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Extracellular vesicle‑based therapy for 
amyotrophic lateral sclerosis
Nadia Sadanandan, Jea‑Young Lee1, Svitlana Garbuzova‑Davis1

Abstract:
Amyotrophic lateral sclerosis (ALS) stands as a neurodegenerative disorder characterized by the 
rapid progression of motor neuron loss in the brain and spinal cord. Unfortunately, treatment options 
for ALS are limited, and therefore, novel therapies that prevent further motor neuron degeneration 
are of dire need. In ALS, the infiltration of pathological elements from the blood to the central nervous 
system (CNS) compartment that spur motor neuron damage may be prevented via restoration of 
the impaired blood‑CNS‑barrier. Transplantation of human bone marrow endothelial progenitor 
cells (hBM‑EPCs) demonstrated therapeutic promise in a mouse model of ALS due to their capacity 
to mitigate the altered blood‑CNS‑barrier by restoring endothelial cell (EC) integrity. Remarkably, the 
hBM‑EPCs can release angiogenic factors that endogenously ameliorate impaired ECs. In addition, 
these cells may produce extracellular vesicles (EVs) that carry a wide range of vesicular factors, which 
aid in alleviating EC damage. In an in vitro study, hBM‑EPC‑derived EVs were effectively uptaken by 
the mouse brain endothelial cells (mBECs) and cell damage was significantly attenuated. Interestingly, 
the incorporation of EVs into mBECs was inhibited via β1 integrin hindrance. This review explores 
preclinical studies of the therapeutic potential of hBM‑EPCs, specifically via hBM‑EPC‑derived EVs, 
for the repair of the damaged blood‑CNS‑barrier in ALS as a novel treatment approach.
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Introduction

Previous research has demonstrated that 
extracellular vesicles (EVs) play a crucial 

role in regulating communication between 
cells in a variety of physiological and 
pathological circumstances and compose 
of microvesicles, apoptotic bodies, and 
exosomes.[1‑7] Microvesicles are 50–1,000 
nm in size, exosomes are 40–120 nm, and 
apoptotic bodies are 500–2,000 nm.[2,8] EVs 
are not only distinguished by constituent’s 
sizes, but also by inner contents and 
biogenesis pathways.[2,8,9] Importantly, EVs 
are largely involved in mediating cross‑talk 
between cells by transporting a variety of 
biomolecules (e.g., proteins, lipids, peptides, 
mRNA, microRNA) among cells. As a result, 

EVs contribute to stem cell plasticity,[1,10] 
immune system responses, [11‑14] and 
angiogenesis.[15,16] In addition, EVs may play 
a role in the transport of therapeutic factors 
from stem cells[17] that bear regenerative 
capacity, promote angiogenesis, attenuate 
inflammation, and inhibit apoptosis.[18]

Due to the capacity of nanovesicles to 
traverse the blood‑brain barrier and their 
low tendency to evoke an immune response, 
nanoparticle‑based therapies have arisen 
as potential deliverers of therapeutics 
for the treatment of neurodegenerative 
illnesses.[2,4,19] Notably, human bone 
marrow (hBM) mesenchymal stromal 
cells (MSC)‑derived EVs demonstrated 
rehabilitative capacity in animal models 
of lung injury induced by either LPS[20] or 
ischemia‑reperfusion,[21] as well as of kidney 
damage[22] and sepsis.[23] In myocardial 
ischemia/reperfusion in jury mice, 
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exosomes derived from MSCs diminished infarct 
volume.[24] Following treatment with MSC‑isolated 
exosomes, healing of femur fracture in mice accelerated.[25] 
In immunodeficient SCID mice, endothelial cell (EC) 
viability, proliferation, and angiogenesis were promoted 
by human endothelial progenitor cell (EPC)‑derived 
microvesicle administration.[16] Another study using 
SCID mice explored the efficacy of human pancreatic islet 
xenotransplantation in conjunction with microvesicles 
harvested from EPCs in ameliorating immune 
deficiency.[15] Notably, this combined therapy enhanced 
angiogenesis and upregulated the production and release 
of insulin in treated mice.[15] Thus, EVs may serve as 
effective transporters for the therapeutic delivery of 
various cargo proteins in the treatment of numerous 
diseases. Nonetheless, the mechanism underlying 
EV cargo delivery warrants further investigation.[17] 
This review discusses the efficacy of EVs in treating 
amyotrophic lateral sclerosis (ALS), specifically EVs 
secreted by hBM‑EPCs, and the mechanisms behind the 
therapeutic actions of these vesicles.

