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Abstract

Identifying people with Parkinson disease during the prodromal period, including via algo-

rithms in administrative claims data, is an important research and clinical priority. We sought

to improve upon an existing penalized logistic regression model, based on diagnosis and

procedure codes, by adding prescription medication data or using machine learning. Using

Medicare Part D beneficiaries age 66–90 from a population-based case-control study of inci-

dent Parkinson disease, we fit a penalized logistic regression both with and without Part D

data. We also built a predictive algorithm using a random forest classifier for comparison. In

a combined approach, we introduced the probability of Parkinson disease from the random

forest, as a predictor in the penalized regression model. We calculated the receiver operator

characteristic area under the curve (AUC) for each model. All models performed well, with

AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude

that medication data and random forests improve Parkinson disease prediction, but are not

essential.

Introduction

Parkinson disease (PD) is a progressive, neurodegenerative disorder that is diagnosed when

patients experience motor symptoms such as resting tremor, bradykinesia, rigidity, and pos-

tural instability. However, before these motor symptoms fully manifest, patients may experi-

ence a variety of non-motor symptoms, including cognitive and mood dysfunction, sleep

disorders, and varying degrees of autonomic dysfunction [1–5]. This period of disease is

termed the “prodromal period” and may provide a critical window of opportunity during

which providers could identify PD patients. In particular, earlier recognition of PD might both

facilitate the identification of disease-modifying medications, as well as their initiation, when

available. Moreover, even without such treatments yet available, earlier identification of PD is

essential. During the prodromal disease window, many PD patients experience potentially pre-

ventable fall-related morbidity, including substantial excesses of both traumatic brain injuries

[6, 7] and fractures [8, 9] relative to comparable individuals without PD.
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Towards these ends, researchers have begun to move beyond traditional predictive model-

ing approaches by applying machine learning methods to a wide variety of data. Several inves-

tigators have used machine learning methods to distinguish PD patients from controls, using

data obtained from both wearable and non-wearable sensors [10, 11]. While these methods

have primarily been used to distinguish newly diagnosed PD patients from controls, other

studies were able to distinguish people with potential prodromal PD symptoms, such as hypos-

mia, from controls [11, 12]. Although these people do have a greater risk of developing PD,

this group remains heterogeneous, and there is no “ideal” prodromal PD population. In con-

trast, retrospective cohort studies using predictor data from the prodromal PD time window

afford an opportunity to confirm the PD diagnosis, while providing potentially extensive vari-

ables to include in predictive models.

Medicare claims are a rich source of population-based data to predict which patients will be

diagnosed eventually with PD. We previously developed a PD predictive model using Medi-

care claims data, specifically diagnosis and procedure codes, from the five years prior to PD

diagnosis [13]. This model contained 536 diagnoses and medical procedures as predictors and

achieved an AUC of 0.857, much higher than the AUC of 0.670 achieved with known demo-

graphic and medical predictors of PD. At the optimal cut point, sensitivity was 73.5% and

specificity was 83.2%. While this least absolute shrinkage and selection operator (LASSO)

penalized regression model performed well, the addition of Medicare Part D prescription med-

ication data or the use of other analytic methods, such as machine learning methods, may have

the potential to improve model performance. The current study builds upon our previous

work by considering whether the addition of prescription medication data improves discrimi-

nation and whether a random forest classifier could perform better or help improve the origi-

nal penalized regression approach [13]. Attempting to improve the model is the logical next

step, since we recently validated our original predictive model in a population-based sample

followed forward for PD [14]. We hypothesized that inclusion of prescription medication data

would improve model performance for four reasons: 1) these medication data offer an alterna-

tive way to capture information available from diagnosis codes, which could be incomplete; 2)

medication data might provide diagnostic confirmation and evidence of disease severity; 3)

medications might serve as proxies for biologic pathways that might be predictive of PD; and

4) some medications might increase or decrease risk of PD, regardless of the indication for the

medication, and thus could be independently predictive. Random forest classifiers use a

completely different methodology than penalized regression. Therefore, we sought to deter-

mine if this innovative approach could outperform or possibly enhance the previous penalized

regression model by introducing the probability from the random forest as a predictor in the

penalized logistic regression model. We were able to demonstrate modest improvements in

model performance.

