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Abstract: Background: In recent decades, hyaluronic acid (HA) has attracted great attention as a new
treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration
process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can
reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify
the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic®) in maintaining
joint homeostasis and preventing the harmful processes of osteoarthritis. Methods: The bioavailability
of GreenIuronic® was investigated in a 3D intestinal barrier model that mimics human oral intake
while excluding damage to the intestinal barrier. Furthermore, the chemical significance and biological
properties of GreenIuronic® were investigated in conditions that simulate osteoarthritis. Results:
Our data demonstrated that GreenIuronic® crosses the intestinal barrier without side effects as it has
a chemical–biological profile, which could be responsible for many specific chondrocyte functions.
Furthermore, in the osteoarthritis model, GreenIuronic® can modulate the molecular mechanism
responsible for preventing and restoring the degradation of cartilage. Conclusion: According to our
results, this new form of HA appears to be well absorbed and distributed to chondrocytes, preserving
their biological activities. Therefore, the oral administration of GreenIuronic® in humans can be
considered a valid strategy to obtain beneficial therapeutic effects during osteoarthritis.

Keywords: osteoarthritis; cartilage inflammation; tissue degradation; high molecular weight hyaluronic
acid; intestinal absorption; chondrocytes

1. Introduction

Osteoarthritis (OA) is a slow progressive joint disorder that causes several disabilities
in the adult population [1]. For a long time, OA was regarded as progressive wear of the
joint cartilage alone. However, recent research has shown that it is an inflammatory disease
of the entire synovial joint, which includes not only the mechanical degeneration of the
articular cartilage, but also the concomitant structural and functional change of the entire
joint, including the synovium, meniscus, periarticular ligaments, and subchondral bone [2].
An important role in infrapatellar fat pad inflammation and fibrosis has also recently
been discovered [3]. Today, the treatment modalities for OA include non-pharmacological
(e.g., physiotherapy), pharmacological (e.g., steroidal and nonsteroidal anti-inflammatory
drugs), or intra-articular (e.g., injection of hyaluronic acid) therapies [4,5]. These classical
therapies can reverse the symptoms only in a small number of cases, but they do not stop
the degeneration process of the cartilage or promote the repair of the tissue. Therefore, the
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development of new therapies is a primary goal, preferably hypothesizing the oral admin-
istration, which remains the preferred route for drug delivery due to its low invasiveness,
high efficiency, and better patient compliance [6]. Obviously, in this case, the bioaccessi-
bility and bioavailability of orally administered compounds need to be investigated in a
preclinical model in order to evaluate the ability to cross the intestinal barrier after oral
administration. During the last decades, hyaluronic acid (HA) has attracted great attention
as a new treatment option for knee OA pain [7–9]. HA is a natural polymer belonging to
the glycosaminoglycan heteropolysaccharides family (GAGs), but unlike these molecules,
it is not sulfated and it is not synthesized by Golgi enzymes [10]. In addition, the native
form appears as a very long polymer, called high-molecular weight HA (HMWHA) [10].
Therefore, the native HA consists of 2000–25,000 disaccharide units, corresponding to
106–107 Da molecular weight; for that, a long chain contains more than 10,000 units, which
is ~4000 kDa [9,11]. In the biological systems, HMWHA (also called native HA) is degraded
into small fragments named low molecular weight HA (LMWHA) corresponding to dif-
ferent molecular weights; in particular, HMWHA has >1 to 10 MDa; intermediate HA has
>100 to 1000 kDa; and LMWHA has the molecular weight between 1 and 10 kDa [9,12].
Several studies reported that the structural and biological properties of HA within medical,
pharmaceutical, and cosmetic applications analyzing the role of HA in inflammation and
tissue regeneration are related to its specific molecular weight [13,14]. Applications of HA
depend on its biological effects on cell differentiation and proliferation, and on its ability
to lubricate, hydrate, and interact with various receptors present on the cell surface. It is
this interaction that facilitates the exact delivery of drugs, facilitating their internalization
in target sites. The safety, tolerability, and efficacy of HA-based formulations for the treat-
ment of various types of joint diseases have been validated in several studies [10,15]. It
is widely accepted that exogenous hyaluronic acid is incorporated into articular cartilage
where it may have a direct biological effect on chondrocytes to improve joint lubrication
as well described by clinical studies. The concept of viscosupplementation is based upon
the hypothesis that HA administration could improve the rheological properties of joints,
and promote the endogenous synthesis of HMWHA and possibly more functional HA,
thereby improving mobility, and articular function, and decreasing pain. The growing
use of HA in medical practice can be explained by its effectiveness and versatility as well
as its favorable safety profile [16]. Nowadays, sodium HA seems to be the best choice
available on market, since it exerts an analgesic effect by blocking pain receptors in synovial
tissues and holding endogenous pain substances in its molecule [17]. However, it can be
suggested that the characteristic steric configurations of HMWHA are necessary for the
manifestation of the analgesic effect, indicating a possible clinical application of all HA
fragments [17]. Indeed, HA is a Food and Drug Administration (FDA)-approved treatment
for inflammatory conditions, including those affecting the joints, and is also acknowledged
in Europe for its beneficial properties due to the therapeutic potential caused by native
HA, but without toxicity [9]. In particular, in vitro studies demonstrate that only native
HA exerts an inhibitory effect on interleukin (IL)-1βstimulated prostaglandin E2 (PGE2)
production in inflammation-damaged bovine cartilage. This supports the hypothesis that
administration of HMWHA may be an important new strategy to restore proteoglycan
content leading to a new cartilage protective strategy [9,18]. Synovial inflammation and
structural and molecular changes in the joint system should be the target of OA therapies.
For this reason, thanks to its viscoelastic properties, HA therapy has been proposed for
OA [19]. Much research has been conducted on HA combined with anti-inflammatory
drugs, both in clinical trials and in vivo and in vitro studies, and the published data indi-
cate that, with a good level of significance, intra-articular injection of HA combined with
anti-inflammatory drugs can potentially relieve pain in OA knee patients [20]. In the last
years, symptomatic slow-acting drugs for OA have been vastly studied and many studies
have focused the attention on HA, or chondroitin sulfate (CS) combined with nonsteroidal
anti-inflammatory drugs (NSAIDs) to limit the related adverse events in the gastrointestinal
tract, kidney, and cardiovascular system [19]. Finally, to reduce the strong adverse effects
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due to drugs, HA may be combined with several agents including lactose-modified chitosan
and cyclodextrin to improve chondroprotection and to stimulate cartilage growth reducing
inflammation [21,22]. Additional studies reported similar beneficial effects of HMWHA in
OA and in other inflammatory conditions [23,24]. The main purpose induced by HMWHA
is to promote chondroprotection and involves several proteins including binding to the
receptor of the differentiation cluster 44 (CD44), which is required to inhibit the expression
of IL-1β, leading to a decline production of matrix metalloproteinases (MMPs) −1, 2, 3, 9,
and 13 [7,25,26]. In addition, HA binds hyaluronan-mediated motility receptors (RHAMM)
to induce chondroprotection as well as CD44 binding [7]. Regarding the mechanism ac-
tivated by the binding of CD44, the most important is the role of the mitogen-activated
protein kinase phosphatase (MKP)-1, which is able to inhibit the production of IL-1β, and
consequently inhibits the MMPs within articular cartilage and finally prevent apoptotic
events in the chondrocyte through the reduction in disintegrin and metalloproteinase ex-
pression with thrombospondin motifs (ADAMTS) [7,27,28]. Another important element is
the production of reactive oxygen species (ROS) and nitric oxide (NO), which are normally
involved in the apoptosis-dependent death of chondrocytes, leading to the degeneration of
cartilage. In this context, the current literature reported that HMWHA after the binding
with CD44 is able to prevent chondrocytes apoptosis by inhibiting PGE2 synthesis and
interleukin activity such as IL-1β, which is responsible for oxidative stress [7,25,29,30].
Regarding the effectiveness of HA on joint tissue, it is important to remember that it can
act as a passive structural molecule or exerts biological effects via a signaling molecule.
Furthermore, since its different mechanism of action depends on the molecular weight,
the link between the molecular weight and its pro and anti-inflammatory activities, the
promotion, and inhibition of the activation of migration, and the blocking or promotion of
the division is also important [10]. Today some details are known about how HA exerts its
different biological functions at different concentrations and molecular weights [31]. For
example, at the level of the intestinal mucosa, the intermediate HA and HMWHA have
antioxidant and antimicrobial properties [32]. Its importance is constantly growing because
this substance regulates tissue homeostasis and its physiological decrease is related to the
aging process that leads to various diseases [32]. Oral administration of exogenous HA has
attracted the attention of researchers as a supplementary therapy to prevent or treat the
aging process of cartilage and related diseases [33]. The purpose of this study was to verify
the efficacy of HMWHA plant-derived HA (called GreenIuronic®) in maintaining joint
homeostasis in order to prevent all the harmful processes that can trigger the pathology
of OA.

