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ABSTRACT Host-associated microbiota composition can be conserved over evolu-
tionary time scales. Indeed, closely related species often host similar microbiota; i.e.,
the composition of their microbiota harbors a phylogenetic signal, a pattern some-
times referred to as “phylosymbiosis.” Elucidating the origins of this pattern is im-
portant to better understand microbiota ecology and evolution. However, this is
hampered by our lack of theoretical expectations and a comprehensive overview of
phylosymbiosis prevalence in nature. Here, we use simulations to provide a simple
expectation for when we should expect this pattern to occur and then review the
literature to document the prevalence and strength of phylosymbiosis across the
host tree of life. We demonstrate that phylosymbiosis can readily emerge from a
simple ecological filtering process, whereby a given host trait (e.g., gut pH) that var-
ies with host phylogeny (i.e., harbors a phylogenetic signal) filters preadapted mi-
crobes. We found marked differences between methods used to detect phylosym-
biosis, so we proposed a series of practical recommendations based on using
multiple best-performing approaches. Importantly, we found that, while the preva-
lence of phylosymbiosis is mixed in nature, it appears to be stronger for microbiotas
living in internal host compartments (e.g., the gut) than those living in external
compartments (e.g., the rhizosphere). We show that phylosymbiosis can theoretically
emerge without any intimate, long-term coevolutionary mechanisms and that most
phylosymbiosis patterns observed in nature are compatible with a simple ecological
process. Deviations from baseline ecological expectations might be used to further
explore more complex hypotheses, such as codiversification.

IMPORTANCE Phylosymbiosis is a pattern defined as the tendency of closely related
species to host microbiota whose compositions resemble each other more than host
species drawn at random from the same tree. Understanding the mechanisms be-
hind phylosymbiosis is important because it can shed light on rules governing the
assembly of host-associated microbiotas and, potentially, their coevolutionary dy-
namics with hosts. For example, is phylosymbiosis a result of coevolution, or can it
be generated by simple ecological filtering processes? Beyond qualitative theoretical
models, quantitative theoretical expectations can provide new insights. For example,
deviations from a simple baseline of ecological filtering may be used to test more-
complex hypotheses (e.g., coevolution). Here, we use simulations to provide evi-
dence that simple host-related ecological filtering can readily generate phylosymbio-
sis, and we contrast these predictions with real-world data. We find that while
phylosymbiosis is widespread in nature, phylosymbiosis patterns are compatible with
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a simple ecological model in the majority of taxa. Internal compartments of hosts,
such as the animal gut, often display stronger phylosymbiosis than expected from a
purely ecological filtering process, suggesting that other mechanisms are also in-
volved.

KEYWORDS endosphere, gut microbiome, holobiont, macroevolution, plant
microbiome, rhizosphere

Rich communities of microorganisms, collectively called the microbiota, make their
living in and on macro-organisms. Within a host species, microbiota compositions

can vary dramatically across body sites (1), across individuals that reside in different
environments (2), or across host phenotypic traits, such as age (3) or diet (4). Although
some previous studies have detected a few heritable microbial taxa (5), recent work
suggests that host genetics plays a minor role in shaping the human gut microbiota
and that the cumulative abundance of heritable microbes appears to be very low (2).
Thus, microbiota composition can be highly dynamic and variable over short time
scales in response to diet and/or environmental factors, such as pathogen infection (6).
However, the variability of microbiota compositions during this short time scale (within
species) is often less than long-term variability (between species). Indeed, one of the
most intriguing patterns of host-associated microbiotas is that they are often host
species specific (i.e., individuals within a host species harbor more similar microbiota
than individuals from two different host species) and that closely related host species
harbor similar microbiotas. In other words, microbiota composition harbors some
degree of phylogenetic signal, defined as “the tendency of related species to resemble
each other more than species drawn at random from the same tree” (7, 8). The
phylogenetic signal in host-associated microbiota is now often referred to as “phylo-
symbiosis” (9, 10). As with phylogenetic signal, phylosymbiosis strength can be quan-
tified with different metrics, and its significance can be assessed by comparing the
observed metric values to appropriate null expectations (e.g., via randomization of the
data). Here, we use the term “phylosymbiosis” without assuming any underlying
process (11) and consider the word “symbiosis” in its widest sense, denoting the simple
cooccurrence of microbes and hosts (12). From here on, we will focus on the interspe-
cific component of phylosymbiosis, assuming that microbiotas are host species specific
(i.e., individuals within a host species harbor more similar microbiota than individuals
from two different host species).