Methods

Standard protocol approvals

This study was approved by the Washington University School of Medicine Human Research

Protection Office and the Centers for Medicare and Medicaid Services.

Study participants

This was a population-based case-control study using Medicare administrative claims data.

Briefly, all participants were U.S. residents age 66–90 years old and relying solely on Medicare

in 2009. Medicare is the only nationwide health insurance coverage universally available in the

U.S., specifically among those age 65 and older. In this age group >98% of Americans
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participate in Medicare Part A/B, which provides medical coverage. From all of these benefi-

ciaries, we identified those who met all study eligibility criteria (age 66–90, no non-Medicare

insurance coverage, and U.S. residence) for the year 2009 using the Medicare “base file.” We

then included all incident PD cases and a random sample of comparable beneficiaries as con-

trols who also had Medicare Part D (pharmacy) coverage. We determined PD case status from

complete Part A and B Medicare claims data for 2004–2009, with cases identified as having at

least one International Classification of Diseases, Ninth Revision, Clinical Modification

(ICD9) code for PD (332 or 332.0) in 2009 but no prior year, and no code for atypical parkin-

sonism or Lewy body dementia. Controls met these same study eligibility criteria, except that

they had no ICD9 code for PD, and were alive in 2009 prior to their randomly assigned refer-

ence date (comparable to the cases’ diagnosis dates). The original study included 89,790 cases

and 118,095 controls. From this original group of participants, we further restricted to the

48,295 (54%) of cases and 52,324 (44%) of controls who were also enrolled in Medicare Part D

and had at least one medication filled under this coverage in 2008–2009. After review of medi-

cations taken by the PD patients, we excluded 12,354 cases who had filled a prescription for a

medication known to cause secondary parkinsonism (aripiprazole, chlorpromazine, fluphen-

azine, haloperidol, loxapine, metoclopramide, molindone, olanzapine, paliperidone, perphe-

nazine, pimozide, prochlorperazine, promethazine, quetiapine [if > 100 mg], reserpine,

risperidone, tetrabenazine, thioridazine, thiothixene, trifluoperazine, trimethobenzamide and/

or ziprasidone) within the 6 months prior to their PD diagnosis in 2009 [15]. This left a total of

35,941 PD cases and 52,324 controls for the present work. We formally divided these partici-

pants into a 90% training dataset and 10% test dataset by stratified random sampling (by case

status), such that we had 90% cases and 90% controls in our training set for developing the

models, and 10% cases and 10% controls in our test set for assessing model performance.

Calculation of predictor variables

We calculated predictor variables, as previously [13, 16]. In total, during the development of

the original predictive model there were 26,468 valid codes (11,063 diagnoses and 15,405 pro-

cedures, including ICD9 procedure codes and Healthcare Common Procedure Coding System

[HCPCS] codes mainly comprised of Current Procedural Terminology [CPT] codes). CPT

codes are part of a formal coding system for billing that encompasses surgical and more minor

procedures that physicians perform in the office, along with some radiology and laboratory

tests, in contrast to ICD9 procedure codes used by hospitals. HCPCS codes are similar to CPT

codes but are specific to Medicare. For ICD9/procedure codes recorded for > 10 PD cases, the

median time between receiving the code and PD diagnosis was 2.41 years. This period was

nearly identical to the median time for the 536 ICD9/procedure codes selected for our original

predictive model ultimately (2.42 years), However, the median time for diagnosis codes indica-

tive of cardinal signs of PD was shorter: 1.51 years for ICD9 333.1 (tremor), 1.98 years for

ICD9 781.2 (gait abnormality), 1.09 years for ICD9 781.0 (abnormal involuntary movement),

and 1.44 years for ICD9 781.3 (lack of coordination). We calculated age and obtained sex and

race/ethnicity from the 2009 beneficiary annual summary file. Given the importance of smok-

ing on PD risk [17], we derived a probability of ever having regularly smoked for each partici-

pant using a logistic regression model built from nationwide data [13, 16]. We previously also

identified that overall use of medical care is an important predictor of PD and included this

variable in our models [13, 18].