2. Results

2.1. Characterization of GreenIuronic®

High-Performance Liquid Chromatography analysis of GreenIuronic® (Figure 1) re-
vealed the presence of HA, which was detected as the corresponding disaccharide ∆Di-HA
generated by chondroitinase AC enzymatic hydrolysis of the Tremella extract. The identity
of this disaccharide was established by comparison with the ∆Di-HA reference standard
and by the protonated and sodiate positive ions detected in its mass spectrum. Moreover,
the same analysis also revealed the absence of chondroitin 4 and 6 mono-sulfates, which
eluted at 6.25 and 5.35 min, respectively. However, because of the absence of sulfate group
in the disaccharide chondroitin 0 sulfate (∆D-0S), arising from chondroitine hydrolysis,
the HPLC method, based on ion-pair retention, did not allow the separation between the
disaccharides ∆Di-HA and ∆D-0S: indeed, they eluted at 2.25 min.

Moreover, since HPLC-UV analysis revealed a possible high concentration of HA
in GreenIuronic® samples, additional experiments were carried out to quantify the con-
tent of glucuronic acid in GreenIuronic® and in sodium hyaluronate samples. As re-
ported in Table 1, the content of glucuronic acid in GreenIuronic® is about 90%, which
is higher than that of sodium hyaluronate (about 62%). These data support what was
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observed in previous experiments in HPLC (reported above) about the purity of the
GreenIuronic® material.
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Figure 1. HPLC-UV and high-resolution mass spectrometry (HRMS) analysis of GreenIuronic® after
enzymatic hydrolysis with chondroitinase AC. In (A,B) HPLC-UV chromatogram of GreenIuronic®

sample and its positive HRMS spectrum. In (C,D) HPLC-UV chromatograms of a mixture of chon-
droitin disaccharides standard ∆Di-0S, ∆Di-4S, and ∆Di-6S and a solution of the disaccharide standard
∆Di-HA of HA.

Table 1. Quantification of HA. The % w/w of all HA forms normalized on standard curves generated
using glucuronic acid standard (ranging from 0 to 2 mg/mL) analyzed at 340 nm by spectrophotome-
try (Infinite 200 Pro MPlex, Tecan). Data are expressed as means ± standard deviation (SD) (%) of
five independent experiments performed in triplicates.

Raw Material Mean (%w/w) ± SD

Sodium Hyaluronate 62.5 ± 2.121
GreenIuronic® 90.5 ± 6.364

Finally, for the analysis of GreenIuronic® size distribution, agarose gel electrophore-
sis was used to define a range of the molecular weight. Agarose gel retards the elec-
trophoretic mobility of HA molecules in a molecular weight-dependent manner indicating
that GreenIuronic® may be considered the HMWHA (>1650 kDa), as can be seen in Figure 2.
On the contrary, sodium hyaluronate was confirmed to have the lower molecular weight
HA (LMWHA) (between 300 and 500 kDa). These results indicate that GreenIuronic®

molecular weight is higher than that of sodium hyaluronate and further experiments were
performed in order to confirm the hypothesis that HMWHA exerts more beneficial effects
compared to those of LMWHA.
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Figure 2. In the figure an example of HA molecular weight determination on 1% Agarose gel. The
sample loads are described as follows by the abbreviations: MW = standard molecular weight
Mega + HiLadder specific for HA detection; L1 = lane empty loaded with 10 µL TAE buffer;
L2 = lane loaded with 100 µg/10 µL Sodium Hyaluronate; L3 = lane empty loaded with 10 µL
TAE buffer; L4 = lane loaded with 100 µg/10 µL GreenIuronic®; L5 = lane empty loaded with 10 µL
TAE buffer.

2.2. Dose–Response and Time-Course Study of GreenIuronic® on CaCo-2 Cells

Before studying the permeability and transport of GreenIuronic®, the human immor-
talized colorectal adenocarcinoma (CaCo-2) cell line was used to perform a dose–response
study to exclude any cytotoxic effects. The analysis was performed comparing the ef-
fects of GreenIuronic® to sodium hyaluronate, testing them at the same concentration
(ranging from 0.125 to 1 µg/µL) on cell viability and ROS production in CaCo-2 cells in
a time-course study (from 2 to 6 h). The cell viability of the CaCo-2 cells, measured by
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, showed time
and concentration-dependent effects of both substances (Figure 3A), and the beneficial
effects compared to control (p < 0.05) were maintained during all periods of stimulation
excluding any cytotoxic effect at all dosage tested. In particular, the cells treated with
GreenIuronic® 1 µg/µL showed high variability compared to control (p < 0.05) and com-
pared to other concentrations tested (p < 0.05) suggesting that GreenIuronic® 1 µg/µL is
non-toxic to intestinal epithelial cells exhibiting the best profile also compared to sodium
hyaluronate at the same concentration and time (p < 0.05). Additional experiments were
carried out in order to confirm the safety of GreenIuronic® on intestinal epithelium analyz-
ing if the substances tested could induce oxidative stress. For this reason, ROS production
was evaluated on CaCo-2 cells from 2 to 6 h of stimulations with both GreenIuronic®

and sodium hyaluronate. As shown in Figure 3B, none of the concentrations tested was
able to increase the ROS production maintaining them at normal physiological conditions.
GreenIuronic® 1 µg/µL maintains a low ROS level during all periods analyzed better than
the other concentrations tested and all sodium hyaluronate concentrations, and it was
maintained for all further experiments.
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Figure 3. Cell viability and ROS production on CaCo-2 cells. In panel (A,B) dose–response study on
cell viability measured by MTT test of both GreenIuronic® and Sodium Hyaluronate from 2 to 6 h. In
panel (C,D) ROS production of both GreenIuronic® and Sodium Hyaluronate measured by reduction
in cytochrome C from 2 to 6 h. Data are mean ± SD of five independent experiments performed in
triplicates vs. control values (0% line).

