after the introduction
of a A-insertion or of a C-deletion in the relative align-
ments. On the other hand, intron D is likely to represent
a genuine variant. In all these cases it is likely that the rel-

evant EST sequences are not correct due to a typical base
miscalling in single-read automatic sequencing, i.e. AAA
instead of AA for BG705986 and C instead of CC for
BG699442.

Clustering ESTs by common splice sites
For each splice site predicted, ASPIC provides the list of
ESTs supporting such splice sites, thus allowing the evalu-
ation of the quality of the prediction in terms of number
of ESTs confirming it. Moreover, this step allows the
grouping of ESTs that strongly support a common tran-
script (by sharing the same sequence of splice sites).

Minimal set of full-length transcript isoforms
Since a feature of ASPIC is to report splice sites and corre-
sponding factorization into genomic exons for each EST
(EST-exon-factorization in our terminology), we have
designed and implemented in the module Transview of
ASPIC an efficient algorithm that combines EST-exon-fac-
torization data into a set of minimal full-length transcripts
that are supported by the evidence, i.e. by the set of avail-
able ESTs. Our algorithm is based on the use of directed
acyclic graphs (DAG): nodes of the graph are EST-exon-
factorizations, while edges connect nodes (sequences)
that are related by a binary relation among EST-exon-fac-
torization (extension). Paths in the graph represent possi-
ble full-length transcripts. Various methods based on
graphs have been reported to predict transcripts from ESTs
such as in [28,10] and [17]: our method is different from
those approaches in the construction of the graph as well
as in the way the graph is visited to report full-length tran-
scripts. In contrast to graph based approaches proposed in
[17] or [11] where nodes are exons or nucleotide
sequences, our approach uses a reduced graph and an effi-
cient visiting process that allows the reporting of all plau-
sible paths, without requiring a trimming phase as in [17]
to remove redundant models. Indeed, our algorithm aims
to reduce over predictions or false positives as well as to
reduce the execution time required by the construction of
a potentially exponential number of paths (putative full-
length transcripts) in the graph. Moreover, the construc-
tion of the graph in our model is guided by input param-
eters that allows the user to specify the quality of predicted
full-length transcript with respect to the set of transcripts
supporting them.

Transview provides a visualization of full-length isoforms
and for each predicted full-transcript their composition in
terms of the ESTs that support the full-transcript. Details
on the algorithm will be discussed elsewhere.

Results
The capability of ASPIC method to computationally pro-
duce high quality gene predictions has been tested by per-
forming two types of experiments. A first experiment
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consisted in comparing ASPIC data with data available
from other database sources that collect intron-exon data
obtained through computational as well as experimental
methods. This first experiment shows the ability of ASPIC
in predicting novel splice variants as well as in detecting
good quality splice sites confirmed by other sources. In
order to assess the quality and reliability of novel predic-
tions, a second experiment has been carried out: this one
consisted in comparing ASPIC data with those produced
within the ENCODE project [29] aimed at providing a
reliable annotation of 1% of the human genome. In par-
ticular, we investigated the occurrence of false positives in
ASPIC-predicted introns as determined by RT-PCR analy-
sis for 22 genes located in 13 Encode regions.

Comparing ASPIC with other similar tools
The ASPIC method has been tested on a sample of 64
genes randomly chosen from the human Chromosome 1.
Results are summarized in Table 1 where they are also
compared with those obtained by other publicly available
resources. A total of 1009 introns were predicted by ASPIC
as compared to 753 by ASAP, 495 by ASD and 1194 by
AceView. ASPIC predicted 95.7%, 93.1% and 75.8% of
introns predicted by ASAP, ASD and AceView, respec-
tively. In general, predicted introns were well supported
by genome-transcript alignments with 28.3 ESTs support-
ing each splice site on average. Missing introns may derive
from additional ESTs not present in the UNIGENE cluster
used by ASPIC or by the stringent parameter thresholds
adopted in ASPIC to consider an intron prediction relia-
ble. The large number of additional introns detected by
AceView, but not by other resources, are partly due to the
wrong selection – in some cases – of the genomic region
to be considered for the analysis. For example, AceView
predicts 45 introns in the gene AMPD1 w.r.t. the 14
introns predicted by ASPIC (13 in ASAP). In this case the
genome region selected by AceView encompasses 113 kb
covering AMPD1 and two additional genes. A similar

problem can be observed with several other genes where
the number of AceView introns is remarkably higher than
that detected from other resources (e.g. ADAM15,
AKR7A2, ARNT, ARPC5, ATAD3A, etc.). Also, AceView
intron over-prediction is likely due to the use of less strin-
gent parameters in genome-transcript alignments, as in
the example shown in Fig. 4.

