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Abstract

The outbreak of coronavirus disease 2019 (COVID-19) has had an immense impact on

world health and daily life in many countries. Sturdy observing of the initial site of infection in

patients is crucial to gain control in the struggle with COVID-19. The early automated detec-

tion of the recent coronavirus disease (COVID-19) will help to limit its dissemination world-

wide. Many initial studies have focused on the identification of the genetic material of

coronavirus and have a poor detection rate for long-term surgery. The first imaging proce-

dure that played an important role in COVID-19 treatment was the chest X-ray. Radiological

imaging is often used as a method that emphasizes the performance of chest X-rays.

Recent findings indicate the presence of COVID-19 in patients with irregular findings on

chest X-rays. There are many reports on this topic that include machine learning strategies

for the identification of COVID-19 using chest X-rays. Other current studies have used non-

public datasets and complex artificial intelligence (AI) systems. In our research, we sug-

gested a new COVID-19 identification technique based on the locality-weighted learning

and self-organization map (LWL-SOM) strategy for detecting and capturing COVID-19

cases. We first grouped images from chest X-ray datasets based on their similar features in

different clusters using the SOM strategy in order to discriminate between the COVID-19

and non-COVID-19 cases. Then, we built our intelligent learning model based on the LWL

algorithm to diagnose and detect COVID-19 cases. The proposed SOM-LWL model

improved the correlation coefficient performance results between the Covid19, no-finding,

and pneumonia cases; pneumonia and no-finding cases; Covid19 and pneumonia cases;

and Covid19 and no-finding cases from 0.9613 to 0.9788, 0.6113 to 1 0.8783 to 0.9999, and

0.8894 to 1, respectively. The proposed LWL-SOM had better results for discriminating

COVID-19 and non-COVID-19 patients than the current machine learning-based solutions

using AI evaluation measures.

1. Introduction

A new disease that occurred in 2019 and that was not known previously in humans was coro-

navirus disease 2019 (COVID-19). Coronaviruses (CoVs) are a wide variety of viruses that
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cause respiratory diseases such as severe acute respiratory syndrome (SARS-CoV) and Middle

East respiratory syndrome (MERS-CoV). The new coronavirus started to spread in China in

December 2019 and later spread to many other countries [1–3]. It be very helpful to reduce the

spread of this disease by early automated diagnosis [4]. Deep learning is one of the most help-

ful methods of artificial intelligence for detecting COVID-19 infections from medical images,

such as X-rays, especially when a limited image dataset is accessible [2, 4]. Past experiments

have used deep learning from chest X-rays for the identification of COVID-19. By including

71 COVID-19 and 5000 non-COVID 19 images, Minaee et al. [2] evaluated a dataset of 5071

chest X-rays. They selected 40 COVID-19 and 3000 COVID-19 cases not included in the sur-

vey plus 31 COVID-19 (496 post increase) and 2000 COVID-19 cases not included in the

training set images. They trained 4 common deep learning models to detect COVID-19 infec-

tions, such as ResNet18, ResNet50, DenseNet-121 and SqueezeNet. At 97.5% accuracy, the

best-performing model reached 95% specificity [5]. The output of numerous state-of-the-art

CNN archives of two datasets was analysed by Apostolopoulos and Mpesiana [4]. The first

contained 1427 chest X-rays, 224 COVID-19 images, seven hundred confirmed common bac-

terial pneumonia images and 504 images from healthy patients. The second dataset contained

224 COVID-19 images, 714 bacterial and viral pneumonia verified images and 504 stable case

images [4]. Their findings indicated that the highest accuracy, sensitivity and specificity were

96.78%, 96.46%, and 98.66%, respectively [4]. The DarkCovidNet Model for detecting

COVID-19 from chest X-rays was proposed by Ozturk et.al [6]. Our model was tested on a

dataset containing 125 COVID-19 chest X-rays and 500 balanced chest X-rays. Their model

provided an accuracy of diagnosis of 98.08% (Healthy vs COVID-19) and 87,02% (Healthy vs

COVID-19 vs. Pneumonia) for non-binary classification cases [6]. COVID-19 diagnosis is

normally related to all the symptoms in the chest X-ray scans for pneumonia [7]. The first

screening procedure is a chest X-ray. It plays a major role in COVID-19 diagnosis. COVID-19

treatment is usually related both to pneumonia symptoms and to chest rays [7]. Chest X-rays

have become the first imaging tool to play a significant role. Recently, widely accessible X-rays

have not only improved in stable cases but also improved in patients with COVID-19. This

helps one to research diagnostic images and recognize potential variations that will result in

the illness being immediately identified. In chest X-rays, patients had peculiar conditions. The

disease’s symptoms cause breathing issues, cardiac injury, and secondary infection. The results

revealed that COVID-19 spreads independently. The infected person must be treated in the

intensive care unit when severe respiratory problems occur. Radiography of affected individu-

als reveals unique features of COVID-19. Therefore, clinical experts need chest X-ray images

for early diagnosis of COVID-19. Chest X-ray studies have found that the COVID-19-related

lunar shadowing sensitivity has been reduced by 25% to 69% [8, 9]. On the other hand, the

specificity of this technique for properly identifying the disease is 90% [8]. The research veri-

fied the use of RT-PCR in all cases of COVID-19. The small number of participants (17 in [8]

and 64 in [9]) could have contributed to the discrepancies in sensitivity. The time between ini-

tial symptoms and the imaging procedure may be a significant factor affecting the reliability of

X-ray findings. Although in the first 3 days after the onset of coughing and fever the symptoms

are not yet apparent on X-rays, they are the most visible after 10–12 days. This time factor

appears to be supported by an Italian analysis of 72 symptomatic patients released in mid-

April 2020. All patients had already been under quarantine at home and were hospitalized

because their symptoms worsened when the imaging procedure was carried out. The sensitiv-

ity of chest X-rays was 69% (no information about the specificity was provided) [8]. While

there are comparatively limited numbers of cases covered by individual X-rays of COVID-19

patients, a collection of characteristic results [6, 8, 9] shows that the most common lung shifts

are concentration of fluid and/or tissue in the lungs preventing gas exchange in the pulmonary
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alveoli. In addition, the ground glass opacities and shadowing nodules primarily affect the

peripheral and lower lung regions. In view of the uncertain data situation, medical societies

and professional bodies have aimed to provide advice. In view of this data situation, the focus

is on CT. The Radiological Society of North America (RSNA) provided an expert consensus

statement that states that CT is not currently recommended for screening to diagnose or

exclude COVID-19 [10]. The Fleischer Company confirmed in its statement that chest X-rays

are insensitive in the early stages of the disease. Nonetheless, X-ray analysis shows regular lung

changes as quarantined patients with severe symptoms are studied. Chest X-rays may be ade-

quate to evaluate the course of the disease and evaluate pneumonia for other reasons, accord-

ing to the Fleischer Society’s view [11], in patients who are already hospitalized. Therefore, for

COVID-19 patients in intensive care who are not sufficiently healthy to undergo CT scans, the

European Society of Thoracic Imaging (ESTI) and European Society of Radiology (ESR) rec-

ommend the use of X-ray imaging [12].

The main advantages and contributions of this research are:

1. Suggested a COVID-19 prediction method can improved the diagnosis accuracy and

decrease the miss diagnosis error when integrated some supervised and unsupervised

machine learning techniques.

