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Aging increases susceptibility to and severity of a variety of chronic and infectious diseases.
Underlying this is dysfunction of the immune system, including chronic increases in low-
grade inflammation (inflammaging) and age-related immunosuppression
(immunosenescence). Growth differentiation factor-15 (GDF-15) is a stress-, infection-,
and inflammation-induced cytokine which is increased in aging and suppresses immune
responses. This mini review briefly covers existing knowledge on the immunoregulatory
and anti-inflammatory roles of GDF-15, as well as its potential importance in aging and
immune function.
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INTRODUCTION

Aging is the single largest risk factor for nearly all chronic diseases, including cardiovascular disease,
cancer, and neurodegenerative diseases (Niccoli and Partridge, 2012). Underlying nearly all chronic
diseases is an increase in inflammation, and numerous observations have associated aging with a
chronic low-grade inflammatory state. This has given rise to the term inflammaging, in which age-
associated inflammation is suggested to be a shared underlying cause for the progressive decline in
physiological function and increased pathology with age (Franceschi and Campisi, 2014). It is now
well-appreciated that dysregulated inflammation is closely coupled with the aging phenotype, as
inflammatory processes are central to essentially all of the ‘hallmarks of aging’ defined in a landmark
paper (Lopez-Otin et al., 2013) published in Cell in 2013. Systemic chronic inflammation underlies
age-related disease processes across tissue types (Furman et al., 2019) and is predictive of
multimorbidity and frailty (Sayed et al., 2021), suggesting that inflammaging is central to
biological aging.

In addition to the increase in inflammation seen in the inflammaging state, the aging process also
brings about progressive immunosenescence, a generalized decline in immune system function
leading to increased complications from infectious diseases and other immunological stimuli (Fulop
et al., 2018). Immunosenescence leads to defects in the innate immune system, including impaired
phagocytosis and chemotaxis, increased myeloid cell proportion, and altered basal and stimulated
cytokine production in granulocytes, monocytes, macrophages, and dendritic cells (Linton and
Thoman, 2014; Fulop et al., 2018). Additionally, adaptive immune responses are generally impaired
with aging, as lymphocyte subpopulations shift to more regulatory and memory phenotypes, and
lymphocyte proliferation and function is decreased (Goronzy andWeyand, 2013; Fulop et al., 2018).
Because inflammatory responses are a major aspect of immune regulation, inflammaging and
immunosenescence are invariably linked.

However, some aspects of aging and immunity are paradoxical (Montgomery and Shaw, 2015), as
anti-inflammatory and immunoregulatory cell subtypes are proportionally increased during the
aging process (Fulop et al., 2018), which would be expected to promote a more anti-inflammatory
state. Additionally, immune cells are known to take on more pro- or anti-inflammatory roles during
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aging depending on stimulus, as exemplified by research on
monocytes showing age-related increased basal expression of
the pro-inflammatory cytokine tumor necrosis factor (TNF)-α
(Hearps et al., 2012), while cytokine responses are impaired with
aging during inflammatory activation in monocytes (Renshaw
et al., 2002; Pence and Yarbro, 2019).

SENESCENCE

A principal contributor to the aging process is cellular senescence
(Lopez-Otin et al., 2013; Yarbro et al., 2020). One of the
‘hallmarks of aging’ (Lopez-Otin et al., 2013), cellular
senescence is characterized by proliferative arrest in aging
cells, preventing cell division in an irreversible manner
(Campisi, 2012). However, despite the similarity in their
names, cellular senescence and immunosenescence are
different processes with widely-varying outcomes.
Immunosenescence refers to a generalized deterioration in
immune cell function during aging, predisposing older
individuals to worsened outcomes to infectious and chronic
diseases (Fulop et al., 2018). While there is some evidence for
cellular senescence in the immune system, primarily in
lymphocytes (Zhou et al., 2021), mechanisms underlying
immunosenescence are not universally driven by hallmarks of
cellular senescence such as cell cycle arrest, telomere shortening,
etc. Nevertheless, links between cellular senescence and
immunosenescence are a promising area of research, as there
has been a dramatic increase in interest in the regulation of host
processes by senescent cells, driven primarily by the discovery of
the senescence-associated secretory phenotype (SASP).

During aging, senescent cells produce a host of secreted factors
now known as the SASP, which are involved in the regulation of
myriad host functions including immune system-relevant
processes such as inflammation, tissue repair, and cellular
proliferation (Campisi, 2012). Many SASP factors are
cytokines and chemokines which are intimately involved in
the regulation of inflammation (Campisi et al., 2011), thus
cellular senescence is a primary driver of inflammaging both
at local tissue and systemic levels (Freund et al., 2010) and
contributes to the pro-inflammatory environment further
induced by other age-associated factors such as increases in
damage-associated molecular patterns (Kapetanovic et al.,
2015). As a major determinant of the host endocrine
environment, SASP factors are also prime candidates for
potential mechanisms linking cellular senescence and
inflammaging to immunosenescence, as many circulating and
tissue immune cells are routinely exposed to secreted SASP
factors.

GDF-15

Growth Differentiation Factor-15 (GDF-15) is a distant member
of the transforming growth factor (TGF)-β superfamily of
cytokines (Unsicker et al., 2013), in that it shares structural
characteristics with TGF-β superfamily members but was

found to have relatively weak homology with existing
superfamily members at the time of its discovery (Bootcov
et al., 1997). GDF-15 has detectable expression in nearly all
tissues including the brain, intestines, lungs, cardiovascular
system, etc. (Yokoyama-Kobayashi et al., 1997; Böttner et al.,
1999; Tan et al., 2002).