However, ASPIC detected a total of 94 novel introns, each
confirmed by 2.18 ESTs on average. It is interesting to note
that our data show a higher occurrence of non-canonical
splice sites with respect to previous estimates [30]. Table 2
shows splice sites for known and novel ASPIC predicted
introns. These data are not unexpected as previous esti-
mates did not consider most of the splicing variants of
annotated genes. While some of the predicted introns may
simply be artifactual it is likely that rarer splicing isoforms
involve a higher proportion of non-canonical splice sites.
Another striking observation from our analysis is that 62/
64 genes (97%) show alternative splicing with an average
of 11.9 transcripts/gene, a value similar to that from
AceView data (see Table 1) but significantly higher than
2.3 and 5.1 estimated by ASAP and ASD repectively. It is
worth mentioning that data reported by ASAP are not
updated w.r.t. the latest Unigene/genome data and several
genes (28/64) were not annotated in ASD. It should be
considered that Unigene clusters are enlarging at a great
rate and genomic sequences are also continuously
updated. To address this problem ASPIC data are stored in
a dynamic database. The relevant data for each gene query
are stored in the ASPIC database so that if another user
does a similar query the results are immediately available
without carrying out a new analysis. However, the user
can choose to overwrite stored data with updated genome
and transcript data directly extracted from Ensembl and
Unigene databases. The new data remain stored in the
ASPIC database until a new overwrite request for the same
gene query is made.

Example of intron boundaries detected for the human AHCYL1 gene by AceView and ASPICFigure 4
Example of intron boundaries detected for the human AHCYL1 gene by AceView and ASPIC. The hypothetical novel intron 
predicted by AceView (July 2003 release) with non-canonical splices can be reduced to a known intron by a single A-insertion. 
Intron coordinates are referred to Ensembl release 26.35.1.

                                   Chr1:110266022-110267025 
BF342864    GATTGAGATTGCAGAGCA-Ggt--------ASPIC intron-------agACATGTCTGCTCTGATTTCACTCAGGAAACGTGCTCAGG
            |||||||||||||||||| |                               ||||||||||||||||||||||||||||||||||||||| 
Genome      GATTGAGATTGCAGAGCAAGGTAAAGAA............TTCTTTCACAGACATGTCTGCTCTGATTTCACTCAGGAAACGTGCTCAGG 
            ||||||||||||||||                                |||||||||||||||||||||||||||||||||||||||||| 
BF342864    GATTGAGATTGCAGAGca-------ACEVIEW intron-------caCAGACATGTCTGCTCTGATTTCACTCAGGAAACGTGCTCAGG
                                Chr1:110266018-110267022 
Page 11 of 16
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:244 http://www.biomedcentral.com/1471-2105/6/244
False positive incidence of ASPIC introns
In order to compare the false positive rate of introns pre-
dicted by ASPIC and other methods we analyzed the GEN-
CODE experimental verification of computationally

predicted introns for a set of 22 genes in 13 Encode
regions (see the GENCODE annotations in the Additional
file 2). Of the total 44 introns not supported by RT-PCR
experiments (labeled RT_negative) ASPIC supported only