2. The main advantages and contributions of this research is that the locality-weighted learn-

ing algorithm has been adapted by adding a clustering process to the dataset before using

the LWL, which we call the SOM-LWL model for the identification of COVID-19 cases

from chest X-ray findings.

3. The SOM clustering method has been applied to pre-trained models with single and multi-

class datasets. The clustering process aims to split the dataset samples and classes into many

subsamples and subclasses within the image dataset and then assign new clustering labels to

the new set, under which each subject set is viewed as a separate class.

4. The similarity and diversity of these clusters is highlighted in the dataset instances, conse-

quently helping to identify variations among members of the dataset and facilitating the

classification and learning process when constructing the LWL diagnostic model.

5. Radiological imaging method is used to emphasizes the performance of chest X-rays with

different type of cases such as positive COVID-19, Non-COVID-19, and pneumonia cases.

On the contrary, the limitation of the proposed method is that it focuses only on chest x-

rays dataset, while there are other medical datasets can be used to detect the COVID-19.

The following are the other parts of this paper: Section 2 addresses the related research of

this study. The descriptions of the proposed SOM-LWL scheme are provided in Section 3. The

approach and methodology are explained in Section 4. Section 5 provides descriptions of the

experimental findings and dataset. Section 6 provides a description of the results, discussion

and analysis. Section 7 is a summary and discusses future works related to the study.

2. Related work

Real-time reverse transcription-polymerase chain reaction (RT-PCR) is the primary research

technique currently in use for COVID-19 diagnosis. Chest radiographic images, such as CT

images and X-rays, are critical for the early diagnosis and treatment of the condition [10]. The

low sensitivity of RT-PCR (60–70%) allows symptoms to be detected by analysing radiographic

images of patients, even though adverse findings are obtained [11, 12]. CT is a sensitive diag-

nostic tool for COVID-19 pneumonia diagnosis and can be used as an RT-PCR screening tool
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[13]. CT results are often found long after symptoms occur, and patients typically undergo CT

analysis within the first 0 to 2 days [12]. In research on lung X-rays, the most severe lung illness

was found 10 days after symptoms were shown in patients who survived COVID-19 pneumo-

nia [14]. During the onset of the pandemic in China, inadequate diagnostic kits were available

at health centres, and high levels of false negative tests were reported, such that doctors were

advised to use health examinations and chest CT scans for diagnosis [15, 16]. CT has been

used in countries such as Turkey, where a small number of test kits were available at the onset

of the pandemic, for COVID-19 diagnosis. Researchers have suggested that comparing clinical

imaging findings with laboratory tests will help to diagnose COVID-19 early [7, 13, 17, 18].

The diagnostic information in radiographic images collected from COVID-19 patients is valu-

able. Several reports have indicated improvements before the effects of COVID-19 began

based on chest X-rays and CT scans [19]. Researchers have also made important advances in

COVID-19 imaging research. In a COVID-19 case, Kong et al. [17] noted right-sided ground

glass opacity. Yoon et al. [20] found a single nodular opacity in the lower left lung area in one

out of three examined patients. The other two patients, by comparison, displayed abnormal

hardness between lung areas four and five. Zhao et al. [21] noted a convergence and vascular

dilation in the lesions in multiple patients as well as mixed GGOs. As typical CT features of

COVID-19 patients, Li and Xia [18] reported GGOs and condensed air, interlobular septal

thickening, and indications of bronchograms with or without vascular expansion. Another

finding was that lateral foci or multifocal GGOs in both lungs affect 50% to 75% of patients

[11]. Likewise, Zu et al. [10] found that rounded lung illumination can be identified in 33% of

chest CT scans.

Rasheed et al. [22] introduced a survey paper investigated medical and technical viewpoints

in the battle against the epidemic of COVID-19, which will support virologists, IA researchers

and policymakers. The paper also discussed and understood the usage of various technical

instruments and techniques within COVID-19. In addition, the study reveals a variety of AI

approaches proposed to support the COVID-19 pandemic, from initial diagnosis through

image diagnostics via models which help to explain COVID-19 spread and recognize new

possible spread areas for the outbreak. The use of predictive diagnostic machine learning

approaches has recently gained attention in the medical industry as a critical resource for clini-

cians [23–28]. Deep learning, a common field of artificial intelligence (AI), allows the creation

of models end-to-end in order without requiring manual feature extraction to produce pre-

dicted results using input data. Several approaches have been proposed a deep learning meth-

ods for the identification of COVID-19 events such as CNN [29–31], COVIDScreen [32], and

COVINet [32]. These approaches were used an efficient and robust X-ray and CT scan imag-

ing solutions.

A variety of problems such as identification of arrhythmias [33], diagnosis of skin cancer

[34], identification of breast cancer [28, 35], surgical diagnosis [36], identification of pneu-

monia [37], segmentation of the fundus [38] and lung segmentation [39] have been evaluated

effectively by deep learning techniques. The rapid spread of the COVID-19 outbreak has

demanded expertise. The development of automatic detection systems based on AI tech-

niques has increased in interest. Because of the small number of radiologists, this technology

is a daunting challenge for specialist clinics at any hospital. Therefore, it can be useful to

solve this problem by supplying patients with quick, precise, and fast AI models. While radi-

ologists play an important role in achieving an accurate diagnosis due to their extensive

expertise in the field, AI technology can also be used in radiology [40]. Furthermore, AI pro-

cedures can help to eliminate drawbacks such as an insufficient number of usable RT-PCR

test kits and test costs. Recently, Sedik, A et al. [41] improved the learning capacities of the

Convolutional Neural Network (CNN) and CLSTM-based deep learning models (DADLMs)
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by introduced a two machine learning models to in order to enhance the prediction accuracy

of COVID-19 identification. Several radiographic images for the identification of COVD-19

were commonly used. To diagnose COVID-19 in X-rays, Hemdan et al. [42] used deep learn-

ing algorithms, suggesting a COVIDX-Net network containing seven CNN models. The

deep learning COVID 19 (COVID Net) model, which had an accuracy of 92.4%, was sug-

gested by Wang and Wong [43] to define groups as regular, non-COVID, and COVID-19.

Using 224 confirmed COVID-19 images, Ioannis et al. [44] established a deep learning pat-

tern. Their model achieved success rates of 98.75% and 93.48% for all three levels. A 98%

COVID-19 detection by chest X-ray signal, along with the ResNet50 pattern, was obtained

by Narin et al. [4]. Similarly, Haque, K.F. and Abdelgawad, A [45] proposed a CNN model

for detecting a COVID-19 positive patients. This model identifies Coronavirus patients with

very little time and energy, and is very accurate. In their work, the CNN models in COVID-

19 are also studied in a comparative analysis.

Sethy and Behera [46] have identified the features extracted from various CNN models

using X-ray images and employed a support vector machine (SVM). Their analysis notes the

highest results of the ResNet50 model with the SVM classifier. Finally, some recent COVID-19

experiments employed a variety of CT image deep learning models [47].

Recently, an algorithm based on laboratory and demographic features was proposed by

Goodman-Meza D. et al. [48] to serve as a screening method in hospitals where testing is lim-

ited or inaccessible. The methodology used data obtained retrospectively from the UCLA

Health System in Los Angeles, California. The study included all emergency area or inpatient

cases that included SARS-CoV-2 PCR testing during March and May 2020, as well as a collec-

tion of ancillary laboratory features (n = 1,455).