2.3. Permeability Analysis of GreenIuronic® Using an In Vitro Model of Intestinal Barrier

To assess permeability, and to obtain additional information about the GreenIuronic®

intestinal absorption, further experiments were carried out performing a 3D in vitro model
in order to mimic the in vivo complexity of the intestinal barrier. In this context, 1 µg/µL
GreenIuronic® and 1 µg/µL sodium hyaluronate were tested from 2 to 6 h in order to
measure transepithelial electrical resistance (TEER) values, the apparent permeability coef-
ficient (Papp) values, and the HA concentration to predict their bioavailability. The data
obtained show that intestinal adsorption has a physiological trend as can be observed from
the analysis of TEER and tight junction (TJ). In particular, the passage through the intestinal
epithelium demonstrates that both sodium hyaluronate and GreenIuronic® were able to
maintain the epithelial integrity increasing the ionic flux of the paracellular exchanges
across the intestinal epithelial compared to control (p < 0.0001). Indeed, GreenIuronic®

demonstrates a better effect compared to sodium hyaluronate during all times of the
stimulation (p < 0.0001), as reported in Figure 4A. Afterwards, also the evaluation of TJ
confirmed these results; indeed, GreenIuronic® exerted the greatest effects on occludin
(p = 0.0286, about 31%, Figure 4B), claudin-1 (p = 0.0299, about 37%, Figure 4C), and zonula
occludens-1 (ZO-1) (p = 0.0299, about 50%, Figure 4D) compared to sodium hyaluronate
and compared to control value (reported as 0 line, p < 0.05). From these encouraging results,
which confirmed the correct functioning of the intestinal epithelium, further experiments
were carried out measuring the permeability rate, analyzing the flux of non-electrolyte
tracers (expressed as permeability coefficient as reported) and how much HA has crossed
the intestinal barrier to reach the target site. Data obtained from the analysis of the ba-
solateral environment (Figure 4E) confirmed our previous findings since the amount of
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GreenIuronic® was higher compared to sodium hyaluronate (p < 0.05) with a maximum
effect at 4 h compared to sodium hyaluronate (about 20%, p < 0.013). In addition, the
data obtained from the quantification of the basolateral level (Figure 4F) supported the
hypothesis about the importance of predicting human absorption; GreenIuronic® has a
higher amount of HA that crosses the barrier and reaches the plasma level compared to
control (p < 0.0001) and compared to sodium hyaluronate (about 30%, p < 0.0001) with the
greatest effects between 4 and 5 h.
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Figure 4. Permeability study on CaCo-2 cells. In (A) TEER Value using EVOM3; from
(B–D) the analysis of TJ measured by Enzyme-Linked Immunosorbent Assay (ELISA) test (Oc-
cludin, Claudin1, and ZO-1, respectively); in (E) the Papp values in which data < 0.2 × 10−6 cm/s
mean very poor absorption with a bioavailability < 1%, data between 0.2 × 10−6 and 2 × 10−6 cm/s
with bioavailability between 1 and 90%, and data > 2 × 10−6 cm/s mean very good absorption with a
bioavailability over 90%. In (F) HA quantification measured by ELISA kit. Data are mean ± SD of five
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On the contrary, in (A,E,F) the control samples are specifically reported and both GreenIuronic® and
sodium hyaluronate are p < 0.0001 vs. control; # p < 0.05 vs. Sodium Hyaluronate 1 µg/µL.
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2.4. Effects of GreenIuronic® Crossed Intestinal Barrier on Chondrocytes

Since the exogenous hyaluronic acid administered into articular cartilage has a direct
biological effect on chondrocytes, several experiments were carried out to explore the
effect of GreenIuronic®, compared to sodium hyaluronate, on chondrocytes after intestinal
absorption in terms of mitochondrial metabolism and cell proliferation. As expected
(Figure 5A), both 1 µg/µL GreenIuronic® and sodium hyaluronate were able to improve
cell viability compared to control (p < 0.05); in particular, GreenIuronic® induces the main
effect on cell viability (about 50%, p < 0.05) compared to sodium hyaluronate reducing
ROS production (about 38% p < 0.05), as reported in Figure 5B. Furthermore, as reported in
Figure 5C, GreenIuronic® induces an improvement in cell proliferation compared to control
(p < 0.05), and compared to sodium hyaluronate, by about 60%, indicating that GreenIuronic®

is able to stimulate the proliferative activity of chondrocytes. Since the importance of the
activity on cell proliferation includes the ability to modulate joint production of HA in
cells, the HA quantification in chondrocytes (Figure 5D) revealed that a large amount of
HA present in GreenIuronic® and sodium hyaluronate was captured by chondrocytes
after intestinal passage compared to the control (p < 0.05). In particular, approximately
75% of HA was induced by GreenIuronic® compared to sodium hyaluronate (p < 0.05) in
chondrocytes, confirming that HMWHA is better utilized by chondrocytes.
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Figure 5. Analysis of GreenIuronic® and Sodium Hyaluronate on human chondrocyte (T/C-28a2)
cells functions. In (A) the mitochondrial metabolism tested by MTT test; in (B) the ROS production;
in (C) the proliferation analysis by crystal violet assay; and in (D) the HA quantification by ELISA kit.
Data are expressed as mean ± SD compared to control (0% line) of five independent experiments
performed in triplicates. * p < 0.05 vs. control; # p < 0.05 vs. Sodium Hyaluronate 1 µg/µL.
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2.5. Effects of HA Crossed Intestinal Barrier on Chondrocytes under OA Condition

From the data obtained under physiological conditions, it can be assumed that
GreenIuronic® is also effective after oral administration and is an important starting point
for determining the success of therapy in joint damage, such as OA. Oxidative stress
and inflammation are known to be involved in cartilage degeneration of OA and it is
similarly approved that the degree of anti-inflammatory, immunomodulatory, analgesic,
and anti-OA effects of HA is determined by MW and route of administration. Based on
these results, in the last phase, the in vitro study was conducted by analyzing the effects
of both 1 µg/µL of GreenIuronic® and sodium hyaluronate on T/C-28a2 cells pretreated
with 10 µg/mL of lipopolysaccharide (LPS) for 24 h in order to simulate the condition of
OA. The effects of chondrocyte metabolism were shown in Figure 6 where the beneficial
effects of GreenIuronic® can be observed. Specifically, chondrocytes treated only with
10 µg/mL of LPS significantly reduced cell viability (panel 6A, about 10%) and improved
ROS production (panel 6B about 23%) compared to control (p < 0.05) but this effect was
significantly reduced by the presence of both agents. In particular, GreenIuronic® was
able to counteract these negative effects caused by LPS alone (p < 0.05) better than sodium
hyaluronate (about 47% on cell viability and two times on ROS production, respectively,
p < 0.05). These data were also confirmed by nuclear factor kappa B (NFkB) analysis
(Figure 6C) in which the beneficial potential of GreenIuronic® against inflammation, a key
point in the mechanisms involved during OA processes, was observed. Indeed, the cells
treated with only 10 µg/mL of LPS increased inflammatory processes compared to control
(about 18%, p < 0.05) assuming the beginning of chronic processes leading to cell death,
and this situation was reversed following stimulation with both HA agents. In particular,
1 µg/µL GreenIuronic® was able to reduce the negative effect produced by LPS (about
1.25 times more) better than sodium hyaluronate (about 50%, p < 0.05). This recovery
mechanism was confirmed also by proliferation assay (panel 6D) in which T/C-28a2 cells
lost their proliferative properties when treated only with 10 µg/mL of LPS (p < 0.05 com-
pared to control). On the contrary, both 1 µg/µL GreenIuronic® and sodium hyaluronate
counteract this negative effect compared to control (p < 0.05), but GreenIuronic® was able
to restore the damage by about 62% compared to sodium hyaluronate (p < 0.05), supporting
its use during OA injuries. Finally, this recovery mechanism was also confirmed by the
analysis of HA, which showed that under OA conditions, GreenIuronic® is able to improve
a much higher amount of HA released in stressed chondrocytes than sodium hyaluronate
at the same concentration, approximately by about 21% (p < 0.05).