Building upon the above data from the beneficiary annual summary file and Part A and B

claims that were available to us when we developed our original PD predictive model, we

obtained Medicare Part D prescription data from 2008–2009, i.e., in the one to two years prior
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to PD diagnosis, for use in our predictive models. We derived prescription data from a shorter

pre-diagnosis period than for our other claims data because Part D coverage first became avail-

able in late 2006. For each medication, we identified all associated active ingredients and cre-

ated a dichotomous variable representing whether a pharmacy filled a prescription claim for a

medication containing the active ingredient at any time during this period prior to the PD

diagnosis/control reference date. There were 880 active ingredients represented in these pre-

scription claims data. We did not include 31 active ingredients that could be used to treat PD

(carbidopa-levodopa, pramipexole, ropinirole, entacapone, tolcapone, selegiline, rasagline, tri-

hexiphenidyl, benztropine) or that could cause secondary parkinsonism (22 listed above).

Model building approach

We built all models within the training set (90% stratified random sample) using R version

3.5.0. For all models, we used a two-step model building approach with the same first step for

all. In this first step, we identified diagnosis/procedure codes and active ingredients associated

with PD using multivariable logistic regression. For each code and active ingredient, we fit a

logistic regression model adjusting a priori for age (modeled as a two-part linear spline with a

knot at age 85), sex, race/ethnicity (7 categories [6 dummy variables]), probability of ever

smoking (continuous), and number of unique diagnosis codes (continuous) [18]. These con-

stitute the 11 forced demographic predictors. We then used the Bonferroni correction for mul-

tiple comparisons to select a subset of all codes and active ingredients still significantly

associated with PD to consider in the second step of the model building. This prescreening

retained 983 codes and active ingredients, after we excluded ten that effectively were sex-spe-

cific, i.e. acting as a proxy for the patient’s sex.

Starting with the preselected set of predictor variables from the first step, i.e. the 983 codes/

active ingredient variables and the 11 forced demographic variables, we proceeded to the sec-

ond step, which differed for each model. We produced three models (fit three predetermined

classifiers): two penalized logistic regression models [13] (one with and one without prescrip-

tion medications) and a random forest that considered the prescription medications.

For the penalized logistic regressions, we built the models using only the LASSO regression

using the R package glmnet [19, 20]. In our previous work, we determined that LASSO alone

(i.e., α = 1) produced the optimal model as part of the elastic net algorithm [13]. This proce-

dure selects variables and regularizes coefficients based on penalties for possible overfitting.

The method is particularly suitable for high dimensional data, using ten-fold cross validation

to determine the shrinkage parameter (λ), and improves external validity. We used the area

under the receiver operator characteristic curve (AUC) as the measure of model quality for

selecting λ.

For the random forest, we used the R packages randomForest [21] and varSelRF [22],

which is a variable selection package designed for random forests. Specifically, we used a previ-

ously developed variable selection procedure [23]. Briefly, one large random forest was trained

on the full 90% training set using all 983 predictors and 11 demographic variables. The predic-

tor importance matrix, which contained the mean, un-scaled decrease in prediction accuracy

after variable permutation, was estimated once. Then, the 20% of predictors with the lowest

importance were dropped, and a new forest was trained on this smaller subset. The process

was repeated iteratively, while always using the original importance matrix, until only two pre-

dictor variables remained, i.e., 96 times in the present work. Each smaller subset is contained

within all larger subsets, and the predictor subset that generated the lowest “out of bag” error

was used to construct the final, predetermined random forest classifier. Random forests have

several strengths compared with support vector machines that are beneficial in this
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application, including: 1) a useful, published feature selection method comparable to the

LASSO approach [23]; 2) the ability to handle many categorical and/or irrelevant features; 3)

automatic feature relevance determination; and 4) an exceptional generalization performance

on a wide range of tasks [24]. The first three of these are critical for our data and goals with

this study. Additionally, in other machine learning applications in PD, random forests have

consistently performed well [10, 25].