Bird J.J. and Barnes CM A. et al. [49] proposed a three-step machine learning approach for

country-level risk prediction based on disclosed COVID-19 data, and these data are used in

this review. K-percent binary discretisation (K = 25) is used to establish four risk categories for

countries based on the risk of infection (coronavirus cases per million people), the risk of

death (coronavirus deaths per million people) and the risk of failure to test (coronavirus tests

per million people). ‘Low’, ‘medium-low’, ‘medium-moderate’ and ‘high’ are the four risk

groups created by K-percent binning. Coronavirus-related data are then deleted, and the char-

acteristics of the three categories of risk prediction are given considering the geopolitical and

demographic data describing each region. Via a cross-validation strategy with a leave-one-

country-out technique, three four-class classification issues are then investigated and bench-

marked to find the best model; SGB and DT algorithms are established for transmission dan-

ger, and extra tree and stack SVM algorithms are proposed for death and testing limitation

risks.

Elaziz MA. et al. [50] Suggested a COVID-19 machine learning method to classify X-ray

images of the chest into two groups: COVID-19 or non-COVID-19 patients. Their model used

a FrMEMs method to exploit the features from chest X-ray images. To accelerate the computa-

tional process, a parallel multi-core computational architecture was used. Then, the most

important features were selected using modified manta ray foraging optimization based on dif-

ferential evolution.

In this research, an automated identification of COVID-19 is proposed in a hybrid unsu-

pervised and supervised learning model represented by SOM-LWL. To bypass the treatment,

the current model requires an end-to-end structure without using any extraction approaches.

This sample consists of 125 images of chest X-rays that are not standard and have been

obtained rapidly. More reliable diagnostic methods are therefore required. One of the most

significant drawbacks of chest X-ray studies is the fact that they cannot detect early COVID-19

phases, since they are not adequately sensitive in GGO detection [10]. However, well-trained
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deep learning models will reflect problems that are not apparent to the human eye and can

change this perception. Table 1 shows the summary of the related work methods.

3. Proposed SOM-LWL model

Despite their self-learning capacity and superior prediction performance, LWL and SOM

models achieve human-like precision in image description and prediction issues. Our frame-

work aims mainly at providing distinguishing visual properties and a quick diagnostic system

that can be used to classify new COVID-19 X-rays. This technique can also be useful to clini-

cians as a treatment plan that can be used depending on the type of infection and can provide

prompt decisions. The following sections describe the suggested operational framework,

design of the SOM-LWL scheme, and the solution of the imbalanced X-ray dataset. The opera-

tional framework is demonstrated in Fig 1.

Fig 1 presented the three phases of the general structure of the SOM-LWL based diagnostic

scheme.

The suggested model is collected of three key phases: the imbalanced raw dataset and fea-

ture extraction, clustering of the data instances based on similarity of the patients features

using the SOM model, and decision-making diagnosis with the training and testing phase

using the LWL prediction model.

The suggested model categorizes the classes of X-rays labelled as Non-COVID (viral-infec-

tion), COVID (COVID-19 viral-infection), and pneumonia (microbial-infection).

3.1. Imbalance data handling

In the first phase, the imbalanced data have been handled by utilizing the raw input features of

X-rays due to their irregular sample distributions. The method used to solve this problem is to

divide all the dataset into equal parts for each class. For example, the number of confirmed

cases for COVID-19 patients is 125 cases, while the number of cases for non-COVID-19 suf-

ferers is 500, and those with pneumonia are 500 cases. The non-infected cases and the cases of

pneumonia were divided into four parts of equal value, each part consisting of 125 samples,

and the samples of each of these four groups equal the samples of the groups of people with

COVID-19. We repeated the joining of the COVID-19 samples for each group separately and

used this dataset as the crossover with other generated non-infected and pneumonia groups.

The number of classes of generated groups was created equally such that each group contains

375 cases consisting of 125 patients infected with COVID-19 and labelled class 1, as well as 125

non-infected patients with COVID-19 and 125 cases of pneumonia that are labelled with class

2 and class 3, respectively. The four groups (A, B, C, and D) that are labelled from this process

were included in the diagnosis clustering and classification experiments for each group indi-

vidually. The imbalanced data handling process is demonstrated in Fig 2.

Fig 2 demonstrates the imbalanced data that have been handled by utilizing the raw input

features of X-rays due to their irregular sample distributions.

3.2. Locally weighted learning method (LWL)

In a region around the query example, the locally weighted regression (LWR) attempts to

modify the training data. LWR is a form of lazy learning, so training data are typically delayed

until a query example’s target value must be forecast. LWR and regression of the kernel [51]

are analogous to data distributed from every boundary on a normal grid. However, in abnor-

mal data distributions, LWR outperforms kernel regression [52]. LWR has the best conver-

gence rates in the minimum sense [53]; among all possible estimators, it has high minimum

efficiency [54, 55]. Hastie & Loader [56] also showed that a number of data distributions are
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Table 1. Summary of the related work methods.

Reference Method Performance Advantages Disadvantages

[10, 11] Thin-slice chest CT A full score for COVID-19 in 155 of

the 167 patients (92.8%)

The low sensitivity of RT-PCR screening

tools (60–70%) allows symptoms to be

detected by analysing radiographic images

of patients. Thin-slice chest CT is simple

to administer, swift, and highly sensitive to

early COVID-19 pneumonia, offering

useful evidence for further diagnosis while

helping to avoid and monitor COVID-19.

• The method used the CT tool which it is

a sensitive diagnostic tool for COVID-

19 pneumonia diagnosis.

• CT results are often found long after

symptoms occur, and patients typically

undergo CT analysis within the first 0

to 2 days

[14] • Crazy-paving pattern

and GGO.

• Quantitative analysis

using SPSS.

A cumulative CT score of 0 (no

involvement) to 25 (maximum

involvement) was calculated as the

amount of lung inference.

Determine improvements from original

diagnostic up to patient recuperation with

COVID-19-related Chest CT findings.

In research on lung X-rays, the most

severe lung illness was found 10 days after

symptoms were shown in patients who

survived COVID-19 pneumonia

[13] RT-PCR 60–70% sensitivity The low sensitivity of RT-PCR (60–70%)

allows symptoms to be detected by

analysing radiographic images of patients.

but on initial negative RT-PCR

CT results are can be found in initial

negative RT-PCR only due to

abnormalities on chest CT scan images.

[10] Thin-slice chest CT A full dant for COVID-19 in 155 of

the 167 patients (92.8%)

The CT system used for COVID-19 results

involves multifocal floor-to-ground

(GGO’s) peripherally scattered with

patchy consolidations and tastes in the

back and under lobe. In early

identification, observation and disease

assessment, chest CT played a crucial role.

It is uncertain that if chest x-rays are

regular, the criterion for undertaking CT

tests of probable lung changes may be

smaller. Further experiments are required

to increase the selection of CT patients, to

identify the effectiveness of CT in

COVID-19 pneumonia and to investigate

the use of artificial intelligence in chest X-

rays in suspicious cases.

The COVID-19 can be detected only using

CT data only rather than other types of

dataset.

[20] Radiographical and CT

analyses

The performance test of Fisher was

used to equate CT findings

according to the type of pulmonary

lesions.