Preclinical Studies Supporting Human 
Bone Marrow‑Endothelial Progenitor Cells 
Therapy in Amyotrophic Lateral Sclerosis

In contemplating the role EVs in hBM‑EPC therapy, a 
brief introduction on the status of hBM‑EPC therapy for 
ALS will provide a better appreciation of the scientific 
merit of EV contribution to regenerative medicine. In ALS 
studies of regenerative stem cell therapy targeting the 
impaired blood‑central nervous system (CNS)‑barrier, 
one of the pathogenic disease mechanisms, may serve 
as a potent therapeutic strategy for this aggressive 
neurodegenerative malady.[17,26‑28] When hBM‑EPCs were 
delivered intravenously to symptomatic G93A SOD1 
mutant mice (an ALS model), the blood‑CNS‑barrier was 
significantly restored potentially due to the replacement 
of damaged ECs with “healthy” transplanted cells.[29] 
Barrier functionality in gray matter horns and white 
matter columns in the spinal cord, as well as in gray and 
white matter in the cerebral motor cortex/brainstem 
was substantially ameliorated following extensive 
hBM‑EPC engraftment.[29] This improvement of barrier 
structure and function in the SOD1 mutant mice was 
observed through a significant reduction in capillary 
permeability and bolstering of perivascular astrocyte 
end‑feet function.[29] Therefore, the manifestations 
of disease in these mice were greatly mitigated via 
blood‑CNS‑barrier restoration, resulting in augmented 
motor neuron viability in the spinal cord.[29]

A subsequent in vitro study examined the mechanism 
underlying hBM‑EPC‑mediated blood‑CNS‑barrier 
repair.[30] Cultured hBM‑EPCs were observed in a 
normogenic environment at various time points.[30] 

Notably, the cells demonstrated a steady secretion of 
VEGF‑A and angiogenin‑1, as well as structural changes 
in cytoskeletal F‑actin filaments, and immunoexpression 
of zonula occludens 1 and occludin.[30] Furthermore, these 
results indicate that hBM‑EPCs may provide endogenous 
endothelium repair behind the rehabilitative capacity 
of these cells along with cell replacement of damaged 
ECs.[30] In a similar investigation, human peripheral 
blood‑derived EPCs promoted angiogenesis and 
renewal of impaired brain tissue injury via secretion of 
biomolecules.[31] On account of hBM‑EPCs’ capacity to 
replace damaged ECs and also bolster EC functionality, 
the efficacy of both of these reparative mechanisms 
in alleviating ALS‑induced blood‑CNS‑barrier injury 
should be examined.

The Therapeutic Potential of Human 
Bone Marrow‑Endothelial Progenitor 

Cells‑Derived Extracellular Vesicles in 
Amyotrophic Lateral Sclerosis

Recently,  the preclinical  study has explored 
hBM‑EPC‑derived EVs as cell‑free therapeutics 
for blood‑CNS‑barrier restoration in conditions 
mirroring ALS.[17] An in vitro investigation found that 
hBM‑EPC‑derived EVs served as nanosized vesicles 
and after adding to culture media at concentration of 
1 µg/ml, were effectively integrated into mouse brain 
endothelial cells (mBECs) and ameliorated ALS‑induced 
injury of mBECs following exposure to plasma obtained 
from symptomatic ALS mice.[17] The total protein content 
and size of the EVs were noted at specific culture time 
points during normogenic conditioning.[17] Indeed, EVs 
are heterogeneous in size and content; however, these 
vesicles primarily consist of exosomes and microvesicles. 
Interestingly, the apoptotic bodies in EVs were noted 
upon vesicle isolation from the hBM‑EPC cultures at 5 
DIV.[17] The appearance of these EV constituents may 
be explained by the natural variations in cellular nuclei 
and cytosol shapes that ensue with apoptosis.[17] Of note, 
another in vitro study found morphological variations in 
hBM‑EPCs, as the cells transformed from more rounded 
at 24 h to more elongated at 72 h.[30]