Table 3: RT-negative introns supported by ASPIC

Encode Region Gene Intron position Prediction Method

Chr Start End

ENm004 SLC5A1 22 30779886 30787475 ASPIC (3), ECgene, acembly
ENm004 PISD 22 30350425 30351061 ASPIC (1), ensEstGene
ENm004 PISD 22 30337622 30338657 acembly
ENm004 PISD 22 30346557 30351299 acembly
ENm004 PISD 22 30365972 30366216 acembly
ENm004 RFPL3 22 31075439 31078694 acembly
ENm004 SYN3 22 31727364 31734939 acembly
ENm004 TIMP3 22 31521971 31522263 acembly
ENm004 TIMP3 22 31521971 31522271 acembly
ENr223 MTO1 6 74249065 74253041 ASPIC (6), ECgene, acembly
ENr223 MTO1 6 74253206 74258677 ASPIC (5), ECgene, acembly
ENr231 PSMD4 1 148044771 148047709 ASPIC (2), ECgene, acembly
ENr231 PIP5K1A 1 148035078 148039516 acembly
ENr231 PIP5K1A 1 148035192 148035350 acembly
ENr231 PSMB4 1 148187431 148194586 acembly
ENr231 PSMD4 1 148040228 148047741 acembly
ENr231 PSMD4 1 148040358 148044611 acembly
ENr231 PSMD4 1 148044684 148047709 acembly
ENr231 PSMD4 1 148046796 148047709 acembly
ENr231 SNX27 1 148423496 148424527 acembly
ENr231 TUFT1 1 148350164 148356015 acembly
ENr231 TUFT1 1 148356492 148372163 acembly
ENr232 CRAT 9 128949911 128950731 ASPIC (1), acembly, softberryGene
ENr232 PPP2R4 9 128953625 128962345 ASPIC (1), ECgene
ENr232 PPP2R4 9 128952305 128953168 acembly
ENr232 PPP2R4 9 128952336 128953268 acembly
ENr232 PPP2R4 9 128952981 128953304 acembly
ENr232 PPP2R4 9 128953105 128953150 acembly
ENr232 SH3GLB2 9 128835746 128849868 acembly
ENr232 SH3GLB2 9 128860722 128862923 acembly
ENr323 LACE1 6 108794230 108829892 ASPIC (5), sgpGene
ENr323 LACE1 6 108747689 108751721 acembly
ENr323 SNX3 6 108688727 108690771 acembly
ENr333 RNPC2 20 33764744 33765167 ASPIC (1), ECgene, acembly
ENr333 RNPC2 20 33786418 33787848 ASPIC (1), ECgene
ENr333 CEP2 20 33527835 33529106 acembly
ENr333 CEP2 20 33554537 33568378 acembly
ENr333 CEP2 20 33561298 33568224 acembly
ENr333 ITGB4BP 20 33335958 33343927 acembly
ENr333 RNPC2 20 33776436 33777255 acembly
ENr333 RNPC2 20 33780699 33780701 acembly
ENr333 SDBCAG84 20 33585738 33593682 acembly
ENr334 TFEB 6 41766952 41811861 ASPIC (5), ECgene, acembly
ENr334 TFEB 6 41766952 41799176 ASPIC (3), ECgene, acembly

List of computationally predicted introns of 22 genes contained in 13 Encode regions (see the GENCODE annotations in the Additional file 2) but 
not validated by RT-PCR analysis. For each intron are shown the Encode region, the gene ID, location (NCBI 35 assembly) and prediction methods 
(Acembly/AceView, http://www.aceview.org; ECgene [17]; ensEstGene [28]; softberryGene [35]. For ASPIC predictions the number of supporting 
in shown in the brackets.
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12/44 whereas AceView supported 41/44 (Table 3). Inter-
estingly, 7/12 ASPIC introns were supported by more than
2 ESTs, also showing high-scoring slice patterns (see Addi-
tional file 3). This finding suggests possible leakages in
experimental validations carried out within the Encode
project.

The ASPIC Web Resource
The ASPIC program can be accessed online at: http://
aspic.algo.disco.unimib.it/aspic-devel/. ASPIC standard
input data consist of a genomic sequence and a set of tran-
scripts. Such data are acquired either automatically or by
uploading files specified by the user. In the first case, a
basic form permits the input of an official HUGO gene
name for the genomic sequence (e.g. ABCB10, HUGO
names are permitted only for human genes) and/or a Uni-
gene cluster identifier (e.g. Hs.1710). EST clusters are
automatically retrieved from Unigene, while genome
sequences are retrieved by using the API provided from
Ensembl. All results presented here are based on one of
the latest releases (September 2004 Ensembl API release
.25 and 2004 Unigene database release).

The automatic acquisition of clusters is allowed for
human and every other organism whose data may be
acquired from the Ensembl database. A specific upload
function allows the user to query ASPIC processing of
arbitrary genomic sequences and transcript data in FASTA
format.

An advanced search form allows the user to run the ASPIC
program by specifying basic parameters used to produce
compatible EST alignments.