The radiographical and CT analyses from

baseline pneumonia COVID-19 have been

examined. The exact test of Fisher was

used to equate CT findings according to

the type of pulmonary lesions.

In this analysis, there are a few limitations.

As of February 16, 2020, nearly one-third

of all 29 COVID-19 patients in Korea were

included in the group of patients, which

was a small number.

Secondly, the approach relies on the

baseline CT observations, which doctors

and radiologists found first rather than the

outcomes from follow-up CT scans.

Third, the procedure reduced patients’

health knowledge as the study culminated

in a large percentage of the patients

undergoing inpatient therapy.

[12] Negative RT-PCR The mean score was 6.8 and the

score for the median CT attendance

was 4 (maximum CT score, 14;

minimum CT score, 2).

Chest CT confirmation of viral

pneumonia can be preceded by positive

reverse transcriptional reaction test results

in patients at risk for COVID-19.

CT findings appear late after occur of

symptoms and usually CT scans for

patients within the first 0 to 2 days are

done.

High dosage and cost scanning of patients

are the principal downside of using CT

imagery.

[16] rRT-PCR CT sensitivity at present was 97.2%,

although the original RRT-PCR

sensitivity was just 83.3%.

The method can evaluated the CT and

rRT-PCR diagnostic significantly for

pneumonia COVID-19.

The availability of nucleic acid detection

kits was limited since there was a COVID-

19 pneumonia epidemic. Only in fever-

positive and CT-positive cases were tested

rRT-PCR. Furthermore this analysis had a

limited sample size and due to time

limitations, no follow-up was done.

Consequently, for further verification,

greater sampling sizes are necessary.

(Continued)
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managed by LWR approaches, and boundary and cluster impacts can be avoided. LWR

depends on how far the nearest neighbours of a given query example are retrieved from a func-

tion. Nevertheless, the distance function does not have to follow the formal distance metric

requirements [52]. The RL allows several ways to use distances [52]; for example, a function

for a single instance is used in all parts of the input space (global distance function); (ii) param-

eters of the distance function are determined by a process of optimization (request-based local

distance function), or (iii) a distance function and its parameter values (point-based local dis-

tance function) are provided for every training example. Weighting and smoothing parameters

are also relevant for LWR. A weighting function (kernel) determines the weight of a query

example by a neighbour. The maximum value of a weighting function should be zero and

decay smoothly with increasing distance. Examples of well-known weighing functions are

Cubic, Epanchnikov, Tricube, Inverse and Gaussian. In terms of smoothing parameters, the

Table 1. (Continued)

Reference Method Performance Advantages Disadvantages

[17] Viral pneumonia CT

diagnosis Method

In chest CT there was a low

diagnosis incidence of COVID-19

missing (3.9%, 2/51)

The method can able to determine and

evaluate the mis-diagnosis error of

radiologists for COVID-19

The method still limited for recognising

distinguish viruses and distinctive

between them.

During the research time the number of

patients was reduced by the lack of

laboratory test kits.

[21] Chest CT Interaction

Results and Coronavirus

Clinical Conditions

In emergency patients, the

prevalence of diffuse lesions was

higher than in the non-emergency

population (78.6% vs 24.1%).

The study discusses medical and technical

viewpoints to promote the outbreak of

COVID-19 by virologists, policymakers

and IA researchers.

The paper has taken initial steps in

compiling and highlighting existing state-

of-the-art, but does not discriminate

between working cases in wild and in

laboratory circumstances.

[44] COVIDX-Net, VGG19 and

(DenseNet)

f1-scores of VGG19 is 0.89% and

DenseNet is 0.91%

The technique allows radiologists to detect

COVID-19 instantly in X-ray images

X-ray scans cannot differentiate between

the soft tissue and the medium dose to

minimize exposure to the patients

[43] Convolutional Neural

Network (CNN) and

CLSTM-based deep

learning models

91% accuracy for the ConvLSTM

DLMs and the CNN and

The method Improved the learning

capacities of the Convolutional Neural

Network (CNN) and CLSTM-based deep

learning models (DADLMs) by

introduced a two machine learning

models to in order to enhance the

prediction accuracy of COVID-19

identification.

The method has been investigated under

two machine learning techniques SVM

and k-NN only.

[45] Deep learning model 92.4% classification accuracy The model classified and define groups as

regular, non-COVID, and COVID-19

based on a deep learning model with

accuracy of 92.4%

The method is need to be improved in

term of defining and classification

accuracy.

[47] CNN 98.3% accuracy and a precision of

96.72%

This model identifies Coronavirus patients

with very little time and energy, and is

CNN models very accurate. In their work,

the CNN models in COVID-19 are also

studied in a comparative analysis.

The study preserving the dataset images

with transformed to 224 × 224 pixels due

to the image quality. Actually, the

converting process is considered as an

extra step before using CNN model.

[48] ResNet50 plus SVM The accuracy of SVM scored,

95.38%, 91.41%, 95.52%, 90.76% for

FPR, MCC, F1-score, and Kappa

respectively for COVID-19

detection

The method identified the features

extracted from various CNN models using

X-ray images and employed a support

vector machine (SVM). Their analysis

notes the highest results of the ResNet50

model with the SVM classifier.

The method was used the SVM only

rather than other machine learning

techniques.

[52] FrMEMs approach The classification accuracy scores

with 96.09% and 98.09% for the

COVID-19 datasets.

The model used the FrMEMs approach to

take advantage of chest X-ray images

features. The computing process was

accelerated using a parallel multi-core

computational architecture.

The limitation of the method is that the

time of the CPU is considered as the third

rank.

https://doi.org/10.1371/journal.pone.0247176.t001
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parameter (h) of the bandwidth determines the size or spectrum of the generalization. There

are many ways to describe parameter h [52], for example, by selecting a fixed bandwidth,

choosing the next neighbour bandwidth, choosing a regional bandwidth, selecting a local

query-based bandwidth or selecting a local point-based bandwidth. In favour of the closest

bandwidth selection approach, Cleveland & Loader [56] argued to determine the value of h; in

this case, parameter h was equal to the distance from a k-th example.

Fig 1. Operational framework.

https://doi.org/10.1371/journal.pone.0247176.g001

Fig 2. Imbalance data handling process.

https://doi.org/10.1371/journal.pone.0247176.g002
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3.3. Evaluation measures

This section discusses the evaluation measures that are used to assess the performance of the

proposed method, which are as follows:

3.3.1. Mean absolute error (MAE). Sum used to assess how close the predictions or fore-

casts are to the actual outcomes. Examples for Y versus X provide measurements of the predic-

tion versus the actual time versus initial time as well as a measurement technique versus an

alternative measurement technique. The MAE is calculated as:

MAE ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

t¼1

jtej

s

ð1Þ

3.3.2. Root mean square error (RMSD). Measures the variations between the values

expected by a model or estimator (sample and population values) and the values actually

observed. It represents the standard sample deviation between the values expected and the val-

ues observed. It adds to one predictive power of the size of the errors in predictions for various

periods. It is a fair measure of precision but is only used to evaluate forecast errors in different

models for a certain variable and not between variables, since it depends on the scale. It is also

named the root mean square deviation (RMSD), the RMSE is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

et
2

s

ð2Þ

3.3.3. Relative absolute error (RAE). The relative squared error refers to a situation

where a simple predictor is used. This simple predictor is more specifically just the average of

actual values. Thus, the relative squared error takes and normalizes the entire squared error

and divides it by the simple predictor’s total squared error. Relative squared error (Ei) is

assessed mathematically as:

Ei ¼

Xx

j� 1

jPij � Tjj

Xx

j� 1

jTi �
�T j

ð3Þ

where P(ij) is the parameter for sample case j for the particular program I (out of n sample cases).
The sample case J class parameter is Tj:

^
T ¼

1

n

Xx

j� 1

Tj ð4Þ

The number must be equivalent to 0 and Ei = 0 to fit perfectly. The egg index therefore var-

ies between 0 and infinity, with 0 matching the ideal. The relative absolute error is somewhat

similar to RSE in the sense that it is also related to a simple indicator that is just the average of

the actual value. In this case, however, the error is the absolute total error, rather than the com-

plete squared error. Therefore, the absolute relative error takes the total absolute error and

normalizes it by separating the actual total error from the basic predictor.