The hBM‑EPCs were subject to ALS plasma derived from 
symptomatic G93A SOD1 mice in culture. It has been 
shown that G93A SOD1 mutant mice during disease 
progression contain high levels of the unfavorable 
humoral factor, as well as heightened concentrations of 
pro‑inflammatory type 1 cytokines and comparatively 
lower levels of anti‑inflammatory type II cytokines.[32] 
As exposure to ALS mouse plasma grew, cell death 
accompanied by morphological changes in hBM‑EPCs 
was also increased.[17] Notably, 97 cytokines in the 
blood plasma of G93A SOD1 mutant mice over the 
course of disease were delineated, and an upregulated 
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concentration of multiple cytokines correlated with 
increased mortality rate for mice.[33] However, these 
biomolecules may not be effective as a prognostic tool 
due to disparities in levels of expression.[33]

As a diagnostic marker for ALS, peripheral blood 
levels of particular cytokines may be useful.[34] Plasma 
extracted from ALS patients exhibited upregulated 
concentrations of pro‑inflammatory cytokines tumor 
necrosis factor‑alpha (TNF‑α), TNF receptor 1, 
interleukin‑6 (IL‑6), and IL‑1β.[35‑37] Through the 
trans‑signaling pathway, humoral IL‑6 may contribute 
to inflammation of ECs.[38] Furthermore, the heightened 
levels of inflammatory cytokines associated with 
ALS, inducing neuroinflammation, may exacerbate 
transplanted cell viability in the bloodstream.[17] In 
addition, ALS engenders deleterious humoral conditions 
with greater levels of injurious factors in the blood 
circulation, which may also negatively affect the 
functionality of endogenous ECs.[17] Nevertheless, further 
investigation into the correlation between cytokine 
levels and their impact on ECs in ALS at various stages 
of the disease are warranted. An in vitro study utilizing 
mBECs examines this point. Upon 3% ALS mouse plasma 
treatment, cell survival of mBECs substantially decreased 
in vitro.[17] However, adding 1 µg/ml of hBM‑EPC‑derived 
EVs to culture media greatly mitigated cell deterioration 
and warped morphology.[17] Conversely, at an EV dose of 
5 µg/ml, cell viability plummeted, indicating an EV level 
toxic to ECs. Furthermore, before clinical trials, extensive 
preclinical investigation is necessary to elucidate optimal 
dosage and timing of EV treatment.[17]

MSCs have also risen as a potential source of EVs for 
cell‑free therapeutics.[21‑25,39‑42] Human BM‑EPC‑derived 
microvesicles have demonstrated therapeutic potency 
in animal models, specifically via the augmentation of 
angiogenesis.[15,16] The microvesicles were incorporated in 
ECs and showed the ability to carry angiogenic factors to 
regions of brain injury[15] Importantly, the microvesicles 
mirrored the activity of the hBM‑EPCs from which 
they were harvested and were critical for intercellular 
communication.[6,43] Therefore, these EVs have been 
coined “nanosized extracellular organelles.”[3]

Potential Mechanisms Underlying 
Human Bone Marrow‑Endothelial 

Progenitor Cells‑Derived Extracellular 
Vesicles‑Induced Neuroprotection in 

Amyotrophic Lateral Sclerosis

Preclinical studies have also explored the mechanisms 
behind EV uptake by cells, as well as mitigation of EC 
impairment spurred by ALS. Remarkably, hBM‑EPCs 
secrete protein and lipid‑based therapeutic factors 
that upregulate neuronal progenitor cell survival and 

differentiation in vitro.[44] Moreover, EVs harvested from 
hBM‑EPCs may serve as potent carriers for therapeutic 
biomolecules in neurodegenerative disorders. The 
cellular and molecular links between neuroprotection to 
EC restoration remain an outstanding issue that requires 
further investigations. In mBEC culture, following the 
addition of hBM‑EPC‑derived EVs, the vesicles were 
found ubiquitously throughout the cytosol and cellular 
projections.[17] Therefore, the therapeutic effects of 
these EVs may be due to their capacity to carry a wide 
range of biomolecules to various cell compartments, 
thereby aiding the preservation of cellular function.[17] 
Nonetheless, a multi‑omic investigation is warranted 
to delineate the types of biomolecules involved with the 
rehabilitative capacity of these EVs.[17] In general, EVs 
vary significantly in structure, content, and biological 
mechanisms.[2,45,46]