In order to demonstrate that LPS is able to reproduce the OA condition in vitro leading
to chondrocyte death, additional experiments were carried out to explore the involvement
of the apoptosis process. As reported in Figure 7, several markers related to apoptotic pro-
cesses were evaluated in response to 10 µg/mL of LPS and to both 1 µg/mL GreenIuronic®

and sodium hyaluronate. In particular, the stimulation with 10 µg/mL of LPS treatment on
T/C-28a2 cells enhanced BAX and Caspase 9 activities (Figure 7A,B), about 22% and 18%
compared to control (p < 0.05), indicating a dramatic improvement of the apoptosis process
supporting the chondrocyte death during OA. Contemporary, the stimulation with both
1 µg/µL GreenIuronic® and sodium hyaluronate added after 10 µg/mL of LPS caused
a statistically significant reduction in both these markers. In particular, GreenIuronic®

exerted the main effects compared to sodium hyaluronate on Bax (about 2 times less,
p < 0.05) and Caspase-9 activities (about 1.5 times less, p < 0.05), suggesting that GreenIuronic®

contributes to cell protection. These data were also confirmed by the activation of risk
pathways such as mitogen-activated protein kinases/extracellular signal-regulated kinase
(ERK/MAPK) activity (Figure 7C), which demonstrated that GreenIuronic® reverts the
10 µg/mL LPS damage, activating the survival pathways and restoring the chondrocyte to
normal conditions (about 25% compared to sodium hyaluronate, p < 0.05).
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Figure 6. GreenIuronic® and Sodium Hyaluronate effects on T/C-28a2 cells during OA conditions.
In (A) mitochondrial metabolism tested by MTT test; in (B) ROS production; in (C) NFkB analysis
by ELISA test; in (D) proliferation analysis by crystal violet; and in (E) HA quantification by ELISA
kit. Data are mean ± SD of five independent experiments performed in triplicates expressed as a
percentage compared to control (0% line). * p < 0.05 vs. control; y p < 0.05 vs. 10 µg/mL of LPS;
# p < 0.05 vs. Sodium Hyaluronate 1 µg/µL.
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Figure 7. Analysis of the main intracellular pathways activated in T/C-28a2 cells during AO con-
ditions. The results demonstrated a reduction in apoptotic pathways and an improvement of the
survival pathways supporting the ability of HA to restore the OA damage. In (A) BAX activity; in
(B) Caspase 9 activity; in (C) ERK/MAPK activity; all these results are obtained from specifically
ELISA kit. Data are mean ± SD of five independent experiments performed in triplicates compared
to the control value (0% line). * p < 0.05 vs. control; y p < 0.05 vs. 10 µg/mL of LPS; # p < 0.05 vs.
Sodium Hyaluronate 1 µg/µL.

Finally, to explore the possible effector molecules responsible for the maintenance
of chondrocyte wellbeing, the activity of cyclin D1, osteoprotegerin (OPG), and CD44
were investigated. As reported in Figure 8A–D, 10 µg/mL of LPS confirmed its negative
effect on T/C-28a2 cells compared to control (p < 0.05) downregulating OPG activity, CD44
and cyclin D1 expressions (about 18%, 8%, and 12% compared to control, respectively)
modifying negatively chondrocytes activity. Conversely, both 1 µg/µL GreenIuronic® and
sodium hyaluronate were able to reduce the damage induced by 10 µg/mL of LPS (p < 0.05),
confirming the positive role of HA contained in two agents in stimulating chondrocyte
metabolism. In particular, 1 µg/mL GreenIuronic® appears to be able to induce main
effects compared to sodium hyaluronate (p < 0.05) to counteract the negative effects of
OA induction. Indeed, 1 µg/mL GreenIuronic® is able to restore the damage induced by
10 µg/mL of LPS in all parameters tested (about 60% for OPG, one time more for CD44,
and 57% for cyclin D1 expression, p < 0.05), suggesting that it could ameliorate chondrocyte
pathological conditions by activating them through the markers responsible for articular
joint homeostasis.
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Sodium Hyaluronate 1 µg/µL. 
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Figure 8. Western-blot and densitometric analysis of the main intracellular pathways activated
in T/C-28a2 cells during AO conditions. In (A) OPG activity measured by ELISA test, in (B) the
CD44, and in (C) cyclin D1 densitometric analysis of the specific Western blot, which is reported as
an example in (D). Data are mean ± SD of five independent experiments performed in triplicates
compared to control value (0% line). * p < 0.05 vs. control; y p < 0.05 vs. 10 µg/mL of LPS; # p < 0.05
vs. Sodium Hyaluronate 1 µg/µL.

3. Discussion

Current guidelines for the treatment of OA suggest many conventional approaches
to improve this chronic condition. For example, pharmacological treatment, which is
characterized by NSAIDs [34], opioids, and cyclooxygenase (COX)-2-specific drugs, is an
accepted method considered only as a “palliative” method since it reduces the symptoms
but does not address the essential problem of cartilage degeneration [35]. In addition,
conventional therapies can cause possible side effects, especially for long periods of use,
which can reduce the compliance at the onset of gastrointestinal, cardiovascular, and other
adverse effects [36]. Furthermore, the conventional therapies often use HA injections to
treat knee OA and to improve the functions of the knee joint, these methods are called
viscosupplementation [37]. It was reported that intra-articular HA improves synovial fluid
elasticity and viscosity by decreasing the release of pain mediators and proinflammatories
from synovial cells [37]. Otherwise, a recent systematic review, based on the analysis of pain
relief and functional improvement, concluded that the routine use of HA injections does
not produce so many benefits for the patient with no clinical relevance, because of the pain
caused [38]. According to the current protocol, HA should be administered repeatedly into
the joint cavity, but multiple injections could cause much discomfort in patients and increase
the risk of complications [39]. Notwithstanding, HA is a useful tool in the management of
patients with OA, since clinical data indicate its ability to reduce pain and improve joint
function, with the potential ability to modify chondrocytes activity [40]. Also, it should
be taken into account that the administration of HA by intraarticular injection can also
cause adverse effects such as infectious arthritis and cartilage damage [41]. Therefore, the
possibility of administering HA orally represents a considerable advantage [13]. From this
point of view, several studies have explored new approaches for consistent and pain-free
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administration of HA, reporting positive effects after oral administration and suggesting
that it may have beneficial therapeutic effects on patients with OA [39,42,43]. Thus, the
possibility of using HA in a dietary supplement to be taken orally sparked interest in
designing a new nutraceutical (based on plant-derived HA, called GreenIuronic®) able to
counteract the harmful consequences of OA. With these premises, our chemical analysis
revealed that GreenIuronic® contains a large amount of HA with a chemical profile useful
to be a new nutraceutical.

In addition, the presence of a high molecular weight ingredient related to HA sup-
ports its use to counteract the adverse effects of OA, since high molecular weight HA is
nowadays the best treatment option for knee OA by intra-articular injection [44]. However,
as reported in the literature, high levels of HA in serum after its oral administration in vivo
model are also reported. Indeed, therapeutic efficacy of HA against lameness was found to
be greater with oral than intra-articular administration because this way of administration
dissipates out of the joint the main amount of HA within 14–18 h; HA diffuses out of
tissues via the bloodstream, circulating throughout the body, and is rapidly eliminated [17].
In addition, several human studies have revealed that patients with OA must undergo
clinical visits repeatedly and must undergo the discomfort associated with injections while
also experiencing an increase in complications associated with repeated injections [39].
Considering these obvious and potential drawbacks, it is much more desirable to use HA by
oral administration to improve the condition of OA. Indeed, some studies have suggested
that knee OA symptoms may actually be alleviated by taking HA, and other studies also
report positive effects of orally administered HA on improving joint function in mild to
moderate osteoarthritis of the knee [39,45–47]. In addition, the international evidence-
based guidelines agree that knee OA management requires both non-pharmacological and
pharmacological approaches and suggest initiating a background therapy with chronic
symptomatic slow-acting drugs for OA such as HA by oral administration [48]. Conse-
quently, the effects of GreenIuronic® were analyzed mimicking the human oral ministration
in vitro, since orally administered HA should be absorbed and distributed to the knee
joints where it exerts its biological activities. The results obtained from the 3D model
that mimics intestinal absorption clearly demonstrated that oral administration is possible.
Bioavailability experiments indicated that orally administered HA is effectively absorbed
and biodistributed to the chondrocytes and exerts its biological functions in those tissues.
Indeed, GreenIuronic® has a high amount of HA that reaches the plasma level compared
to control (p < 0.05) and compared to sodium hyaluronate within 4 h and 5 h, confirming
the hypothesis that GreenIuronic® improves the absorption during the physiological time
of intestinal digestion and improving its bioavailability. In addition, GreenIuronic® treat-
ment indicated that a substantial part of HA is absorbed without damaging the intestinal
epithelium; this is a crucial point since HA has a role in decreasing the permeability by
enhancing tight junction proteins. In epithelial cells, the formation of tight junctions plays
an important role in the intestinal barrier, and this is mediated by proteins such as claudins,
occludin, and ZO-1 that are necessary for epithelial barrier activity [49].