3.3.4. Root relative squared error (RRSE). The RSF refers to what the error would have

been if there had been a simple predictor. More precisely, this basic measure is just the average
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real value. Thus, the relative squared error takes and normalizes the squared error, dividing it

by the simple predictor’s total squared error. When taking the square root of the comparable

squared error, the error is of the same dimensions as the expected number. Statistically, the

RRSE Ei of a distinct model i is assessed by the following calculation:

Ei ¼

Xx

j� 1

ðPij � TjÞ
2

Xx

j� 1

ðTi �
�TÞ2

ð5Þ

where P(ij) is the expected parameter for sample case J by the separate program I (from n sam-
ples); Tj is the class parameter for sample case j; and �T is specified as defined in Eq 4.

3.3.5. Correlation coefficient (CC). The correlation coefficient is a statistical measure of

the relation intensity between two variables’ relative movements. The values differ from -1.0 to

1.0. An error in the correlation calculation is a measured number greater than 1.0 or less than

-1.0. A correlation of -1.0 is completely negative, while a correlation of 1.0 is completely posi-

tive. A correlation between 0.0 and the movement of the two variables does not appear to be

linear (see below):

r ¼
nð
X

xyÞ � ð
X

xÞð
X

yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n
X

x2 � ð
X

xÞ2�
q

½n
X

y2 � ð
X

yÞ2�
ð6Þ

Where n is sample size, x and y are the specific sample points indexed with i.

4. Methodology and approach

4.1. Feature extraction procedure

By examining X-rays, we can see that good texture and statistical groups are possibly the prin-

cipal visual attribute. Several researchers have started using texture and statistical features over

the last decade to identify models for classification problems. This type of function has become

a major trend because it can be easily done, as the software engineering work is usually a labo-

rious job and involves a sophisticated knowledge of problem classes, and the techniques sup-

porting hand design descriptors are not essential. This function is not essential. Although the

non-manufactured descriptors have some obvious features, we should note that the handmade

characteristics have specific characteristics that can also make them very useful for coping with

many classification tasks. One of these benefits is that handmade features are more robust

since these techniques are often operating in a more deterministic manner to capture trends

relating to the problem. Rather than using uncrafted features, a more accurate interpretation

of patterns produced by handcrafted features of the pictures is more feasible. Nevertheless, in

this work, we have made efforts to use these two groups in extracting features. In this way, we

can test the two separately, and we conduct a combination of several experimental set-ups. In

this sense, we make use of the complementarity between the two descriptors’ strategies, since

they do not necessarily make the similar mistakes in the performance of a specified prediction

task, as demonstrated in [57, 58]. In this section, the descriptors utilized for this study are

briefly listed. The selected texture descriptors were chosen to achieve good results in common

applications or precisely in medicinal image investigation systems. The statistical features

group includes the following:
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4.1.1. Mean. The mean is a measure of the average intensity of the neighbouring pixels of

an image.

m ¼
Xl� 1

i¼0
zi � pðziÞ ð7Þ

4.1.2. Standard deviation. The standard deviation is a measure of how spread out num-

bers are.

4.1.3. Skewness. The skewness, or more specifically, lack of symmetry, is a measure of

symmetry. If the left and right points around of the middle are identical, then the distribution

or dataset is symmetric. The skewness is zero for a regular distribution, and any symmetric

data should be near zero. Negative skewness values indicate left skewed data, and right skewed

data indicates positive skewness.

Skewness ¼
Xl� 1

i¼0
ðzi � mÞ3 � pðziÞ ð8Þ

4.1.4. Kurtosis. The kurtosis is a measure of whether the data in relation to normal distri-

bution are peaked or flat. In other words, high-kurtosis datasets appear to have a distinct peak

close to the average.

Kurtosis ¼
Xl� 1

i¼0
ðzi � mÞ4 � pðziÞ ð9Þ

4.1.5. Contrast. The contrast is the luminance and/or colour difference that distinguishes

the item (or its display in the picture or display). In real-world visual perception, the difference

in the colour and luminosity of the target and other objects in the same field of view defines

the contrast.

Contrast ¼
Xl� 1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzi � mÞ2 � pðziÞ
q

ð10Þ

4.1.6. Smoothness. Smoothness measures the relative intensity variations in a region.

Smoothness ¼ 1 �
1

ð1þ σ2Þ
ð11Þ

where zi is a random intensity indicator variable, p(z) is the histogram for the levels of intensity
of the field, l is number of potential intensity levels and σ is standard deviation factor.

For the texture features group, we applied the GLCM method. Introduced by Haralick [59],

GLCM is a connection between pixels in a matrix that is frequently used in the analysis of tex-

ture. Adjacency is a relation between two pixels that is defined by the distance between the two

pixels and the angle between them. The size and angles of the space are therefore GLCM

parameters. The GLCM functions describe the textures of an image by measuring how many

pixel pairs occur in an image with certain values and with a given spatial relation, and a GLCM

is generated. Then, statistical measures are obtained from the matrix pair of pixels with differ-

ent values and in a given spatial relation. We noted that in the texture features, the statistical

measures of texture filter functions cannot give information on the shape, i.e., the spatial rela-

tionships of pixels in the image. The GLCM feature set is based on second-order statistics. The

overall average for degrees of similarity between pixel pairs in different ways (homogeneity,

uniformity, etc.) can be used for the reflection. One of the key factors influencing GLCM’s
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capacities for discrimination is the pixel separation. When taking the distance as 1, the associa-

tion between pixel values (i.e., short-term neighbourhood connectivity) is expressed. The

change in the value of the distance represents how much pixels correspond.

4.1.7. GLCM features. In 1979, Haralick suggested 14 characteristics in "Statistical and

structural texture approaches" [59], indicating that functions that well describe the adjacency

relations among pixels in the image texture are produced by the GLCM. The characteristics

extracted by some formulas from co-occurrence matrices depend on features to be observed.

We selected four of the Haralick texture features based on the X-ray image dataset characteris-

tics, such as correlation, homogeneity, energy and contrast. Table 2 shows some formulas to

compute GLCM texture features.