After we completed both the random forest and penalized logistic regression models, we

also experimented with using both approaches (penalized regression and random forest)

simultaneously to produce a single, combined classifier. For this, we fit a penalized logistic

regression model that also used the probability of PD generated by the final random forest as a

predictor. The random forest’s probability might be able to act like a case preprocessing filter,

allowing the penalized regression to detect more complex relationships akin to the strategy of

convolution neural networks [26] and the strategy used in Amoroso et al. (2018) [27]. We

again started with the preselected set of predictor variables from the first step but included the

prediction probabilities from the final random forest classifier as a variable that could be

selected.

Finally, given how close to PD diagnosis the cardinal signs were first coded, we repeated all

analyses while utilizing predictor variables that we calculated as of the timepoint one year

prior to PD diagnosis/control reference. Specifically, we applied a one-year lag.

Assessment of model performance

We formally assessed the performance of all models in the test set (10% stratified random sam-

ple). We were able to separate the model building step from the model diagnostic step in this

way because of the size of the available data, allowing for a clean and straightforward interpre-

tation of the test set, as if it were an external dataset. We applied each of the above models

(three primary models and one combined model) to this test dataset. Then, with PD case status

in this test set as the gold standard, we used R to calculate three summary measures of model

performance [28]: the sensitivity at the cut point that correctly classified the most beneficiaries

in the test set, the specificity at that cut point, and the AUC. We also repeated these calcula-

tions at Youden’s Index [29], the point at which the sum of sensitivity and specificities is maxi-

mized, which is not data dependent. We estimated 95% confidence intervals (CIs) using

bootstrapping with 2,000 replicates within the R package pROC [30] and validated the results

using the Stata command roctab [31]. We also calculated the percent of records in the test set

classified correctly. As further validation for all models, we calculated Spearman’s rho in the

test set between the predicted probabilities of PD for each patient derived from each model.

This inter-method reliability approach does not require a true gold standard in order to

attempt to validate both methods [32]. We compared the AUCs from the penalized regression

with Part D to the one without Part D, to assess whether the inclusion of prescription medica-

tion data improved discrimination [33]. Using the same method, we also compared the AUCs

from the random forest classifier, as well as the combined model, to the penalized regression

with Part D data, to assess whether the application of machine learning improved model

performance.

Results

Characteristics of cases and controls

We observed all known associations [13] between PD and age, sex, race/ethnicity, and smok-

ing (Table 1). On average, cases were 78.8 years old, and controls were 78.1 years old. Cases
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had substantially more unique ICD9 codes in the five years prior to PD diagnosis as compared

to controls up to their comparable reference date.

Characteristics of the models

In the present dataset, the initial penalized logistic regression model, without prescription

medications, selected 183 ICD9/procedure codes, in addition to the 11 forced demographic

variables for a total of 194 predictors (S1 Table). The second model, which repeated the penal-

ized logistic regression, while including the prescription medications, contained all but two of

the ICD9/procedure codes from the first model, as well as 50 additional ICD9/procedure

codes and 28 prescription medications for a total of 270 predictors (S1 Table). Insofar as the

predictors were the same in both of the penalized regression models, the respective ORs were

generally similar.

For the random forest classifier model, the optimal subset of predictors contained 272 pre-

dictors: 248 ICD9/procedure codes, 18 active ingredients, and 6 of the 11 basic demographic

variables (the two age spline variables, sex, smoking, total count of ICD9 codes, black race)

(S1 Table).