These proteins are critical in maintaining homeostatic intestinal permeability in multi-
ple intestinal inflammatory diseases, supporting a gut–joint axis in OA pathogenesis and
progression [50]. In particular, dysbiosis-related gut permeability determined lower mRNA
levels of TJ, ZO-1, and occludin, and higher LPS plasma levels in the in vivo model, which
has a positive association of synovial LPS with inflammation and disease severity in articu-
lar chondrocytes in OA patients [51,52]. For this reason, several studies using nutraceuticals
evaluate the intestinal integrity as the first step to ameliorate pain and disease progression
of OA [50] during chronic nutritional intervention [36], using also HA as a multifunctional
agent [9]; in particular, Kotla et al. demonstrated that the treatment with HA upregulated
the expression of the tight junction proteins claudin and occludin [53]. These three proteins
are pivotal because ZO-1 connects claudin and occludins to the cytoskeleton so they are
indicators of good gut barrier functions [54]. Furthermore, it has been demonstrated that
GreenIuronic® is able to maintain epithelial integrity and the ionic exchanges across the
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intestinal barrier, suggesting that this proteoglycan is able to pass the cell monolayer with-
out negatively altering the epithelium. Subsequently, the second important purpose of this
work was to test the ability of GreenIuronic® to stimulate chondrocyte biological activity
under physiological and pathological conditions. As expected, GreenIuronic® was able
to stimulate cell viability and induce chondrocyte proliferation without causing adverse
effects, also compared to conventional HA supplementation Indeed, thanks to the presence
of HMWHA, the beneficial effects of GreenIuronic® on the activity of chondrocytes support
the hypothesis of its use in inflammatory joint conditions. Since OA is a disease of the
whole joint and a multifactorial entity, there are various therapeutic strategies that involve
numerous fields of medicine: rheumatology, orthopedics, geriatrics, psychiatry, general
practitioners, and physiotherapists. The goal of OA therapy is to reduce pain and increase
patients’ quality of life. For this purpose, HA has shown not only beneficial effects on
articular cartilage trophism, but also antinociceptive effects with a significant reduction in
pain [55]. In particular, the beneficial effects of GreenIuronic® have also been confirmed by
the quantity of HA, contained in this new formulation, which reached the target site and
was absorbed into the joint without damaging it. Consequently, the therapeutic effects of
GreenIuronic® on OA conditions may necessarily require the improved absorption of HA.
Moreover, we pre-treated T/C-28a2 cells with 10 µg/mL of LPS to mimic the osteoarthritic
phenotype as reported by Zhang et al. [56]. Our data support the literature [57,58] showing
that HMWHA may bind to CD44 on chondrocytes to exert its biological activities, demon-
strating that the association of HA with CD44 increased the HA absorption/production
suppressing proinflammatory processes. The binding of HA, present in GreenIuronic®,
to CD44 also suppresses the expression of the apoptosis process, which again contributes
to the damage of chondrocytes and improves its activity, regulating cartilage production,
improving OPG activity, and proliferation process, modulating cyclin D1 expression. Taken
together, these results suggest that GreenIuronic® is the best choice to maintain chondrocyte
behavior during the inflammatory condition related to OA, and therefore, the application
of this innovative HA form could be an excellent strategy to restore OA damage.

4. Materials and Methods
4.1. Agents Preparation

GreenIuronic® was obtained from White Tremella (Silver Ear), which is a traditional
foodstuff with medicinal applications in China [59]. The production process involves
several steps necessary to obtain a final extract and includes a new technology based on
patent N◦WO2021/250566 from Vivatis Pharma GBHE, Grüner Deich 1–3, 20,097 Hamburg,
Germany. Briefly, the process involves steps of extraction, purification, and refining by
alcohol solution, sieving, and crushing. The resulting powder is then packed and tested for
metals and stored [60,61]. In addition, sodium hyaluronate (Merck Life Science, Rome, Italy)
was tested to verify the mechanism of action of GreenIuronic®. All these substances are
prepared directly in water for HA determination or directly in Dulbecco’s Modified Eagle’s
Medium (DMEM, Merck Life Science, Rome, Italy) without phenol red and supplemented
with 0.5% fetal bovine serum (FBS, Merck Life Science, Rome, Italy), 2 mM L-glutamine
(Merck Life Science, Rome, Italy), and 1% penicillin–streptomycin (Merck Life Science,
Rome, Italy) for biological analysis.

4.2. HPLC Analysis

The determination of the HA was also confirmed by HPLC (Shimadzu, Kyoto, Japan)
analysis according to the method reported in the literature [62], as described in Appendix A
(Appendices A.1 and A.2). Briefly, 20 µL of TRIS buffer (3.0 g TRIZMA base, 4.0 g sodium
acetate trihydrate, 1.46 g sodium chloride, and 50 mg crystalline bovine serum albumin
dissolved in 100 mL of 0.12 M HCl, pH 7.3 with 6 M HCl. All chemicals are purchased from
Merck Life Science, Rome, Italy), 30 µL of chondroitinase AC solution (Merck Life Science,
Rome, Italy) (diluted to 10 U/mL with water), and 20 µL of GreenIuronic® test solution
(200 mg dissolved in 100 mL of water) were pipetted into a conical 1.5 mL vial. The vial
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was placed in a warm water bath at 37 ◦C for 3 h. After cooling at room temperature, the
sample was diluted to 1 mL by adding 930 µL of mobile phase A (reagent purchased from
Merck Life Science, Rome, Italy, and column from Phenomenex Srl, Bologna, Italy) (see
Appendices A.1 and A.2 in Appendix A) and the mixture was analyzed by HPLC-UV and
HPLC-HRMS systems. A control solution was prepared by replacing the enzyme aliquot
with TRIS buffer.

4.3. Colorimetric Determination of Hyaluronic Acid

The assay performed to quantify the concentration of HA on material samples was the
same reported in the literature [63]. Briefly, 1 mg of raw sample was dissolved in 1 mL of
deionized water, and 200 µL of resuspended samples were displaced in new Eppendorf,
diluted with 1.2 mL of sulfuric acid (Merck Life Science, Rome, Italy) with 0.0125 M
tetraborate (Merck Life Science, Rome, Italy), shaken for 20 s and then boiled at 100 ◦C for
5 min. Once the samples were allowed to cool on ice, 20 µL of 0.15% hydroxydiphenyl
(Merck Life Science, Rome, Italy) (dissolved in 0.5% NaOH, Merck Life Science, Rome,
Italy) was added and stirred; 100 µL of each sample was placed in a 96 multi-well plate
and the absorbance was measured at 340 nm by a spectrophotometer (Infinite 200 Pro
MPlex, Tecan, Männedorf, Switzerland). The data obtained were compared to a calibration
curve generated using glucuronic acid (0, 0.25, 0.5, 1, 1.5, 2 mg/mL Merck Life Science,
Rome, Italy) [64] and the results were expressed as mean (%w/w) ± SD compared to control
(0 line).