4.2. Self-organization map

In the 1980s, the SOM was launched by Teuvo Kohonen from Germany; it is often known as a

Kohonen map. The algorithm is a kind of artificial neural network that is learned to generate a

small (typically two-dimensional) non-supervised learning representation of the sample input

field, called a map, and thus is a tool for that dimensionality. SOMs are distinct from other arti-

ficial neural networks because competitive training is used in contrast to error correction (e.g.,

gradient descent and back propagation) and they maintain the place’s topological qualities by

using a neighbourhood function. One essential detail is that the entire training takes place

without control, i.e., the nodes are structured themselves. They are often named feature maps,

and the characteristics of the input data are basically retrained and clearly grouped according

to similarity. The map has a logical value for the visualization, in a small, usually two-dimen-

sional area, of huge quantities or complex of high-dimensional data to determine how it is

defined by the given unlabelled data. The Kohonen map [60] is an unmonitored learning cal-

culation to generate the topology-conserved changes from a high-dimensional data space to a

small-guided space and is a capable apparatus that is used in a variety of fields, such as knowl-

edge mining, analysis, perception and grouping. SOM uses have grown into different fields,

such as online research [61], bioinformatics [62] and back-propagation neural network meth-

ods [63], and their value continues to increase. Because of the increasing importance of the

SOM and its development, only vector-based knowledge can be handled. In the event of a

dataset without a vector, the information must be vectorized or adjusted to the data composi-

tion of the Kohonen itself. In that way, the Kohonen family presents an unavoidable question

in terms of determining the autonomous representation of the written knowledge in the Koho-

nen calculation. The Kohonen Map Architecture [64] is demonstrated in Fig 3.

Table 2. GLCM texture features formulas.

Sl. No. GLCM feature Formula

1 Correlation
XN� 1

i;j¼0

Pi;j

ði � mjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi

2Þðsj
2Þ

q

2

6
4

3

7
5

2 Homogeneity XN� 1

i;j¼0

Pi;j

1þ ðiþ jÞ2

3 Energy XN� 1

i;j¼0

Pi;jð� ln Pi;jÞ

4 Contrast XN� 1

i;j¼0

Pi;jði � jÞ
2

https://doi.org/10.1371/journal.pone.0247176.t002
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Fig 3 shown the main structure of the Kohonen Map clustering technique that has been

used in the proposed method.

“w is the weight vector
w_ij(t) is the weight of the connection between the nodes i,j in the grid, and the input vector’s

instance at the iteration t
x is the input vector”

Kohonen Map Algorithm
Begin

1: Set a random value for each node’s weight w_ij
2: Use a random vector data x k
3: Repeat point 4. and 5. For all map nodes:
4: Calculate the Euclidean distance to wij, the weight vector of first
node, and the input vector x(t), where t, I j = 0.
5: Follow the node with the distance that yields the smallest t.
6: Select the overall best-matching unit (BMU), i.e., the node with
the smallest distance from all determined.
7: Determine the BMU radius of βij(t) topological neighbourhood in the
Kohonen Map
8: Replay the vector weight w j of the first node in the BMU district
by adding a fraction of the difference between nodes in the BMU
district
9: Step 1 is the initialization stage, whereas steps 2 to 9 define the
learning stage.
End
Updates and changes to the variables are made as follows:

wijðt þ 1Þ ¼ wijðtÞ þ aiðtÞ½xðtÞ � wijðtÞ� ð12Þ

Or

wijðt þ 1Þ ¼ wijðtÞ þ aiðtÞbijðtÞ½xðtÞ � wijðtÞ� ð13Þ

The first formula informs us that the new wij (t + 1) for node I j is the same as the sum of old
w ij(t) and the difference is a small fraction of the old wij(t) weight. The weight vector is "moved"

Fig 3. Kohonen map architecture [64].

https://doi.org/10.1371/journal.pone.0247176.g003
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to the input vector in other words. Another essential factor is that the updating weight of the
nodes in the neighborhood radius should be proportionate to the 2D size.

5. Experimental design and datasets

This section describes the experimental setup and assessment of the suggested LWL based on

the SOM diagnostic method. Computation performance addresses the influence of the sug-

gested process on its performance and calculation steps. The experiments are all carried out in

the MATLAB 9.3 Release R2017b environment, IBM SPSS modular and Weka 8.3 tools.

5.1. Experimental design

In our suggested method, we enhance the existing X-ray dataset using crossover balanced

COVID-19 class images. Our aim here is to demonstrate the negative impact of the imbal-

anced distributions in the raw dataset on performance. It is worth mentioning that we adjust

the SOM-LWL for a regular training process with the best model parameters. The research

aims at introducing a prediction method for COVID-19 diagnoses using a hybrid SOM clus-

tering algorithm and LWL method for improving the diagnostic precision of the classification

and reducing the misdiagnosis error. This research leads to a new approach that blends super-

vised and unsupervised methods of learning as a hybrid model. A qualified study was carried

out using the LWL classification and SOM clustering data structure on the X-ray chest image

feature extraction. The outcomes of the clusters were used as inputs to the classification model

by using LWL as predictions for positive cases of COVID-19, pneumonia, and no-findings

cases of COVID-19. The methodology of the hybrid SOM-LWL was used to test the effects of

the qualified process. The data were associated with multiple cases (non-COVID-19, pneumo-

nia, and COVID-19). For the training and testing of the SOM-LWL method, the dataset was

divided into 10 portions based on 10-fold cross validation.

Cross validation involves the simple idea of holdout by using certain information for testing

and the rest for training. Repeated holdout enables the use of more data in training than in

testing while still providing a reliable test. In 10-fold cross validation, the contents of one fold

are influenced by the contents of other folds. The different cross-validations are applied with

independent samples from the COVID-19 dataset to obtain some variations in results and

remove any outliers based on averaging. The COVID-19 dataset was divided into 10 folds after

the data balancing process. Two different scenarios have been used for the identification and

classification of COVID-19 in X-rays. First, the SOM-LWL scheme is trained to classify the X-

rays into three classes: COVID-19, Non-COVID-19, and pneumonia. Furthermore, two clas-

ses are trained with the SOM-LWL model: the COVID-19 classes and the Non-COVID-19

classes. For triple and binary classification problems, the output of the suggested model is

assessed by the 10-fold cross validation process. The training records use 90% of the X-ray

images and 10% as the testing stage, the process is performed four times based on the balance

of the dataset that has been determined in pre-processing phase. In contrast to the traditional

hold-out validation process, this type of validation method provides better results.

5.2. The dataset

AI-based X-ray screening is effective in both asymptomatic and symptomatic patients for

COVID-19 testing. A unique challenge for algorithms is that COVID-19 can be distinguished

from other lower respiratory diseases that may look similar in X-ray imaging. The data are

produced in.png, jpg, and jpeg X-ray formats. A collection by Dr. Cohen of John Hopkins

Hospital uses the two datasets from the Kaggle Chest X-rays [65]. These datasets were used to

compare cases with bacterial pneumonia, healthy cases and cases with pneumonia induced by
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COVID-19 viruses. The dataset is made up of chest images of pneumonia patients. Cohen JP

[65] developed a COVID-19 X-ray image database using images from different open access

sources. This database is continuously updated with images from various regions shared by

scientists. The database currently has 127 COVID-19 diagnosed X-ray images. Fig 4 demon-

strates some COVID-19 samples acquired from the X-ray dataset.

Fig 4 shown some sample of COVID-19 cases that has been acquired from the X-ray

dataset.