Understanding the importance and implications of phylosymbiosis is hampered by
our lack of theoretical expectations and a comprehensive overview of its prevalence in
nature. Only qualitative theoretical models for when we can expect phylosymbiosis
have been proposed (13). For example, one could suggest that long-term coevolution
between gut microbes and their hosts is driving phylosymbiosis. This model implies a
long-term and intimate association between hosts and their microbes (13), as illustrated
in the textbook example of the symbiosis between Buchnera and their insect hosts, the
pea aphids (14). It is important to recognize that the case of Buchnera consists of one
specific lineage of bacteria that has coevolved with its hosts, whereas phylosymbiosis
examines the pattern of entire microbial communities and their relationship to host
phylogeny. Understanding the mechanistic origins of phylosymbiosis has stimulated
much debate, and coevolution is unlikely to be fully responsible for driving phylosym-
biosis (11, 13, 15, 16). In particular, Moran and Sloan (13) argued that phylosymbiosis
can be the product of a simple ecological filtering model. This model posits that a host
trait selectively filters adapted microbes from the environment; for example, a particular
gut pH (17) or oxidative state may select for particular combinations of microbes that
are adapted to these conditions. If the host trait controlling microbial assembly harbors
some degree of phylogenetic signal, then we can also expect microbiota compositions
to show phylosymbiosis (15, 18, 19). To our knowledge, this qualitative prediction has
never been verified using explicit ecological simulations. A quantitative theoretical
expectation for when we expect phylosymbiosis to happen will be valuable, as devia-
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tions from this simple ecological baseline could be used to test more-complex hypoth-
eses (e.g., codiversification).

Here, our aims are (i) to provide a simple quantitative ecological baseline for when
we should expect phylosymbiosis to arise from ecological filtering, (ii) to assess the
specificity and sensitivity (i.e., statistical power) of the proposed phylosymbiosis ap-
proaches to detect ecological filtering, (iii) to document phylosymbiosis prevalence
across diverse host species, and (iv) to compare expected and observed patterns and
discuss the potential processes shaping host-associated microbiotas. Overall, we show
that phylosymbiosis is widespread but often weak, that it has been measured in a
variety of ways, that it can emerge from simple ecological processes, and that the
phylogenetic signal of the host trait strongly determines the strength of phylosymbio-
sis. Finally, the proposed methods to detect phylosymbiosis differ markedly in their
statistical powers, so that future studies should aim to use similar and rigorous
methods.

RESULTS
Theoretical expectations. We use simulations to provide a simple quantitative

ecological baseline for when we should expect phylosymbiosis to arise from ecological
filtering. Simultaneously, we assess the specificity and sensitivity (i.e., statistical power)
of the existing, widely used, statistical approaches that measure phylosymbiosis to
detect host filtering correlated with host phylogeny (Fig. 1). We first simulate multiple
host-associated microbiota sets under various ecological assembly rules and then
measure phylosymbiosis using the two most common methods: Mantel and
dendrogram-based approaches. The Mantel approach is based on the Mantel test (20)
that measures correlation between two distance matrices, e.g., that of host phyloge-
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netic divergences and that of their microbial community dissimilarities. The dendro-
gram approach (9) measures congruence between tree representations of host relat-
edness (e.g., with molecular phylogenies) and tree representations of microbiota
similarity (e.g., hierarchical clustering tree of microbial community similarities).

We first simulate sets of microbiotas that are neutrally assembled to establish a
baseline. Microbes are associated with a given host species by randomly drawing them
from a microbe pool so that we do not expect microbiota compositions to recapitulate
host phylogeny. We find that, as expected, microbial compositions are not significantly
related to host phylogeny in most cases (see Fig. S1 in the supplemental material).
Adequate statistical procedures should have high specificity (i.e., a low type I error rate),
meaning a high chance of detecting true negatives. The threshold for type I error rate
corresponds to the threshold chosen to declare significance in individual tests (e.g.,
m � 5%); here, this translates to detecting correlations in 5% of the neutral simulations
despite a lack of true signal. We find that the Mantel and the dendrogram-based
approaches report false-positive correlations in �5% of neutral simulations (Fig. S1).
This means that these approaches have adequate specificity to qualify as a valid
statistical test (Fig. S1) to detect ecological filtering.

Next, we simulated a second set of microbiotas that are deterministically assembled
according to filtering by a single host trait. As expected, microbial compositions are
significantly correlated with this host trait (Fig. S1). This demonstrates the high sensi-
tivity (i.e., the low type II error rate) or high chance of finding true positives (rejecting
the null hypothesis among cases that do not satisfy the null hypothesis) of the Mantel
test when used with the underlying ecologically determinative trait (the dendrogram-
based approach cannot be used with host traits). We varied the phylogenetic signal in
this host trait and assessed our ability to detect phylosymbiosis. Depending on the
strength of the phylogenetic signal of the host trait, we find that phylosymbiosis ranges
from strong to totally absent. When the host trait does not exhibit phylogenetic signal,
both approaches detect few significant correlations (phylosymbiosis in �5% of runs)
and thus, has high specificity, as in the neutral simulations. When the host trait exhibits
phylogenetic signal, phylosymbiosis is detected with both methods in many simula-
tions (Fig. 2A), showing that ecological filtering, when correlated with host phylogeny,
can be sufficient to generate phylosymbiosis patterns.