4.4. Molecular Weight Determination

The determination of the molecular weight of HA before exploring its biological effects
was carried out using 1% agarose gel, following the method reported in the literature [65].
Briefly, 0.3 g agarose (Merck Life Science, Rome, Italy) was dissolved in 30 mL of Tris-
acetate-EDTA (TAE) buffer (48.5 g tris base, 11.4 mL acetic acid, and 0.5 M EDTA pH 8, all
substances were purchased from Merck Life Science, Rome, Italy) and the solution was
heated for 30 s in a microwave at high power. The gel was poured into the holder and
allowed to solidify before performing a pre-run at 100 V for 45 min, using the Mini-Sub
Cell GT System (Bio-Rad, Hercules, CA, USA). In the meantime, samples were prepared by
dissolving 200 µg of raw samples in 16 µL of TAE buffer 1×. Before running the gel, 4 µL
of loading buffer (0.2% Bromophenol Blue, 1 mL of TAE 1×, and 8.5 mL of glycerol, which
were purchased from Merck Life Science, Rome, Italy) was added to each sample and to
the molecular weights (mixture of 5 µL of Select-HA HiLadder and 5 µL Select-HA Mega
Ladder, Echelon Biosciences, Tebu-Bio Srl, Magenta, Italy). The samples were run at 100 V
until the samples reached 1 cm from the end of the gel. Then, the gel was hydrated in H2O
for 24 h at room temperature in agitation and then the gel was placed in 30% ethanol with
0.015% Stains All dye (Merck Life Science, Rome, Italy) for 24 h in the dark. The gel was
decolored for 30 min in H2O in the dark before proceeding with image acquisition using
ChemiDoc™ Touch Imaging System (Bio-Rad, Hercules, CA, USA). The image obtained
was analyzed by Image Lab 3.0 software (Bio-Rad Hercules, CA, USA).

4.5. Cell Culture

The human epithelial intestinal cells, CaCo-2, purchased from the American Type Cul-
ture Collection (ATCC), were cultured in Dulbecco’s Modified Eagle’s Medium/Nutrient
F-12 Ham (DMEM-F12, Merck Life Science, Rome, Italy) containing 10% FBS (Merck Life
Science, Rome, Italy), 2 mM L-glutamine and 1% penicillin–streptomycin (Merck Life
Science, Rome, Italy) maintaining in an incubator at 37 ◦C and 5% CO2 [66]. The cells
used for the experiments were at passage numbers between 26 and 32 in order to preserve
the integrative paracellular permeability and transport properties [67] maintaining the
similarity to the intestinal absorption mechanism following oral intake in humans. The cells
were plated in a different manner to perform several experiments including 1 × 104 cells in
96 well plates to study cell viability by MTT-based In Vitro Toxicology Assay Kit (Merck Life
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Science, Rome, Italy) and ROS production using cytochrome C (Merck Life Science, Rome,
Italy) in a complete medium. Eight hours before the stimulation the cells were incubated
with DMEM without red phenol and supplemented with 0.5% FBS (Merck Life Science,
Rome, Italy), 2 mM L-glutamine, and 1% penicillin–streptomycin (both from Merck Life
Science, Rome, Italy) at 37 ◦C to synchronize them. In addition, 2 × 104 cells were plated
on 6.5 mm Transwell® (Corning® Costar®, Merck Life Science, Rome, Italy) with a 0.4 µm
pore polycarbonate membrane insert (Corning® Costar®, Merck Life Science, Rome, Italy)
in a 24 well plate to perform the absorption analyses [68]. Cells plated on the Transwell®

insert were maintained in a complete medium, which was changed every other day on the
basolateral and apical sides for 21 days before the simulations [69]. Before the stimulation,
on the apical side, the medium was brought to pH 6.5 as the pH in the lumen of the small
intestine, while the pH 7.4 on the basolateral side represented blood [70,71]. This in vitro
model is widely used [68,72] and accepted by European Medicines Agency (EMA) and
FDA to predict the absorption, metabolism, and bioavailability of several substances after
oral intake in humans [73,74].

The immortalized human juvenile costal chondrocyte cell line T/C-28a2 (purchased
from Merck Life Science, Rome, Italy) was cultured in DMEM-F12 medium supplemented
with 10% FBS (Merck Life Science, Rome, Italy), 2 mM L-glutamine (Merck Life Science,
Rome, Italy), and antibiotics (50 UI/mL penicillin and 50µg/mL streptomycin, Merck Life
Science, Rome, Italy)) and maintained in an incubator at 5% CO2 and 95% humidity [75].
This cell line is representative and the most commonly used cells for mimicking joints [76]
and they were used between passages 3 and 10 [77]. For the experiments 1 × 104 cells were
seeded in 96 well plates to study cell viability by MTT-based In Vitro Toxicology Assay
Kit (Merck Life Science, Rome, Italy), ROS production using cytochrome C (Merck Life
Science, Rome, Italy), and Crystal Violet (Merck Life Science, Rome, Italy) in a complete
medium; additionally, 1 × 106 cells were plated on a 6-well to determine HA concentration,
using quantification kit, and to analyze molecular pathways by Western-blot analysis or
ELISA kit.

4.6. Experimental Protocol

In order to analyze the beneficial effects of hyaluronic acid on articular joints in hu-
mans after oral intake, the experiments were divided into two steps; the aim of the first
one was to verify the ability of HA to cross the intestinal barrier in vitro model excluding
negative effects, and of the second one was to check the direct effects on chondrocytes
analyzing several parameters and mechanism of actions. For this reason, in intestinal
CaCo-2 cells, a dose–response study ranging from 0.125 to 1 µg/µL [78] was performed to
assess the concentration able to exert beneficial effects on cell viability and ROS production.
Subsequently, the best concentration of GreenIuronic® and hyaluronic acid salt were tested
on an intestinal in vitro barrier model to verify intestinal integrity through TEER measure-
ment, tight junction analysis by ELISA kit, and permeability assay by Papp measurement,
also analyzing the total amount of hyaluronic acid that had crossed the intestinal barrier.
For all these experiments, cells were treated in a time-dependent manner from 2 to 6 h, as
reported in the literature [66]. In addition, after each stimulation, the basolateral medium
was collected to be used on chondrocytes cells. T/C-28a2, a chondrocyte cell line widely
used to study articular joints, was treated for 3 days [79] and, at the end of stimulation,
the mitochondrial metabolism, cell proliferation, ROS production, and hyaluronic acid
quantification were tested. Finally, in order to mimic OA conditions, further experiments
were performed pre-treating T/C-28a2 with 10 µg/mL of LPS (Merck Life Science, Rome,
Italy) for 24 h [80], and then stimulating with GreenIuronic® and sodium hyaluronate for
3 days to evaluate if they are able to restore the damage. In these conditions, the survival
mechanisms and articular recovery were investigated.
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4.7. Cell Viability

The analysis of cell viability was performed using a classical technique based on the
MTT-based In Vitro Toxicology Assay Kit (Merck Life Science, Rome, Italy) [81], following
the manufacturer’s instructions. Indeed, at the end of stimulation, the cells were incubated
with 1% MTT dye for 2 h in an incubator at 37 ◦C, 5% CO2, and 95% humidity, and then
the purple formazan crystals were dissolved in an equal volume of MTT Solubilization
Solution. The absorbance was analyzed by spectrophotometer (Infinite 200 Pro MPlex,
Tecan, Männedorf, Switzerland) at 570 nm with correction at 690 nm, and results were
expressed compared to the control (0% line), which represented untreated cells. The results
reported an increase in the percentage of viable cells compared to the control and indicated
a higher number of viable cells plus the control. This strategy can lead to a high level of
safety of the stimulation and, consequently, to a correct analysis of the results.