Cohen compiled and collected COVID-19 images from various public outlets. From this

database, a total of 88 positive cases were obtained. Fig 4 (top) displays the COVID-19 sample

images from this database. However, the database does not include usual (negative) events.

Fortunately, regular chest X-ray images are widely available.

Within the sample, there are 43 females and 82 males who have been shown to be positive.

Complete metadata are not provided for all patients in this dataset. The age of 26 positive

COVID-19 individuals is given, and their average age is approximately 55 years. In addition,

for normal and pneumonia images, a database of ChestX-ray8 has been provided by Wang

et al. [66]. To prevent unbalanced results, we used the random images of this set of 500 no-

findings and 500 pneumonia frontal chest X-rays. The classes of groups produced were

equivalent such that each group consisted of 375 cases consisting of 125 COVID-19 cases

labelled as class 1, and 125 non-COVID19 infected cases and 125 pneumonia cases, respec-

tively, were labelled as class 2 and class 3. Through this method, the generated groups after

data balancing were individually identified in diagnostic cluster experiments for each group.

To compare the correlation factor of the X-ray diagnosis classifier, experimentations were

conducted using the SOM-LWL learning classifier with 10-fold cross-validation. The new

balanced datasets were divided into 10 pieces. Each part accounted for 10% of the original

dataset, such that each dataset set could be used as test data. In every round, nine sets of

experiments are used for training and one for testing. The SOM approach is used to cluster

the chest X-ray dataset based on non-COVID-19, pneumonia, and COVID-19 characteristics

of the same type.

Fig 4. X-ray sample from the COVID-19 dataset [23].

https://doi.org/10.1371/journal.pone.0247176.g004
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6. Results discussion and analysis

The error is linked to what a classifier would have been. A simple classifier provides the aver-

age true values obtained from the learning data. Therefore, relative squared error assumes and

normalizes the overall squared error by dividing the default predictors by a minimum squared

error. To evaluate our X-ray COVID-19 identification model, the mean absolute error, root

mean squared error, relative absolute error, correlation coefficient, and root relative squared

error have been calculated as standard measures, which has been discussed in Section 3.

The performance of the suggested SOM-LWL model is tested with the chest X-ray COVID-

19 dataset. The results of the SOM algorithm are the extracted 12 clusters with various

instances and characteristics distributed based on the image feature extraction. With the crite-

rion defined for the grouping criterion, the SOM algorithm determines the best number of

clusters automatically. Fig 5 shows the generated clusters.

Fig 5 demonstrates the generated clusters using SOM algorithm with various instances and

characteristics distributed based on the image feature extraction.

Furthermore, in the latter part of the training, when the SOM-LWL model continuously

analyses all X-rays at each point during the training, these quick oscillations become sluggish.

The performance of multi-class prediction and average classification of the SOM-LWL model

has been calculated and estimated for all folds. In Fig 5, SOM clustering algorithm outcomes

generated 12 clusters. The range of the distributed percentage of cases members is between

0.1% and 16.13%. Due to the similarity of the features, the similar cases are reported in Cluster

1, Cluster 2, etc. The number of the members that is the highest is scored with 223 instances

and represents 19.8% of the total instances. The ratio of the largest size to the smallest cluster is

scored with 223 instances, as shown in Fig 5. The similarity and diversity of these clusters is

highlighted in the dataset instances, consequently helping to identify variations among mem-

bers of the dataset and facilitating the classification and learning process when constructing

the LWL diagnostic model. Using these clusters, a chest X-ray dataset was analysed and repre-

sented by the SOM clustering algorithm; data interpretation is the principal task of many of

the clustering processes. It is one of the reasons for choosing the hybrid approach of the SOM

clustering algorithm and LWL classification, though data prediction is the main task of the

classification technology. Regarding the stage of how the clustering is used and combined with

the LWL classification for grouping of datasets in various groups, the SOM clustering algo-

rithm is first applied. Within a new variable function called Label, the outputs of these classes

and clusters are represented. We plan to validate our model in the future with the inclusion of

additional images. This built model can be used as a cloud implementation, so that patients

can be immediately identified and rehabilitated using the SOM-LWL model. This could signif-

icantly reduce the workload of the clinician.

The chest X-ray image data collection was studied for the purpose of performing an experi-

mental analysis. As previously reported, the study employed a 10-fold method of cross-

Fig 5. X-ray sample of COVID-19 dataset.

https://doi.org/10.1371/journal.pone.0247176.g005
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validation for training and dataset testing of the balanced datasets. To study the resulting

improvement with the hybrid approach, the experiment was carried out using an LWL classifi-

cation with and without clustering results.

To measure the effect of COVID-19, a chest X-ray information dataset was extracted and

analysed. The dataset was identified positive COVID-19, Non-COVID-19, and pneumonia

cases for each patient. The hybrid technique employed the mixture of SOM and LWL methods

for learning and testing the dataset. The dataset was then divided into multiple clusters of vari-

ous instances using the SOM algorithm. The key goals of the research were to derive patterns

and structures by collecting samples of the same characteristics and features of COVID-19,

thus decreasing the difficulty of accurate diagnostics. Tables 3 and 4 provide a set of results

obtained with the LWL classification method without and with clustering using the SOM

approach for the training and testing experiments. The performance of SOM is evaluated in

the combination phase as a new function that identifies each instance on the cluster name

dataset, as demonstrated in Section 5. By grouping the dataset into similar clusters, this feature

may aid the association between instances. The LWL classifier was again used to achieve a high

correlation factor with the high performance of the SOM process. In training and testing with

and without clustering, 10-fold cross validation was applied to examine the integrated features

of the clustering process with extracted features from the chest X-ray image dataset. Each test-

ing and training experiment chose the images features extracted as an input variable to the

LWL classifier. The class field is the target (COVID-19, Non-COVID-19, and pneumonia)

cases. When the LWL technique classified the instances of the dataset with the SOM cluster

output, the correlation results were increased, and the classification error decreased accord-

ingly. Importantly, the SOM clustering method increased the correlation factor by a ratio

(0.978) for all cases COVID-19, Non-COVID-19, and pneumonia cases, a (1) ratio correlation

between the pneumonia and Non-COVID-19 cases, a (0.990) ratio for the COVID-19 and

pneumonia cases, and a (1) ratio between the COVID-19 and Non-COVID-19 cases, as shown

in Tables 3 and 4.

Table 3. Results of chest X-ray COVID-19 classification based on LWL-SOM.

Experiment

No

Samples cases Correlation

coefficient

Mean absolute

error

Root mean

squared error

Relative absolute

error

Root relative

squared error

Total Number of

Instances

Locally weighted learning (LWL) with data clustering using self-organized mapping (SOM)

Experiment -1 Covid19 vs No finding 1 0 0 0% 0% 625

Experiment -2 Covid19 vs Pneumonia 0.9999 0.0018 0.0067 0.55% 1.6716% 625

Experiment -3 Pneumonia vs No finding 1 0 0 0% 0% 1000

Experiment -4 Covid19 vs No finding vs

Pneumonia

0.9788 0.1009 0.2 11.3365% 21.1972% 1125

https://doi.org/10.1371/journal.pone.0247176.t003

Table 4. Results of chest X-ray COVID-19 classification based on LWL.