These results also confirm that the Mantel test and the dendrogram-based approach
have high sensitivity to detect host phylogenetically correlated filtering. For example, when
the host trait exhibits a moderate-to-strong phylogenetic signal (0.5 to 1.5 as measured by
the Blomberg K index), �50% (Mantel approach) and �20% (dendrogram-based approach)
of communities have compositions that harbor phylosymbiosis (Fig. 2A). The portion of
simulated communities that harbor phylosymbiosis increases to �90% (Mantel ap-
proach) and to �25% (dendrogram-based approach) when the phylogenetic signal for
the host trait is very strong (Blomberg K, 1.5 to 15) (Fig. 2A). This means that the Mantel
approach is more powerful than the dendrogram-based approach to detect, in our
case, effects of host phylogenetically correlated filtering on microbiota compositions.
Additional experiments are needed to confidently extend this conclusion to other
processes shaping microbiota compositions, such as codiversification or coevolution.

Significance does not assess the relative strength of the effect; a small effect can be
significant with many observations. Thus, we also report the strength of phylosymbiosis
as measured by the two approaches. The Mantel test quantifies strength using, for
example, Pearson’s r between host distances and microbiota dissimilarities, while the
dendrogram-based approach relies on a metric that calculates the dissimilarity of tree
branching structures (with the normalized Robinson-Foulds metric, a value of 0 indi-
cates that the two tree topologies are fully identical, and a value of 1 indicates that the
two trees do not have a single bipartition in common). We find that with a moderate-
to-strong phylogenetic signal (Blomberg K, 0.5 to 1.5) for the host trait, Pearson’s r is
�0.2 on average. In the same range of values for the phylogenetic signal of the host
trait, the normalized Robinson-Foulds metric is �0.92 (Fig. 3A), which suggests a weak
signal for phylosymbiosis. Pearson’s r increases up to 0.52 as the phylogenetic signal
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for the host trait increases (Blomberg K � 1.5) (Fig. 3A). In contrast, the normalized
Robinson-Foulds metric remains close to 0.9 regardless of the magnitude of the
phylogenetic signal (Fig. 3A). Weighted UniFrac analysis performs slightly better than
unweighted UniFrac analysis in detecting phylosymbiosis (compare the triangles and
circles in Fig. 2A), and results hold true when using alternative beta diversity metrics
(e.g., Jaccard) to measure community composition dissimilarities (Fig. S2). Importantly,
our results are robust to changes in the parameters of the model used to simulate
microbiota compositions and structures (Fig. S3 to S6).
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The third set of simulated microbiotas were deterministically assembled according
to filtering by multiple host traits. We find that adding host filtering traits generally
increases the significance (Fig. 2B) and strength (Fig. 3B) of phylosymbiosis. To test for
the effect of microbe-microbe interactions in shaping phylosymbiosis, we added
competition between microbes to our simulation scheme, in addition to the filtering
process. Overall, we observe that microbe-microbe competition had only minor effects
on our results, and our conclusions remain unchanged (Fig. 2C and 3A).

Empirical evidence of phylosymbiosis. In order to compare theoretical expecta-
tions to observed patterns, we reviewed the strength and prevalence of phylosymbiosis
in nature. We assembled a set of 36 articles that assess the correlation between host
phylogeny and microbiota composition (see Table S1 and references given in the
supplemental material for the complete list of studies). We included only those studies
that explicitly used a host phylogenetic tree (not host taxonomy alone) and that
included at least 4 taxa. In these 36 articles, 48 phylosymbiosis tests were performed in
total, as some studies included multiple phylosymbiosis tests (e.g., one test for bacteria
and one for fungi with the same host taxa; see Table S1). These studies encompass a
wide range of plant and animal clades (Fig. 4A and B and Table S1) and various host
compartments (gut, skin, leaves, root endosphere, rhizosphere) (Fig. 4B). Most of the
studied microbiotas are composed of bacteria and archaea, with some studies focusing
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FIG 3 Theoretical expectation of phylosymbiosis strength based on simple ecological filtering. The plot depicts the
relationship between the phylogenetic signal of the host trait that filters microbes to assemble microbiotas (pure
ecological process) and the strength of phylosymbiosis as quantified by Pearson’s r from Mantel tests (left) or normalized
Robinson-Foulds metrics (right) for one (A) or multiple (B) traits. Simulations with a single trait were run with and without
microbial competition in panel A. The normalized Robinson-Foulds metric quantifies the mismatches between the
topology of the microbiota dendrogram and the host tree (and varies between 0 and 1), so that a low value indicates a
high congruence between topologies (i.e., strong phylosymbiosis). Pearson’s r from the Mantel test quantifies the
correlation between host phylogenetic distances and microbiota beta-diversity (and varies between �1 and 1) so that a
high positive value indicates a high correlation (i.e., strong phylosymbiosis). These results are based on 1,000 simulation
sets, with each set containing 150 microbial species and 25 host species.
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on fungi, notably for plants (Fig. 4C). Microbiota compositions are determined by
defining microbial units from sequencing data, usually by grouping reads into opera-
tional taxonomic units (OTUs) according to a DNA similarity threshold (often 97% for
the 16S rRNA gene, a rough proxy for bacterial species). Some studies measured
phylosymbiosis by determining community compositions using multiple similarity
thresholds (Fig. 4D). Approximately 52% of all studies used the Mantel approach, and
�40% used the dendrogram-based approach (Fig. 5A). The dendrogram-based ap-
proach is used quantitatively (e.g., for measuring and testing the significance of the
normalized Robinson-Foulds metric) or qualitatively (e.g., for visually assessing congru-
ence between the dendrograms) in equal proportions. Only a small fraction of studies
used other statistical methods (�7% of all studies).