Although 121 predictors in the random forest classifier model were not selected into either

penalized regression model, there was substantial overlap between the three models in terms

of the selected predictors, with 117 predictors (111 ICD9/procedure codes and the above 6

demographic variables) appearing in all three models (Fig 1 and S1 Table). Notably, when we

reviewed the non-overlapping codes it was clear that the random forest favored common diag-

noses/procedures, including those with modest magnitudes of association with PD, whereas

Table 1. Characteristics of Parkinson disease cases and controls with Medicare Part D coverage, U.S. Medicare

2009, %.

Cases Controls

N = 35,941 N = 52,324

Age, years

66–69 8.1 16.7

70–74 19.5 28.3

75–79 24.2 22.3

80–84 27.3 19.2

85–90 21.0 13.4

Female 64.7 54.0

Race/ethnicity

White 86.3 83.7

Black 6.0 7.8

Pacific Islander/other 1.2 1.6

Asian 2.9 3.4

Hispanic 3.1 2.9

Native American 0.3 0.4

Unknown 0.1 0.1

Smoking index�mediana 41.1 51.5

Age, years, mean (SD) 78.8 (6.1) 78.1 (6.2)

Number of unique ICD9 codes, mean (SD) 99.7 (52.4) 76.3 (46.0)

a Predicted probability of ever smoking divided by the person’s total number of unique diagnosis codes.

Abbreviations: ICD9 = International Classification of Diseases, Ninth Revision, Clinical Modification; SD = standard

deviation.

https://doi.org/10.1371/journal.pone.0256592.t001
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the penalized logistic regression favored rare diagnoses/procedures if the magnitude of the

association was relatively large or other uncommon codes. For example, the penalized regres-

sion included gout (specifically ICD9 274.9), but the random forest did not.

When we joined the penalized regression and random forest approaches into a combined

model, 232 predictors were selected (S2 Table). These predictors included 193 ICD9/proce-

dure codes and 27 prescription medications in addition to the 11 demographic variables and

the one variable that captured the predicted probability of PD from the random forest. As

expected, we observed the largest OR for the single predictor that represented the random for-

est PD prediction probability. The combined model included 10 codes not selected by any of

the three primary models (S1 and S2 Tables). However, all these codes had ORs close to one.

Model performance

When we applied each of the three primary models to the test set, the AUC was quite similar

for each of the three models (Table 2). Accordingly, the AUC was not significantly improved

either by the addition of the Part D data to the penalized regression, or by using random forest

methods instead of penalized regression. We achieved a slightly greater AUC with the com-

bined model, in which the penalized regression model with Part D predictors also included the

probability of PD for each participant produced by the random forest as a predictor. However,

the AUC was not significantly better as compared to the similar model without this predictor.

When we applied a one-year lag to the claims data, the lagged penalized logistic regression

with Part D data contained 199 ICD9/procedure codes and no medications, while the random

forest contained 155 ICD9/procedure codes and five medications. The lagged penalized regres-

sion had an AUC of 0.742 (95% CI 0.731–0.753) and the random forest had an AUC of 0.740

(95% CI 0.729–0.751).

The three primary models had similar sensitivity and specificity. At the cut point that maxi-

mized the percent of subjects classified correctly, the combined model had greater sensitivity

but slightly less specificity than the penalized regression models (Table 2). At the cut point that

maximized the sum of sensitivity and specificity (Youden’s index) [29], all models had

Fig 1. Comparison of distinct and shared predictors between models for predicting Parkinson disease, U.S.

Medicare 2009.

https://doi.org/10.1371/journal.pone.0256592.g001
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sensitivity and specificity estimates that were fairly similar (73.2–78.6%), with the combined

model maximizing specificity. The number of records correctly classified in the test set was

very similar across all models (76.1% for the penalized regression without medications, 76.4%

for the penalized regression with medications, 76.0% for the random forest, and 76.9% for the

combined model).