Experiment

No

Samples cases Correlation

coefficient

Mean absolute

error

Root mean

squared error

Relative absolute

error

Root relative

squared error

Total Number of

Instances

Locally weighted learning (LWL) without data clustering

Experiment -1 Covid19 vs No finding 0.8894 0.0597 0.1831 18.6029% 45.6483% 625

Experiment -2 Covid19 vs Pneumonia 0.8783 0.0694 0.1913 21.6775% 47.7803% 625

Experiment -3 Pneumonia vs No finding 0.6113 0.3121 0.3957 62.3354% 79.0202% 1000

Experiment -4 Covid19 vs No finding vs

Pneumonia

0.9613 0.1352 0.2621 15.1846% 27.7699% 1125

https://doi.org/10.1371/journal.pone.0247176.t004
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The method used in the SOM-LWL model produced an increase in the correlation coeffi-

cient results between the Covid19, no-finding, and pneumonia cases; pneumonia and no-find-

ing cases; Covid19 and pneumonia cases; and Covid19 and no-finding cases from 0.9613 to

0.9788, 0.6113 to 1 0.8783 to 0.9999, and 0.8894 to 1, respectively. Moreover, using the sug-

gested model, decreases in the mean absolute error, root mean squared error, relative absolute

error, and root relative squared error were progressively achieved for the three best results

with low error ratios when using SOM clustering algorithm with the LWL classifier. We noted

that the experiments conducted used different dataset sizes according to data balancing among

the types of chest X-ray image cases. The individual results for the SOM-LWL correlation coef-

ficient are demonstrated in Fig 6.

Figs 6, 7, 8, 9 and 10 demonstrate the output results of the LWL with clustering using the

SOM method using different evaluation criteria such as mean absolute error, root mean

squared error, relative absolute error, and root relative squared error.

Fig 6. SOM-LWL correlation coefficient.

https://doi.org/10.1371/journal.pone.0247176.g006

Fig 7. SOM-LWL mean absolute error.

https://doi.org/10.1371/journal.pone.0247176.g007
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Fig 8. SOM-LWL root mean squared error.

https://doi.org/10.1371/journal.pone.0247176.g008

Fig 9. SOM-LWL root relative error.

https://doi.org/10.1371/journal.pone.0247176.g009

Fig 10. SOM-LWL root relative squared error.

https://doi.org/10.1371/journal.pone.0247176.g010
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The correlation coefficient factors were calculated, and the correlation coefficient scores

using LWL with clustering achieved high factors with error scores of 1 and 0 for COVID-19

with non-COVID-19 and pneumonia vs non-COVID-19. The Figures also indicate that better

results are achieved with the LWL classifier with SOM clustering than with the LWL without

the clustering approach yielding (0.9999) and 0.9788 correlation coefficient factors between the

COVID-19 vs pneumonia cases, and COVID-19 vs Non-COVID-19vs pneumonia cases,

respectively. High-performance results without clustering are achieved in COVID-19, Non-

COVID-19, and pneumonia sample cases with a (0.9613) correlation coefficient factor. On the

other hand, high-performance diagnosis results with clustering are obtained in the same sample

cases (COVID-19, Non-COVID-19, and pneumonia) with a score of (1) for the correlation

coefficient factor. We concluded that there is an improvement while using the SOM clustering

method. The prediction results of the SOM-LWL with clustering are better, and the COVID-19

diagnosis is more precise when using an integration of the SOM output with the LWL classifier.

The results of our prediction model experiments showed enhancements were obtained by

the SOM-SVM model, and the t-test algorithm was used as the statistical significance measure

to emphasize the improvement. The low t-test values (typically less than 0.05) indicate that the

two variables are substantially modified. This condition was highlighted in the assessment

measures based on the findings achieved in Table 5 concerning the correlation coefficient

factors, mean absolute error, and root mean squared error values of 0.019, .027, and.003,

respectively. This reveals that SOM-LWL achieved significant enhancement in diagnostic per-

formance, and the LWL with and without clustering is substantially different. Table 5 demon-

strates the performance results using the t-test statistical significance test.

We noted that in Table 5 the P-value score is less than 0.05, thus indicating that for the two

variables, the correlation coefficient factor, mean absolute error, and root mean squared error

improved significantly after using the SOM clustering method.

The comparison of the suggested SOM-LWL scheme with other COVID-19 diagnostic sys-

tems developed based on chest X-ray is demonstrated in Fig 11.

Fig 11 shows a summary of the comparison performances between the proposed

SOM-LWL method and other COVID-19 chest X-ray diagnosis methods.

We note the achieved better results in the multi-class prediction scenario (COVID-19,

Non-COVID-19, and pneumonia). In addition, the performance results have proven that in

terms of the diagnostic monitoring for the early diagnosis, treatment and incubation phases of

the disease, radiological imaging plays an important role in the COVID-19 epidemic.

7. Conclusion and future work

A few characteristic findings in the lungs of patients with COVID-19 can be identified by chest

X-rays. In this study, the SOM-LWL model is suggested for diagnosis and detection of the

Table 5. T-test statistical significance results.

Differences between the correlation coefficient factor, mean absolute error,

root mean squared error, relative absolute error, and root relative squared

error before and after the improvement

t df P Value

Mean Std. Deviation 95% Confidence Interval of the

Difference

Lower Upper

Correlation coefficient factor -.15960 .14787 -.28322 -.03598 -3.053 7 .019

Mean absolute error .11843 .12026 .01788 .21897 2.785 7 .027

Root mean squared error .20638 .12837 .09906 .31369 4.547 7 .003

https://doi.org/10.1371/journal.pone.0247176.t005
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COVID-19 disease based on chest X-rays. The number of cases continues to rise exponentially

as COVID-19 spreads across the world. To prevent crippling the healthcare system, the use of

a tool that can help diagnose the disease in people by using an inexpensive and fast process is

necessary. Within this context, the literature suggests that the diagnosis may be assisted by the

use of data mining methods to classify pneumonia disease in chest X-rays. However, the issue

is much more difficult when we look at chest images of patients suffering from pneumonia

caused by multiple types of pathogens and attempt to forecast a particular form of pneumonia

(COVID-19). There are far more people without pneumonia than people who are sick in the

real world. Moreover, the number of people suffering from pneumonia caused by various

pathogens is inherently imbalanced, and due to the COVID-19 outbreak, it is increasingly dif-

ficult to measure the precise imbalance between these numbers. In view of a plausible scenario,

we have suggested a classification scheme to classify and define COVID-19 as a pneumonia

disease caused by various pathogens in chest X-rays. We use resampling methods in the pro-

posed method to counter the problem’s inherent imbalance. In addition, the conceptual

scheme includes 8 separate sets of features derived from the images that are evaluated sepa-

rately and subsequently integrated in an early fusion design. In addition, exclusively and in a

late fusion configuration, the prediction outputs are tested. The suggested schema also imple-

ments multi-class, unsupervised learning (SOM clustering) and supervised learning (LWL).

To apply the diagnosis model in this application field, we have considered a prediction model

called SOM-LWL.

In the future work, the proposed method will be expanded to be abdicable for different

types of COVID-19 datasets such as SARS-CoV-2 CT-scan [67], COVID-CT [68], and statisti-

cal datasets. However, the quality of predication method in COVID-19 disease will be com-

bined with optimization techniques using classification and regression algorithms.
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