Overall, phylosymbiosis is widespread in nature, being observed in the plant root
endosphere, in insect and mammalian guts, and in sponges (Fig. 4 to 5). It is observed
at various host phylogenetic scales (from subspecies to very large clades, such as
bilateria) (Table S1). However, this pattern is not universal; it is, for example, absent in
bird guts and plant rhizospheres (Table S1). Internal microbiotas (such as gut or plant
endosphere) tend to harbor phylosymbiosis patterns much more frequently than

FIG 4 Overview of the studies included in the meta-analysis. Summary of the host and microbe
information from the literature review (n � 48 studies), namely, the host (A) and microbial (C) taxonomic
coverage, host compartments (B), and definition of microbial units (D).
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external microbiotas (e.g., rhizospheres or animal skin) (Fig. 5B). Phylosymbiosis also
varies greatly in strength, from 0.11 to 0.75 as measured by Pearson’s r, often used in
the Mantel approach (Fig. 5C). In some cases, the strength of observed phylosymbiosis
is higher than ecological expectations (compare the observed versus expected Pear-
son’s r distributions in Fig. 5C). Importantly, the resolution used to define microbial
units seems to have an impact on the strength and prevalence of phylosymbiosis, as
shown by the few studies that use multiple DNA similarity thresholds to delineate these
units and measure phylosymbiosis (Table S1). For example, Groussin et al. (18) detected
strong phylosymbiosis in the mammalian gut microbiota using �3% as the similarity
threshold to define OTUs (r2 � 0.4) but measured very weak signal (r2 � 0.05) when
considering similarity threshold higher than 9% (91% OTUs).

The estimation of the genuine prevalence and strength of phylosymbiosis in nature
is hampered by several factors. First, different studies often use different methods to
quantify phylosymbiosis. Furthermore, methodological inconsistencies in data collec-
tion and experimental measurements across studies limit our ability to confidently
estimate the strength and universality of phylosymbiosis. In particular, some studies
control for host traits that are known to influence microbiota composition, such as diet
for gut microbiota (10), using controlled lab conditions. Other studies use statistical
methods to control for confounding host traits (Table S1), but the majority of studies
do not perform any such controls (Table S1). Finally, intraspecific variability is some-
times ignored (i.e., sampling only one individual per host species), sometimes pooled
(either during library preparation or in silico), or taken into account by considering a null
distance for the host phylogenetic distances between individuals of the same species
(Table S1). Despite these limitations, phylosymbiosis appears to exist in major clades
across the tree of life, motivating the development of new approaches to fully under-
stand its origins and complexity.

DISCUSSION
How to measure phylosymbiosis. Our literature review reveals that phylosymbio-

sis has been measured in a variety of ways, controlling or not for confounding host
traits and intraspecific variability. We offer several recommendations to unify phylo-
symbiosis measurements and more accurately detect it.

(i) How to define microbial units. Microbial units are usually defined using the
somewhat arbitrary threshold of 97% DNA similarity. With the development of new
efficient algorithms (21) that detect and remove nonbiological reads, like chimeras,

FIG 5 Measuring phylosymbiosis in nature. (A) Summary of tests used to measure phylosymbiosis in the literature review (n � 48 studies). See Table S1 in the
supplemental material for details. (B) Prevalence of significant phylosymbiosis pattern by host compartment. (C) Phylosymbiosis strength distribution across
studies that used Mantel tests as measured by Pearson’s r. “Expected” is the ecological filtering expectation from simulations corresponding to 25 host species,
150 microbial units, and moderate-to-strong phylogenetic signals of the host trait (Blomberg K, {0.5, 1.5}).
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microbial units can now be defined at 100% similarity, at the sequence variant level,
without binning into operational taxonomic units (OTUs). We believe that this relatively
fine-scale definition of microbial units will enable detection of more fine-scale phylo-
symbiosis because it will better differentiate between closely related microbes that
might occur in closely related hosts. However, several studies have found that phylo-
symbiosis strength and significance can vary along the phylogenetic (or 16S rRNA
similarity) scale (22) and is not necessarily maximal at the finest taxonomic resolution
(18, 23). As a consequence, we suggest that multiple phylogenetic (or 16S rRNA
similarity) thresholds (24, 25) should be used to measure phylosymbiosis (starting with
the sequence variants as the finest taxonomic resolution) and that phylosymbiosis
strength should be analyzed and reported along this resolution gradient (18).