Agreement between predicted probabilities

For each Medicare beneficiary in our dataset, the two penalized regressions’ probabilities were

in very close agreement, despite the second model including prescription medication data

(Spearman’s rho = 0.995). When we compared the random forest predicted probabilities to

those generated by the penalized regression methods, agreement was still high (Spearman’s

rho = 0.915 with the model without Part D data and rho = 0.912 with the model with Part D

data used as predictors). The combined model had Spearman’s rho’s of 0.96 with all three

models.

Discussion

Identification of people with PD during the prodromal period represents an urgent research

priority due to the need to implement neuroprotective therapies earlier in the neurodegenera-

tive process and to prevent disease related morbidity associated with treatable motor symp-

toms. Our recent, complementary study [14] validated the previous PD predictive model [13],

providing evidence that the model is effective and a possible strategy to identify those in the

prodromal stage of PD. The current study continues to build upon this work by assessing the

value of adding medication data from Medicare Part D to an ICD9/procedure code-based pre-

dictive model, as well as applying machine learning methods to further validate and enhance

our previous work [13, 14]. The current study suggests prescription medication data would

not improve performance of our original predictions had pharmacy data been available for all

Table 2. Performance of models for predicting Parkinson disease in the test dataset.

Cut point that maximizes

percent accurately classifieda
Cut point at Youden’s indexa Overall performance Relative performanceb

Sensitivity Specificity Sensitivity Specificity AUC(95% CI)

(95% CI) (95% CI) (95% CI) (95% CI)

Penalized regression without Part

D

65.5 (63.9–

67.1)

83.4 (82.4–

84.4)

78.0 (76.7–

79.3)

73.2 (71.9–

74.4)

0.824 (0.815–0.832) Reference

model

–

Penalized regression with Part D 67.2 (65.6–

68.7)

82.6 (81.6–

83.7)

78.6 (77.2–

79.9)

73.3 (72.1–

74.6)

0.827 (0.818–0.836) p = 0.61 Reference

model

Random forest (with Part D) 66.3 (64.7–

67.8)

82.8 (81.8–

83.9)

76.8 (75.4–

78.1)

75.0 (73.9–

76.2)

0.826 (0.818–0.835) – p = 0.90

Combined model (with Part D)c 72.9 (71.5–

79.6)

79.6 (78.4–

80.7)

76.3 (74.9–

77.6)

76.3 (75.0–

77.4)

0.835 (0.826–0.843) – p = 0.23

a Percent sensitivity or specificity, at selected cut points: The cut point that maximizes the percent accurately classified (data dependent) and the cut point at Youden’s

index [29] (not data dependent).
b The AUC is a measure of overall model performance, and the presented p-value assesses relative performance of the specified model as compared to the stated

reference model using the method of DeLong et al. [33] to obtain the p-value. A p-value < 0.05 indicates that the two AUCs being compared are significantly different.

The first comparison tests whether there is a difference in AUC when including Part D prescription medication data in the penalized regression model. The other

comparisons test whether there is a difference in the AUCs across the different approaches in which Part D data were included.
c Random forest classifier’s case prediction probability included as a predictor in a new penalized regression model with Part D prescription medication data.

Abbreviations: AUC = area under the receiver operator characteristic curve; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0256592.t002
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of the beneficiaries in that sample, because the AUCs between the models with and without

pharmacy data were quite similar and not statistically different. However, adding a random

forest classifier might slightly improve our model, which had already performed well. Even

though the combined model did not have a statistically significantly higher AUC, such a small

gain might be difficult to detect even in this large dataset. The latter method, which uses an

independent analytic paradigm, also provided confirmation that our previous modeling

approach was well suited to developing a predictive algorithm of undiagnosed PD. In addition,

the high correlations between model predictions and the consistency of the discriminative

ability to detect PD provide evidence that our previous and current models approach the best

possible classifier given the Medicare data structure used in this study. Taken together, this fur-

ther validates our previous predictive model [13].