4.8. In Vitro Intestinal Barrier Model

An intestinal barrier model, using CaCo-2 cells, was performed to analyze the passage
through the intestinal barrier of GreenIuronic® and sodium hyaluronate, having, as a final
destination, the chondrocyte where they could exert their beneficial effects. For this reason,
the TEER values were determined with EVOM3, coupled with STX2 chopstick electrodes
(World Precision Instruments, Sarasota, FL, USA); this assay was carried out every 2 days
for 21 days until reaching a TEER value ≥ 400 Ωcm2 before the stimulation [66,82], the time
required for the cell monolayer formation, for cell differentiation, and for the exposition
of the intestinal villi. On day 21, the medium at the apical and basolateral environments
was changed to create different pH conditions: pH around 6.5 at the apical level (acidic pH
mimicking lumen of small intestine) and pH around 7.4 at the basolateral level (neutral
pH mimicking human blood) [69]. The cells were kept for 15 min at 37 ◦C and 5% CO2,
after that, the TEER values were measured again before the start of the experiment to verify
the stabilization of the values. The cells were stimulated with GreenIuronic® and sodium
hyaluronate for 2 h to 6 h before the successive analysis, including the permeability assay
measured by Papp analysis [66]. Briefly, the Papp (cm/s) was calculated with the following
formula [66,69]:

Papp = dQ/dt
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VDonor: volume of the donor compartment (cm3).
Negative controls without cells were tested to exclude Transwell membrane influence.

4.9. Occludin Quantification Assay

The Human Occludin ELISA kit (OCLN kit, MyBiosource, San Diego, CA, USA)
analyzed the occludin presence in CaCo-2 cell lysates, according to the manufacturer’s
instruction [66]. Briefly, CaCo-2 cells were lysed with cold Phosphate-Buffered Saline (PBS,
Merck Life Science, Rome, Italy) 1×, centrifuged at 1500× g for 10 min at 4 ◦C, and 100 µL
of each sample was transferred to the strip well before the incubation at 37 ◦C for 90 min.
The supernatants were removed, and the strips were incubated with 100 µL of Detection
Solution A for 45 min at 37 ◦C; then, the strips were washed with Wash Solution and
incubated with 100 µL of Detection Solution B for an additional 45 min. At the end of this
time, 90 µL of Substrate Solution was added followed by an incubation for 20 min at 37 ◦C
in the dark, and then 50 µL of Stop Solution was used to block the enzymatic reaction. The
plate was analyzed by a spectrophotometer (Infinite 200 Pro MPlex, Tecan, Männedorf,
Switzerland) at 450 nm. The concentration is expressed as pg/mL compared to a standard
curve (range from 0 to 1500 pg/mL) and the results are expressed as percentage (%) versus
control (0 line).
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4.10. Claudin 1 Detection

The Human Claudin1 was measured in CaCo-2 lysates by ELISA kit (Cusabio Tech-
nology LLC, Huston, TX, USA), following the manufacturer’s instructions [66]. Briefly,
the cells were lysed with cold PBS 1× (Merck Life Science, Rome, Italy) and centrifuged
at 1500× g for 10 min at 4 ◦C. Then, 100 µL of each sample was added to the ELISA plate
and incubated at 37 ◦C for 2 h; after which, the plate was washed and 100 µL of Biotin-
antibody was added to the wells and incubated for 1 h at 37 ◦C. After this time, the wells
were washed and 100 µL of HRP-avidin were added in each well, and the samples were
incubated for 1 h at 37 ◦C. Then, 90 µL of TMB Substrate was also added to the samples and
the plate was incubated for 20 min at 37 ◦C protected from light. At the end, 50 µL of Stop
Solution was used to stop the reaction and the plate was analyzed by a spectrophotometer
(Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland) at 450 nm. The concentration was
expressed as pg/mL, comparing data to the standard curve (range from 0 to 1000 pg/mL),
and the results were expressed as percentage (%) versus control (0 line).

4.11. ZO-1 Detection

The Human Tight Junction Protein 1 ELISA kit (MyBiosource, San Diego, CA, USA)
was measured in CaCo-2, following the manufacturer’s instructions [66]. Briefly, the cells
were rinsed with ice-cold PBS 1× (Merck Life Science, Rome, Italy) and processed with
two freeze-thaw cycles; then, cell lysates were centrifuged for 5 min at 5000× g at 4 ◦C.
After which, 100 µL of each sample were collected and incubated on the ELISA plate at
37 ◦C for 90 min; after washing, 100 µL of Detection Solution A was added to each well
and incubated for 45 min at 37 ◦C. The wells were washed and 100 µL Detection Solution B
was added to the samples. After an incubation of 45 min, the wells were washed again and
90 µL of Substrate Solution was added to each well, and then the samples were incubated
for 20 min at 37 ◦C in the dark. Finally, 50 µL of Stop Solution was added and then the plates
were read by a spectrophotometer (Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland)
at 450 nm. The concentration was expressed as pg/mL, comparing data to standard curve
(range from 0 to 1000 pg/mL), and the results were expressed as percentage (%) versus
control (0 line).

4.12. Crystal Violet Staining

At the end of stimulation time, the cells were fixed with 1% glutaraldehyde (Merck
Life Science, Rome, Italy) for 15 min at room temperature, washed, and stained with
100 µL 0.1% aqueous crystal violet (Merck Life Science, Rome, Italy) for 20 min at room
temperature and solubilized with 100 µL 10% acetic acid before reading the absorbance at
595 nm using a spectrophotometer (Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland).
The estimated number was determined by comparing data to the control cells normalized
to T0 (measurement at the beginning of the stimulation) [83]. The results were expressed as
percentage (%) versus control (0 line).

4.13. ROS Production

The quantification of superoxide anion release was obtained following a standard
protocol based on the reduction in cytochrome C [83], and the absorbance in culture
supernatants was measured at 550 nm using the spectrophotometer (Infinite 200 Pro MPlex,
Tecan, Männedorf, Switzerland). The O2 rate was expressed as the mean ± SD (%) of
nanomoles per reduced cytochrome C per microgram of protein compared to the control
(0 line) [83].

4.14. Quantification of Hyaluronic Acid in Cell Culture

At the end of stimulations, both cell types were lysed with 100 µL of cold PBS1×
to measure the total HA following the instructions of the Hyaluronic Acid ELISA Kit
(ClueClone). Briefly, 50 µL of sample and reagent A were added to each well and after
gently shaking the plate was incubated for 1 h at 37 ◦C. At the end, the wells were washed
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three times and 100 µL of reagent B was added before incubating the plate for 30 min at
37 ◦C, then 90 µL of substrate solution was added before incubating the plate for 20 min at
37 ◦C. At the end, 50 µL of stop solution was added immediately before reading at 450 nm
by a spectrophotometer (Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland) [84,85].
The results were expressed as means ± SD (%) versus control (0 line).

4.15. ERK/MAPK Activity

The analysis of ERK/MAPK activity was performed using the InstantOneTM ELISA
(Thermo Fisher, Milan, Italy) on chondrocytes lysates [86]. Briefly, 50 µL of lysate samples
prepared in Lysis Buffer were tested in ELISA microplate strips after the incubation for 1 h
at room temperature in a microplate shaker pre-coated with the antibody cocktail. After
that, the strips were incubated with the detection reagent for 20 min before stopping the
reaction with a stop solution. The absorbance was measured by a spectrophotometer at
450 nm (Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland) and the results were
expressed as means ± SD (%) versus control (0 line).

4.16. OPG Activity

The OPG/TNFRSF11B Duo Set (R&D Systems, Minneapolis, MN, USA) was applied
according to the manufacturer’s instructions to verify the OPG involvement [87]. Briefly,
100 µL of samples or standards were added to the well and incubated for 2 h at room
temperature protected from light and, after washing, 100 µL of the Detection Antibody
was added to each well and incubated as previously described. After 2 h, 100 µL of the
working dilution of Streptavidin-HRP A was added to each well and incubated for 20 min
at room temperature. At the end of the time, 100 µL of Substrate Solution was added to
each well, incubated for 20 min at room temperature, and then 50 µL of Stop Solution was
used to stop the enzymatic reaction. The absorbance of each well was measured at 450 nm
by a spectrophotometer (Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland) and the
results were interpolated with the standard curve (6.25 to 625 pg/mL) and the results were
expressed as means ± SD (%) compared to control (0 line).