(ii) Which beta-diversity metric to use. A number of different metrics have been
used so far to detect phylosymbiosis. We found that use of the weighted UniFrac
metric, which considers abundance, yielded a slightly stronger phylosymbiosis signal
than unweighted UniFrac analysis, which does not consider abundance. This is in
agreement with our simulation model; simply by chance, a given individual microbe
may colonize a host, even if it is not the best-adapted microbe for a given host trait.
However, these events will be rare and the majority of individuals colonizing a host are
the best adapted ones. As such, abundance weighted metrics (such as weighted
UniFrac or Bray-Curtis metrics) will have more power to detect the filtering process.
Although we found that the differences in phylosymbiosis detection between beta-
diversity metrics were not striking, we suggest that future tests of phylosymbiosis
should use and report the results for multiple metrics (both abundance-based metrics
and presence/absence metrics) to enable better assessment of the robustness of the
results.

(iii) Which phylosymbiosis statistic to use. We suggest that future studies docu-
menting phylosymbiosis should be backed by statistical validation, which has been
lacking in a number of past studies. Of course, visual inspections of congruencies
between host phylogeny and microbiota compositions will continue to be important
for assessing the biological significance of the patterns and gaining additional insight
into these data (akin to nonmetric multidimensional scaling [NMDS] visualizations of
community dissimilarity), but they should always be accompanied by statistical inves-
tigations. The two most commonly employed statistical procedures are the Mantel
approach and the dendrogram-based approach. Our results show that the Mantel test
is more powerful than dendrogram-based approaches at detecting ecological filtering.
The dendrogram-based approach starts by building a community dendrogram from the
raw beta-diversity values, usually using a hierarchical clustering approach such as the
unweighted pair group method using average linkages (UPGMA). However, this step
might not be necessary because there is no a priori reason (or, at least, no empirical
evidence so far) to think that microbiota compositions relate to each other in a
hierarchical manner. More importantly, this transformation into a dendrogram comes at
a cost of data loss because distances between microbiota compositions based on the
dendrograms and raw (true) distances are never perfectly correlated. This data loss
might explain why the dendrogram-based approach seems to have a reduced power
in our simulations. However, we found that the 10 empirical phylosymbiosis tests
carried out with this approach detected phylosymbiosis, whereas the Mantel approach
detected phylosymbiosis in only 30% of tests. While this result appears in contradiction
with our theoretical findings, it is likely explained by the fact that most of the
dendrogram-based tests used gut microbiomes, a host compartment that is known to
harbor strong phylosymbiosis. In summary, our results suggest that the Mantel ap-
proach is preferable to the dendrogram-based approach to measure phylosymbiosis,
although the validity of the Mantel test is also debated (26, 27). In the future, other
distance-based approaches could be considered, for example Procrustes analysis (28)
and multiple regression analysis on distance matrices (29), which have the advantage
of allowing the inclusion of other host traits (see below).
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(iv) How to handle intrahost species variability. In this paper, we focused our

analyses on phylosymbiosis at the interspecific level, using only 1 individual per host
species in our simulations. However, phylosymbiosis may also occur within host species,
e.g., between populations. There is some empirical evidence that within-species phy-
logenetic distances are correlated with microbiota compositions (30), but almost all
studies so far have defined and investigated phylosymbiosis at the interspecific level. In
these studies, when multiple individuals per species were included, it was sometimes
assumed that all individuals were replicates of the same phylogenetic bins, namely, that
they have null phylogenetic distances between them. However, because microbiota
dissimilarities within species generally tend to be smaller than dissimilarities between
species, reducing all individuals within a species to the same phylogenetic bin can
create a spurious phylosymbiosis when it is measured with the Mantel test, even in the
absence of interspecific phylosymbiosis (31) (see also Fig. S7 in the supplemental
material, which describes this phenomenon). In order to tease apart the effects of intra-
versus interspecific variations in microbiota compositions, and in the absence of data
on intraspecific genetic distances, we suggest conducting two separate tests. First, a
permutational multivariate analysis of variance (PERMANOVA) (32) could be used to
detect the intra- versus interspecific patterns, i.e., the fact that individuals within a
species will harbor more similar microbiota than individuals from two different species.
Second, intraspecific microbiota could be pooled to produce a unique microbiota for
each species, which can then be used to detect phylosymbiosis at the interspecific
level, for example using a Mantel test.

(v) How to handle the impact of other host traits. Using simulations, we showed

that phylosymbiosis can simply reflect the effect of filtering by a phylogenetically
conserved host trait (e.g., diet or gut pH) on the assembly of microbiotas. If this host
trait is known and measured across host species, it can be directly used to explain
microbiota compositions, and the effect of host phylogeny could be measured on the
remaining unexplained variability in microbiota compositions. If this additional vari-
ability is related to host phylogeny, it may represent the effect of another unmeasured
(but phylogenetically conserved) host trait. Teasing apart the effects of the measured
host traits and host phylogeny can be done by conducting experiments under con-
trolled conditions for host trait (e.g., diet [10]) or by incorporating the different factors
directly into the statistical analysis as explanatory variables, using variance partitioning
(18, 20). For example, the regression on multiple distance matrices (29) (function MRN
in the R package ecodist [33]) allows for multiple factors to be considered simultane-
ously, which represents another reason for favoring Mantel-like approaches over the
dendrogram-based approaches to measure phylosymbiosis.