Interestingly, the addition of medications to the predictive model did not improve the over-

all model performance consequentially. The addition of medications resulted in a model with

27% more diagnosis/procedure codes. In fact, the addition of prescription medications com-

plicated the model without greatly improving prediction, suggesting that the diagnoses for

which the medications were used sufficiently distinguished PD cases from controls. Moreover,

generating hypotheses about the point estimate associations with PD for the medications

selected by our model may be difficult, since some medications can be used for a variety of

medical conditions which may have directionally opposite associations with PD. Nevertheless,

most medications identified in the models consistently aligned with potential pharmacological

treatment options of medical conditions shared by all models. Our penalized regression model

with Medicare Part D confirmed the recently published “protective” association for albuterol

(salbutamol) [34]. However, this might reflect the strong inverse association between tobacco

smoking and PD [35], given that carvedilol, which has the opposite pharmacologic effect on β2

adreonoreceptors, also was selected as a negative predictor, and both medications are indicated

for smoking-related conditions. The random forest did not select these or similar medications

related to smoking but alternatively selected chronic ischemic heart disease and a history of

myocardial infarction, both strongly associated with smoking. The medications positively

associated with PD that remained in the penalized regression model, beyond what was cap-

tured via the diagnosis and procedure codes, were primarily those used to treat depression

(fluoxetine, duloxetine, mirtazapine, paroxetine, sertraline, and citalopram), reflecting the

importance of the non-motor symptoms during the prodromal PD period.

There were some consistent themes to the predictors selected by the different algorithms.

Both random forest and penalized regression models highlighted the importance of key pre-

dictors of PD, such as age, sex, white vs. black race, smoking, the cardinal motor signs of PD,

and dementia/cognitive impairment. The random forest and the respective penalized logistic

regression models (with medication data) shared approximately 43% of the predictors, and

these models were comprised almost entirely of ICD9/procedure codes. All models identified

diagnosis and procedure codes which were suggestive of both motor and non-motor symp-

toms and medical conditions associated with PD. Motor signs and/or symptoms, such as

“abnormal involuntary movement”, “tremor”, “lack of coordination”, and “abnormality of

gait” were recognized by all models as important predictors of PD, as expected. Procedure

codes shared among all three models included various brain and spine imaging codes, physical

therapy, and a variety of non-specific diagnostic tests. These codes likely reflect a combination

of diagnostic workup for prodromal PD symptoms and an attempt to treat progressive motor

problems with non-pharmacological approaches. The codes indicative of non-motor symp-

toms that appeared to identify patients with a high probability of PD reflected gastrointestinal

dysfunction (constipation), dysautonomia (orthostatic hypotension, dizziness), and cognitive/

psychiatric impairments other than general anxiety (memory loss, altered mental status,
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mental disorder, and depression). Overall, the codes that were common between the three

models demonstrate a prodromal disease state characterized by non-motor symptoms, tremor,

gait impairment, and an attempt by health care providers to treat or identify the cause of the

symptoms.

The random forest tended to select more common predictors with lower magnitude associ-

ations. In contrast, the penalized logistic model selected conditions that were uncommon but

with a known association with PD, such as gout. Similarly, in our original predictive model

using the same regression method but larger sample size, this approach also selected condi-

tions that are rare but have large magnitude associations with PD, such as REM sleep behavior

disorder. The random forest model identified a greater number of unique codes than the

penalized regression models, yet the conditions/procedures represented by these codes had

weaker associations with PD. Many variables with the highest rank in the importance matrix

included common medical conditions that may reflect the importance of health care utiliza-

tion in being diagnosed with PD [18]. Categories distinguishing the random forest model

from the penalized regression models included: 1) prescription medications commonly pre-

scribed for bowel and bladder disorders, cognitive impairment/dementia, and psychiatric dis-

orders (e.g., depression and anxiety); 2) codes indicating head and other body trauma,

previously identified comorbidities of PD [8]; and 3) codes indicating health care utilization

prior to PD diagnosis. These codes provide interesting insight into an alternative approach to

predicting PD. The distinct methodologies we used in our study clearly identify marked clini-

cal differences between prodromal PD patients and the general population.