We have tested our method using standard parameters
suggested by experimental analysis of real data. For exam-
ple, we choose a minimum exon length of 15 nt. The com-
ponent length for building hash tables is computed by
using a formula that relates the minimum exon length to
the component length in such a way that the existence of
an error-free substring in an EST factor is guaranteed.

ASPIC outputs a complete description of each EST exon-
factorization, with a view of the alignment to the genomic
sequence, as well as a tabulated view of splice sites. The
program provides an output file that contains detailed
information about all EST exon-factorizations. This file is
also processed by Perl scripts in order to produce and
make available to the user from the ASPIC web site: i) a
table view listing all detected introns; ii) a graphical view
showing the general exon-intron arrangement of the que-
ried gene; and iii) a transcript view showing all non-mer-
geable transcript models compatible with detected
introns. In particular, the table reports the relative and
absolute coordinates of each detected intron derived from

the genomic sequence and genome build considered,
respectively, as well as the number of confirming ESTs.
Absolute coordinates, not provided by other resources, are
particularly useful for the comparison of intron coordi-
nates for a gene to those annotated in genome browsers.
The main graphical view is a visualization of the intron
structure of the genomic sequence derived from the
tabulated data. Such a graphical view also provides links
to a visualization of the alignment of the 15 base pairs of
EST sequences closest to intron boundaries. Figure 5
shows an example of the table, the graphical and the tran-
script view.

ASPIC Execution time
The performance of ASPIC has been evaluated on a Pen-
tium IV class PC, with 256 MB of main memory running
the Linux operating system.

The processing time for a single EST varied from 0.007 sec
cpu time to a maximum of 2.5 sec cpu time, where the
gene length varied from 5014 bp to 287011 bp, requiring
on average around 71 seconds cpu time per gene. Thus
ASPIC can process about 5000 ESTs in about half an hour
of cpu time (against the four hours required in [16]).

Experimental results: WEB-sources
The comparison of ASPIC data with other sources of splice
sites has been carried out by accessing available databases
from the web at the following sites: ASD [31], ASAP [32],
Acembly [33].

Conclusion
The ASPIC algorithm implements a novel methodology
that optimizes the overall compatibility between genomic
and transcript sequences to detect splice sites – thus min-
imizing mispredictions due to repetitive sequences or
sequence errors in the ESTs. It does not impose constraints
on the splice boundaries (i.e. strict observance of the GT-
AG rule) but in case of equally likely alternative align-
ments adjusts splice boundaries to those observed to
occur more frequently in known genes [18]. Hence, it is
able to detect non-canonical splice boundaries such as
those of U12-dependent introns [34] in the presence of
suitable supporting transcripts (see Additional file 3).
Finally, ASPIC allows the user to carry out splicing predic-
tions on a wide range of species as well as on user-submit-
ted genome and transcript sequences.

Availability and requirements
The ASPIC web tool is available to scientists wishing to
use it at http://aspic.algo.disco.unimib.it/aspic-devel/. To
submit a query to ASPIC the user needs to fill a form spec-
ifying the organism, the gene ID (Ensembl or HUGO), the
Unigene cluster ID (optional) and providing an email
address. The request is processed by the ASPIC software
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Snapshot of the ASPIC output for the gene HNRPR (human chromosome 1)Figure 5
Snapshot of the ASPIC output for the gene HNRPR (human chromosome 1). The Table View (A) lists all detected introns, 
their coordinates and the number of supporting ESTs. The Alignment View (B) shows the alignment between genomic and EST 
sequences around splice sites. The Graphical View (C) provides a general scheme of the splicing pattern. The Transcript View 
(D) shows the minumum set of different transcripts compatible with the detected splicing patterns.

(A)

(B)

(C)

(D)
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and when the results are available an email is automati-
cally sent back to the address specified by the user, provid-
ing a link to processed data.

ASPIC collects all the results of submitted queries in a
dynamic database.

Project name: ASPic Alternative Splicing Prediction

Project home page: http://aspic.algo.disco.unimib.it

Programming language: C

Operating system: Debian GNU/Linux 3.1, kernel 2.6.8

Other requirements: Apache 1.3, Perl 5.8.4, Php 4.3.10,
MySQL 4.1, gcc 3.3.5
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