Ecological filtering can produce phylosymbiosis in simulated data sets. The

detection of the phylosymbiosis of microbial compositions has recently gained much
attention (Table S1). However, the mechanisms responsible for this intriguing pattern
remain controversial (11, 13, 15). While simulation studies are, by definition, limited to
a restricted set of an infinite parameter space, the simplicity of our approach allowed
us to test an important aspect of host-associated microbiota evolution. We provide, to
our knowledge, the first direct and quantitative evidence that simple ecological filtering
can generate phylosymbiosis. This happens when the host trait that directly filters
microbes also harbors some degree of phylogenetic signal, i.e., when host trait values
are more similar between closely related species than between distantly related
species. This means that phylosymbiosis alone cannot be taken as a proof of an
intimate and long-term coevolution between the host and the microbiota. While this
point was acknowledged in previous reports (11, 15, 34), we explicitly show it using
simulations. We note here that our simulations did not explore intraspecific variability
compared to interspecific variability. However, we see no reasons why our results
should not also apply to within-host species comparisons. In summary, our simulations
demonstrate that, in theory, ecological filtering can produce phylosymbiosis. The next
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natural step is then to test whether these theoretical expectations match the patterns
observed in nature.

Comparing theory and data. (i) Empirical patterns of phylosymbiosis can be
explained by simple ecological filtering. Phylosymbiosis seems widespread in nature
but is clearly not universal. Even if the prevalence of phylosymbiosis that we estimated
here is likely to be overestimated because of publication bias (i.e., negative results tend
to be less published [35]), we show that observed phylosymbiosis prevalence (Fig. 5B)
and especially strength (Fig. 5C) match ecological filtering predictions. This finding
demonstrates that phylosymbiosis observed in nature can be explained by filtering
processes based on host traits that have moderate phylogenetic signals. More precisely,
we suggest that ecological filtering represents a parsimonious and sufficient explana-
tion for most phylosymbiosis patterns observed in nature. Of course, our work, as a
simulation experiment, provides theoretical expectations only as to when phylosym-
biosis may occur under our simulated filtering scenario. Given similar observed and
expected patterns, we can suggest (but not directly conclude) that the set of hypoth-
eses that we used to build our simulations are sufficient (but not necessary) to explain
the pattern observed in nature without invoking more-complex processes, such as
codiversification. As such, our quantitative ecological filtering expectations represent a
needed step forward. We note that our expectations depend on the choice of simu-
lation parameters and that we did not directly measure these parameters in nature. This
is a particularly important caveat, especially regarding the strength of phylogenetic
signal of the host filtering trait; we do not know where host traits fall on the x axis of
Fig. 2 to 3 in nature, though it is generally accepted that very high Blomberg K values
(�1) are rare and that most traits harbor Blomberg K values of �1 (36). Of course, this
assumes that previous measurements of phylogenetic signal on “classical” host traits
often considered in macroevolution (e.g., body mass) are representative of the phylo-
genetic signal of the traits that directly filter microbes. Testing the validity of this
hypothesis is beyond the scope of this study but represents an interesting avenue for
future work, especially to test whether important host traits (e.g., gut pH or morphol-
ogy) harbor stronger phylogenetic signal than the classical traits studied in macroevo-
lution.

In summary, our results suggest that the majority of phylosymbiosis patterns
detected in the literature (Fig. 5) are compatible with simple ecological filtering. This
conclusion holds true irrespective of the method (Mantel or dendrogram based) or
beta-diversity metric used. Importantly, we are not claiming that an ecological filter
applies as a present-day process only. Filtering effects have likely emerged and evolved
over long evolutionary times. Hosts evolved microbial habitats with different properties
(e.g., different pHs, gut/tissue structures, diets), and it is likely that different microbes
have specialized over long time scales to these different habitats through adaptive
evolution (37). However, coevolution, defined as the “reciprocal genetic change in
interacting species, owing to natural selection imposed by each on the other” (38), or
even codiversification processes are not necessary to explain this pattern. Rather, the
host surface could be compared to an inert, but changing, habitat that simply filters
microbes based on their traits. We are well aware that microbes also directly modify the
host environment (e.g., fermentative gut microbes can reduce gut pH) and that this
environment is not “inert,” but our aim here is to test the validity of this simple
explanation for phylosymbiosis. Ecological filtering expectations represent a starting
point from which new hypotheses can be generated, especially when mismatches
emerge between theory and data. For example, our literature review highlights a
deviation in phylosymbiosis signal and strength when comparing internal versus
external microbiotas, suggesting that these broad categories of microbiota are assem-
bled via different mechanisms.