A strength of the study is that there were approximately 133 cases and 194 controls for each

predictor considered during the model fitting process. Theoretically, the large sample size to

predictor ratio in our models caused our predictions to approach the asymptotically minimum

achievable error [36, 37] for classifying PD. For this reason, and because the penalized regres-

sion and random forest machine learning are independent analytic approaches, we also com-

bined these into one model by feeding the PD probability from the random forest into the

penalized regression model. This approach increased the AUC by approximately 1% in abso-

lute terms. Although this difference may appear small, a 1% improvement might have a mean-

ingful impact on the absolute number of individuals further screened for PD, when applying

the predictive algorithm to a large dataset. Additionally, this improvement may be relatively

substantial considering the models may already be close to the asymptotic prediction limit.

Interestingly, the combined model’s incorporation of the random forest predictions resulted

in a discrimination gain by improving its sensitivity, reinforcing the idea that the random for-

est captured slightly different information about the cases than the penalized regressions. That

is, this model gained greater discrimination by improving case identification, and did so only

at a small cost to control identification. This is reasonable because the random forest probabil-

ity acts like a PD case preprocessing filter, improving sensitivity. In practice, all of these models

have the advantage of offering users complete flexibility in their application, such that one can

balance sensitivity and specificity to customize to each situation.

Despite the many study strengths, there are several potential limitations. First, Medicare is

only a population-based health care program for individuals older than 65; therefore, applica-

tion of this predictive model to younger individuals would not be appropriate. Second, Medi-

care data are limited to medical claims data, which are filed upon delivery of medical services

or filling of prescriptions. Other datasets, such as electronic medical record systems, may have

greater data granularity that could be leveraged for even greater model performance. With that

said, electronic medical record systems present substantial data quality challenges, as well [38].

Additionally, we only had pharmacy data for the final two years of the five year period prior to

PD diagnosis, which may have limited the usefulness of these data. However, these later years
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are likely to be predictive due to the prodromal period of PD, insofar as patient symptoms lead

to new medications being prescribed or patients discontinuing medications due to side effects.

Non-pharmacy data in these later years were quite important to our predictive model. Notably,

we found that motor signs of PD had large ORs in the penalized regressions and high impor-

tance in the random forest. Because these signs and symptoms tend to occur in the later pro-

dromal period, relatively close to PD diagnosis, application of a one-year lag did materially

reduce the AUCs for all of our models. These reductions were similar across all models, but

discrimination remained quite good. We also note that ICD9 codes in the final three months

before PD diagnosis probably were particularly influential in achieving such high AUCs in the

unlagged model. There is an increase in the number of diagnoses (ICD9 codes) assigned to

patients around the time of PD diagnosis, as patients seek out care for either their symptoms

of PD or other medical conditions. The overall number of unique ICD9 codes is an important

predictor, in part because of this phenomenon. In addition, we and others have observed a

marked spike in traumas, likely due to falls, in the three months prior to PD diagnosis [9], but

that increased risk of fractures is evident for six to seven years prior to PD diagnosis. In addi-

tion, non-motor symptoms of PD frequently precede the motor symptoms [13]. Thus, we

believe that additional lagging would have a diminished influence on AUCs. As such, predic-

tion of PD more than five years prior to diagnosis will be an important goal for future studies.

The present work provides a useful foundation for this future work by demonstrating that

these predictive models should be attempted in larger datasets, as utilized in our original pre-

dictive model of PD, rather than restricted to individuals with pharmacy coverage.
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