Notably, the following biomarkers have been found 
on the surface of exosomes: CD9, CD63, CD81, 
tetraspanins, and flotillin.[47‑50] With respect to 
microvesicles, integrins, selectins, and CD40 have 
been identified.[16,51] Finally, annexin V, C2b, and 
thrombospondin have been delineated in apoptotic 
bodies.[52‑54] To more effectively distinguish EV 
subtypes, a ratio comparing the number of a particular 
biomarker with the others in the vesicles should be 
determined.[17] Additionally, proteomic studies and 
analysis of RNA in EVs are key factors to delineate 
the molecular cargo of EVs and may aid in elucidating 
the EV mechanisms in ALS.[17,54‑57] Since EVs are 
enclosed in a heterogeneous phospholipid bilayer, 
investigation into how components of the membrane 
factor into EV structure, function, and stability is 
warranted.[7] Regarding hBM‑EPC‑derived EVs 
specifically, delineating the composition of the lipid 
membrane may provide a molecular understanding 
of cellular fusion and fission for these vesicles.[58] 
Moreover, in‑depth investigations that aim to identify 
the protein and lipid composition of EVs may serve as 
a robust area of future research.[59]

In addition to further elucidating the molecular 
heterogeneity of EVs isolated from hBM‑EPCs, the 
mechanisms behind the incorporation of these vesicles 
into cells must be more extensively evaluated. Indeed, 
EVs may be uptaken by cells via membrane fusion, 
endocytosis, phagocytosis, and macropinocytosis.[5] 
The particular pathways that drive EV incorporation 
are influenced by the membrane composition of the 
target cell and the vesicle, indicating the importance of 
identifying the proteins and/or glycoproteins involved 
in EV internalization.[5] While EVs can be internalized 
into target cells via endolysosomal mechanisms or 
budding, endocytosis seems to be the most prominent 
pathway.[2,5,8] Nevertheless, it is also important to assess 
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the fusion mechanism where the EV lipid membrane fuses 
directly with the membrane of target cells.[17,60] Future 
studies should investigate the mechanisms of EV uptake 
into target cells despite hindering or blocking by ligands 
or receptor‑mediated incorporation.[2,5,12] Notably, 
microvesicle uptake by human EPCs was attenuated via 
the inhibition of α4 integrin and β1 integrin (CD29).[16] 
In vitro, preconditioning hBM‑EPC‑derived EVs with 
anti‑CD29 inhibiting antibodies resulted in reduced 
uptake of EVs by mBECs.[17] Consequently, cell death 
was significantly exacerbated following exposure to 
3% ALS mouse plasma compared to the effect of EV 
treatment.[17] Moreover, cell adhesion molecules may 
play a critical role in the uptake of EVs by receiving 
cells.[17]

Conclusion

In summary, EVs isolated from hBM‑EPCs demonstrate 
potential therapeutic promise in ALS. Animal models 
of ALS showed substantial EC damage, leading to 
impairment of blood‑CNS‑barrier integrity. The effects 
of hBM‑EPC‑derived EVs culminated in ameliorated 
EC deterioration in vitro [Figure 1], most likely due 
to EV uptake into ECs and the release of therapeutic 
factors from the vesicles. This effect likely results 
from hBM‑EPC transplantation Nonetheless, the 
specific biomolecules secreted by these EVs have 
not been fully illuminated. Additionally, the safety 
and efficacy of these vesicles need to be investigated 
in vivo to further elucidate the therapeutic potency of 
hBM‑EPC‑derived EVs in ALS. This review paper is 
limited to the potential contribution of EVs derived 
from hBM‑EPCs in the observed functional recovery 
in ALS following hBM‑EPC transplantation. Other 
mechanisms of action, including but not limited to 
hBM‑EPC differentiation and integration into the host 
brain tissue, equally warrant consideration in advancing 
hBM‑EPC transplantation for ALS.
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