(ii) Deviations from theoretical expectations. Empirical evidence suggests that,
for some types of microbiotas, phylosymbiosis can be relatively strong, such as in the
case of mammalian gut microbiotas (18) (Fig. 5C). A strict host filtering process could
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theoretically produce such a strong signal, but the amount of phylogenetic signal
needed to produce such a pattern is much greater than those of typical host traits
(Blomberg K, ��1) (Fig. 5C). Then, how can we reconcile these seemingly contradictory
findings? Either traits associated with the gut harbor stronger phylogenetic signals than
average traits, or other processes, such as codiversification or even coevolution, are at
play to generate these strong phylosymbiosis signals. Indeed, codiversification has
been shown to reinforce phylosymbiosis (18), so that, coupled with ecological filtering,
it could produce stronger phylosymbiosis than expected. To be able to further test the
codiversification hypothesis, we encourage researchers to use tools that are especially
dedicated for this purpose. For example, the amalgamated likelihood estimation (ALE)
algorithm (39) can detect cospeciation and host shift events along the microbial
phylogenetic tree by reconciling the symbiont phylogenetic tree with the host tree
using a probabilistic model of cospeciation, host swapping, intrahost speciation, and
extinction of symbionts within the host tree. Coevolution between specific microbes
and their hosts may also contribute to phylosymbiosis patterns and strengthen eco-
logical filtering. Overall, ecological filtering, codiversification, and coevolution are not
mutually exclusive processes that can produce phylosymbiosis. In conclusion, while
deviations from our ecological filtering expectations cannot be readily linked to a given
process, they offer the opportunity to explore and formulate new hypotheses about
microbiota assembly and evolution.

Future directions. (i) Heterogeneity of phylosymbiosis. In this paper, we consid-
ered a measure of phylosymbiosis for the overall host phylogenetic tree. However, it is
increasingly recognized that macroevolutionary patterns can vary across the phyloge-
netic tree (40), even in the case of phylosymbiosis (18, 41, 42). These variations across
the host tree could, for example, reflect an accelerated evolution of the host traits that
filter microbiotas or accelerated allopatric speciation events on some parts of the host
tree. To detect such patterns, future studies could measure phylosymbiosis on multiple
subclades of hosts by splitting the overall host phylogeny (41) or use a node-based
measure of phylosymbiosis (18).

(ii) Toward explicit models of microbiota macroevolution. The seemingly high
prevalence of phylosymbiosis is stimulating research on the micro- and macroevolution
of host-associated microbiotas (43, 44), but more-fundamental questions concerning
the tempo and mode of host-associated microbiota macroevolution remain unan-
swered. For example, where in the host tree of life can we detect shifts in rates of
microbiota evolution? Are these shifts related to evolutionary transitions of host traits,
such as diet? Are different groups of microbes following different macroevolutionary
dynamics? Does microbiota evolution occur early in the history of a host clade, as it is
often expected for adaptive radiations (45, 46)? Is this evolution pulsed or continuous?
To answer these questions, we need to go beyond measuring crude phylosymbiosis.
Indeed, as a measure of phylogenetic signal, phylosymbiosis has limited power to
differentiate between alternative macroevolutionary models (40). While some authors
have already tried to measure heterogeneous signal of phylosymbiosis across the host
tree (18, 41), we believe that the development of more-explicit (and mechanistic)
evolutionary models, as is currently implemented for macroevolutionary studies (40, 47)
and even in microbiome studies (43, 44), is needed and holds great promise. For
example, comparing the fits of simple drift models (such as Brownian motion-like
models) to the fit of multirate or multioptimum models (such as Ornstein-Uhlenbeck-
like models) could detect major evolutionary transitions (e.g., toward convergent
phenotypes). Of course, microbiotas represent a very different type of host trait from
the ones studied in macroevolution (37, 43, 44). The microbiota as a host trait is highly
multidimensional, while more classical host traits, such as body mass, are relatively
simple. While this impedes the direct use of existing, explicit macroevolutionary models
to study microbiota, we suggest that, as in macroevolution, the use of more-
mechanistic models of evolution will provide important insights into the mode and
tempo of microbiota evolution.
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MATERIALS AND METHODS
General approach. The aim of our simulations is to test to what extent a simple ecological filtering

process can produce patterns of phylosymbiosis. Our main hypothesis is that microbiota composition will
exhibit phylosymbiosis if it is assembled via a host filtering process controlled by a host trait that itself
harbors phylogenetic signal. To test this hypothesis, we simulated multiple microbiota sets under a
filtering process controlled by a host trait and, for each set, varied the amount of phylogenetic signals
in this host trait from no phylogenetic signal to a strong phylogenetic signal. Each set consisted of 250
unique simulations with identical parameter values and yielded an estimate of phylosymbiosis proba-
bility of detection. Each unique simulation consisted of (i) creating host and microbial species and traits,
(ii) creating host-associated microbiotas based on known assembly rules, and then (iii) measuring the
phylosymbiosis in the resulting microbiotas (Fig. 1).