4.17. NFKB Analysis

The NF-kB (p65) Transcriptional factor Assay kit was carried out to analyze the NF-
κB DNA binding activity, following the manufacturer’s instruction (Cayman Chemical
Company, Ann Arbor, MI, USA) [88]. The concentration was calculated by comparing
results to the standard curve (generated by NF-kB (p65) Transcriptional factor positive
control (ranging from 0 to 10 µL/well according to differently scaled dilutions) and reported
as means ± SD (%) compared to control (0 line).

4.18. BAX Assay

BAX activity was determined in chondrocyte lysates using an ELISA kit (Human Bax
ELISA Kit, MyBiosource, San Diego, CA, USA) according to the manufacturer’s instruc-
tions [89]. The absorbance of the samples was measured at 450 nm by a spectrophotometer
(Infinite 200 Pro MPlex, Tecan, Männedorf, Switzerland) and the results were compared
to the standard curve (range from 0 to 2000 pg/mL) and expressed as means ± SD (%)
normalized to control value (0 line).

4.19. Caspase 9 Assay

The Caspase 9 activity was investigated in chondrocytes lysates by ELISA kit (Caspase
9 Human ELISA Kit, Thermoscientific, Waltham, MA, USA), according to the manufac-
turer’s instructions, reading the sample’s absorbance at 450 nm with a spectrometer (Infinite
200 Pro MPlex, Tecan, Männedorf, Switzerland). The data were obtained by comparison
to a standard curve (ranging from 1.6 to 100 ng/mL), and the results were expressed as
means ± SD (%) compared to control value (0 line) [90].
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4.20. Western-Blot Analysis

At the end of each stimulation, chondrocytes were washed with ice-cold PBS 1×
(Merck Life Science, Rome, Italy), and lysed using Complete Tablet Buffer (Roche, Basel,
Switzerland) supplemented with 2 mM sodium orthovanadate (Na3VO4), 1 mM phenyl-
methanesulfonyl fluoride (PMSF) (Merck Life Science, Rome, Italy), 1:50 mix Phosphatase
Inhibitor Cocktail (Merck Life Science, Rome, Italy), and 1:200 mix Protease Inhibitor Cock-
tail (Merck Life Science, Rome, Italy) to obtain a total protein extract that was centrifuged
at 14,000× g for 20 min at 4 ◦C. Then, 35 µg of proteins for each extract was resolved on 8%
and 10% SDS-PAGE gel and transferred to a polyvinylidene difluoride (PVDF) membrane,
which was incubated overnight with the specific primary antibodies such as Cyclin D1
(1:500, Santa Cruz, CA, USA) and CD44 (1:500, Santa Cruz, CA, USA). All protein expres-
sions were normalized and verified through β-actin detection (1:5000, Merck Life Science,
Rome, Italy), and expressed as mean ± SD (%) compared to control value (0 line).

4.21. Statistical Analysis

Data obtained from each experimental protocol and assay were collected and analyzed
using GraphPad Prism 7 statistical software through mixed variance analysis. In particular, for
all growth curves, bar graphs, and line graphs, five independent experiments were performed
in triplicates and included in the statistical analysis. All time points in growth curves were
presented as the mean of the three biological replicates with mean errors < 5%. The two-tailed
Student’s t-test was followed by Welch’s t test to analyze two groups. Multiple comparisons
between groups were analyzed by two-way ANOVA followed by a two-tailed Dunnett
post hoc test. Error bars in the bar charts and line charts represent the standard deviation.
For TEER analyses, one-way ANOVA followed by Bonferroni post hoc tests was performed
to see if the means were significantly different between groups. All results were expressed
as mean ± SD of at least 5 independent experiments performed in triplicates. Differences
with a p value < 0.05 were considered statistically significant. Data normality was assessed
with the Kolmogorov–Smirnov test.

5. Conclusions

As demonstrated by these findings, the results of our study show that this new form
of plant HA is likely absorbed and distributed to the chondrocytes, while preserving its
biological activities. Although the in vitro data are very clear and promising, in vivo or
even human studies would be needed to confirm these observations, before assuming an
absolute efficacy of this HA extracted from plants. Thus, despite the fact that our data
derived from an in vitro study and, therefore, need further validation, the results of the
present study about the effectiveness in improving chondrocyte function in conditions
that mimic OA, may support the hypothesis that the oral administration of GreenIuronic®

in humans can be considered a valid therapeutic strategy to obtain beneficial therapeutic
effects during OA. In particular, it can be hypothesized that these promising beneficial
effects are relevant not only to the joint, but also to any OA-induced damage.
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Abbreviations

ADAMTS disintegrin and metalloproteinase with thrombospondin motifs
ANOVA one-way analysis of variance
CaCo-2 the human immortalized colorectal adenocarcinoma cell line
CD44 differentiation cluster 44
COX-2 cyclooxygenase 2
DMEM/F12 Dulbecco’s modified Eagle’s medium/Nutrient F-12 Ham
EFSA European Food Safety Authority
ELISA Enzyme-Linked Immunosorbent Assay
EMA European Medicines Agency
ERK extracellular signal-regulated kinases
ERK/MAPK mitogen-activated protein kinases/extracellular signal-regulated kinase
FBS fetal bovine serum
FBS fetal bovine serum
FDA US Food and Drug Administration
GAGs glycosaminoglycan heteropolysaccharides family
HA hyaluronic acid
HMWHA high-molecular weight HA
HPLC High-Performance Liquid Chromatography
HRMS high-resolution mass spectrometry
IBD inflammatory bowel disease
IL-1β interleukin (IL)-1β
LMWHA low molecular weight HA
LPS lipopolysaccharide
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MMPs matrix metalloproteinases
MPK-1 mitogen-activated protein kinase phosphatase-1
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
Na3VO4 sodium orthovanadate
NFkB nuclear factor kappa B
NSAIDs non-steroidal anti-inflammatory drugs
NO nitric oxide (NO)
OA Osteoarthritis
OPG osteoprotegerin
Papp apparent permeability coefficient
PBS phosphate-buffered saline
PGE2 prostaglandin E2
PMSF phenylmethanesulfonyl fluoride
PVDF polyvinylidene difluoride
RHAMM hyaluronan-mediated motility receptors
ROS reactive oxygen species
TEER transepithelial electrical resistance
T/C-28a2 human chondrocyte cells
TJ tight junction
ZO-1 zonula occludens-1
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Appendix A

Appendix A.1. HPLC-UV Method

• Column: Phenomenex Synergi Polar 4 µm 150 × 4.6 mm preceded by a Security guard
Polar and kept at room temperature

• Mobile phase A: 340 mg of tetrabutylammonium bisulfate dissolved in 1000 mL of
water HPLC grade.

• Mobile phase B: 340 mg of tetrabutylammonium bisulfate dissolved in 330 mL of
water HPLC grade, then after the solution is at room temperature, brought to 1000 mL
with acetonitrile.

• Wavelength: 240 nm
• Volume of injection: 30 µL
• Flow rate: 1.1 mL/min
• Gradient elution program:

Time (min) Mobile Phase B%

0.00 20
7.00 65
12.00 65
12.50 20
22.50 20

Appendix A.2. HPLC-HRMS Method

• Thermo Scientific Q-Exactive plus
• Column: Phenomenex Synergi Polar 4 µm 150 × 2.0 mm preceded by a Security guard

Polar and kept at room temperature
• Mobile phase A: 0.1% formic acid in water
• Mobile phase B: 0.1% formic acid in acetonitrile
• Volume of injection: 5 µL
• Flow rate: 0.200 mL/min
• Gradient elution program:

Time (min) Mobile Phase B%

0.00 15
4.00 50
9.50 50

10.00 15
15 15

• Positive full scan.
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