Step 1: host and microbe species pools. Each unique simulation was based on a unique data set
containing n hosts species and m microbial species or OTUs (we varied these numbers in different
simulation sets; m � {75, 150} and n � {10, 25}). Different hosts harbored different trait values (e.g., gut
pH), and different microbes harbored different host trait preference values (e.g., gut pH preference). We
simulated these traits as follows: first, phylogenies for both host and microbes were simulated with a
pure birth model and rescaled the height of the tree to 1 so that the heights were comparable across
simulations; second, we independently simulated one single continuous host trait (e.g., gut pH) and one
single continuous microbial trait preference (e.g., pH preference). In order to vary the degree of
phylogenetic signal harbored by the host trait, we used the delta model of trait evolution (7). The delta
model is a time-dependent model of trait evolution; when delta is greater than 1, recent evolution has
been relatively fast, but if delta is less than 1, recent evolution has been comparatively slow. To
implement it, we rescaled the tree branch raising all node depths to an estimated power (delta) and then
ran a classic Brownian motion model on this rescaled tree. We used five values of delta {0.01, 0.1, 1, 10,
1,000} for host trait and one value {1} for the microbial trait and recorded the corresponding phylogenetic
signals of the traits using the Blomberg K index (36). An interesting avenue for future studies would be
to also vary the model of microbial trait evolution (e.g., varying delta) and study to what extent this
impacts the phylogenetic resolution of microbial units at which phylosymbiosis is best detected. Finally,
we rescaled the microbial traits so that they varied within the range of host trait values. We also varied
the number of traits used to assemble microbiota; in addition to the single trait used in the main text,
we used 2 and 4 traits (traits followed the same evolutionary model).

Step 2: microbiota assembly. For each unique data set and associated simulation independently,
we assembled n host microbiotas (one for each host) based on simple ecological filtering using the R
package VirtualCom (48), which simulates models of ecological community assembly. Briefly, the
individual-based simulation model assumes that the probability of a given microbial individual to
colonize a given host depends linearly on the match between the host trait (e.g., gut pH) and microbial
preferences for this host trait (e.g., pH preference of the microbes). In other words, a given microbe will
be more likely to colonize a given host if the distance between its host trait preference (e.g., pH
preference) and the host trait is small (see reference 48 for more details). In the main text results, the
following parameters were used: a niche.breadth (value of standard deviation of the Gaussian distribu-
tions that describe the niches) of 0.5; a beta.env (value of the strength of the environmental filter) of 1,
a beta.abun (value of the strength of the reproduction filter) of 0, a beta.comp (value of the strength of
the competition filter) of 0, years equal to 20 (number of simulated time steps), and a K (carrying capacity,
i.e., the maximum number of individuals in the community) of 150 (see reference 48 for more details).
To test the robustness of our results to variation in these parameters, we carried out additional
simulations varying beta.env, beta.abun (0.5 each), the number of years (30), and the number of
individuals (300) (see Table S2 for details). It is important to note that our simulation workflow is meant
to assemble microbiotas based only on filtering processes (i.e., there is no cospeciation or coevolution),
and thus, it corresponds to the “ecological” case depicted by Moran and Sloan (13). As a negative control,
we also simulated a “neutral” microbiota with no filtering process by setting beta.env to 0 and beta.abun
to 1. We also conducted a simulation experiment where competition between microbes was added,
setting the beta.comp parameter to 0.25 and beta.env and beta.abun to 0.5 and 0.25, respectively.

Step 3: measure of phylosymbiosis. For each unique simulation, we measured the phylosymbiosis
of the resulting set of microbiota using four measures of beta diversity (Jaccard, Bray-Curtis, weighted
UniFrac, and unweighted UniFrac) and two approaches to measure correlation between host phylogeny
and microbiota composition: the dendrogram approach (9, 10) and the Mantel approach (20). The
dendrogram approach first produces a hierarchical dendrogram depicting microbiota beta diversity
using the UPGMA. It then quantifies the match between the microbial dendrogram and the host
phylogeny using the normalized Robinson-Foulds metric. Significance is based on 999 permutations of
host tip label phylogeny. Note that this is different from the original dendrogram-based approach that
uses random phylogenies with the same numbers of tips as null expectations. However, the two null
models gave nearly exactly the same results (Fig. S8), so we present only the tip-shuffling null model in
the main text. The Mantel approach simply computes the Pearson correlation between host phylogenetic
distance and microbial beta diversity. Significance is based on 999 permutations of the distance matrix.
As a sanity test, we also measured to what extent the host trait used to assemble microbiota predicts
microbiota compositions. To do so, we used the same procedure as the Mantel approach described
above but using host trait distance instead of host phylogenetic distance. This test should yield
maximum power estimates because it directly uses the host trait values used to assemble microbiota.
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All analysis was carried out in R version 3.3.2 (49), with extensive use of the geiger (50), ape (51),
phytools (52), GUniFrac (53), vegan (54), VirtualCom (48), ggplot2 (55), and phangorn (56) packages.
Corresponding scripts are available at https://github.com/FloMazel/Phylosymbiosis-Ecological-model.
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