GDFs have a long history in aging research (Jamaiyar et al.,
2017), although this has been controversial due to debates about
the direction and effects of age-associated changes to key GDFs
including myostatin (GDF-8) and GDF-11 (Loffredo et al., 2013;
Katsimpardi et al., 2014; Sinha et al., 2014; Egerman et al., 2015;
Smith et al., 2015; Poggioli et al., 2016). However, the known
effects of GDF-15 are distinct from those of GDF-8, GDF-11, and
other proteins of this subfamily relevant to aging (Unsicker et al.,
2013), and GDF-15 is sufficiently divergent from other TGF-β
superfamily members that it was initially suggested to be the first
member of a new subfamily of TGF-β-related proteins (Bootcov
et al., 1997).

GDF-15 was independently discovered by multiple
laboratories in the late 1990s (Bootcov et al., 1997; Hromas
et al., 1997; Lawton et al., 1997; Baek et al., 2001), with each
laboratory describing a distinct function of the protein. The most
influential of these initial publications (by citation count) was
from Bootcov et al. in 1997 (Bootcov et al., 1997), who named
GDF-15 as macrophage inhibitory cytokine-1 (MIC-1) and
demonstrated 1) that GDF-15 was released by macrophages
due to inflammatory stimuli such as tumor necrosis factor
(TNF)-α and interleukin (IL)-1β, and 2) that GDF-15
signaling in macrophages inhibits lipopolysaccharide-
stimulated TNF-α production. This seminal manuscript
provided evidence that GDF-15 is an important
immunoregulatory protein which links an inflammatory state
with immunosuppression. Follow-up work from several
laboratories has implicated GDF-15 in suppressing function of
a variety of immune cells, including neutrophils (Kempf et al.,
2011; Artz et al., 2016; Zhang et al., 2016), macrophages (Preusch
et al., 2013; Lee et al., 2017; Jung et al., 2018), dendritic cells
(Segerer et al., 2012; Zhou et al., 2013; Zhang et al., 2018), natural
killer (NK) cells (Roth et al., 2010; Kleinertz et al., 2019), and T
lymphocytes (Roth et al., 2010).

In addition to its molecular effects, GDF-15 is well-established
as a biomarker for a number of chronic diseases, many of which
are increased with age. Increased GDF-15 levels have been
associated with cardiovascular disease (Wollert et al., 2017),
mitochondrial diseases (Yatsuga et al., 2015), diabetes (Adela
and Banerjee, 2015), and cognitive decline (Fuchs et al., 2013)
among others. GDF-15 is also an active area of investigation
within cancer research, as it has dually-opposing effects including
both anti-tumorigenic and pro-metastatic activities depending on
cell type studied (Unsicker et al., 2013). Increased GDF-15 has
also been suggested as a biomarker for severity of rheumatoid
arthritis (Esalatmanesh et al., 2020).

The independent identification by multiple laboratories of
GFRAL as the neuronal receptor for GDF-15 (Emmerson
et al., 2017; Mullican et al., 2017; Yang et al., 2017) which
mediates its known anti-obesity effects has also accelerated
research into GDF-15 as a weight-loss promoter. However, the
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long-term consequences of increasing GDF-15 are questionable,
given its association with immunosuppression and various
chronic diseases. It is also worth noting that GDF-15 signaling
mechanisms are likely to be distinct in different cell types, as
canonical TGF-β receptor signaling has been shown to mediate
the effects of GDF-15 in various immune cells (Artz et al., 2016;
Jung et al., 2018; Zhang et al., 2018; Kleinertz et al., 2019).
Importantly, immune cells to do not express GFRAL,
necessitating that the observed effects of GDF-15 on
leukocytes occur through an alternate receptor.

Further underscoring GFRAL-independent aspects of GDF-15
signaling is the recent observation that GDF-15 activates AMPK
in skeletal muscle independent of GFRAL (Aguilar-Recarte et al.,
2021). The geroprotector drug metformin also increases
circulating GDF-15 levels and promotes weight loss, and GDF-
15 knockout abrogates the weight loss effect of metformin in mice
(Day et al., 2019). While the GDF-15 mediated weight reduction
effects of metformin may be mediated through GFRAL,
metformin is also well known as an anti-inflammatory and
immunomodulatory drug (Bułdak et al., 2014; Kim et al.,
2014; Qing et al., 2019; Soberanes et al., 2019; Cory et al.,
2021; Xian et al., 2021), therefore the effect of metformin on
inflammation and immune function may be at least partially
mediated through promoting GDF-15 expression.

GDF-15 AND IMMUNITY

In addition to suppressing inflammatory responses (Roth et al.,
2010; Kempf et al., 2011; Segerer et al., 2012; Preusch et al., 2013;
Zhou et al., 2013; Artz et al., 2016; Zhang et al., 2016; Lee et al.,
2017; Jung et al., 2018; Zhang et al., 2018), GDF-15 is a potent
suppressor of chemotaxis in neutrophils (Kempf et al., 2011; Artz
et al., 2016; Zhang et al., 2016), restricts macrophage
accumulation in atherosclerotic plaques (Preusch et al., 2013),
and promotes autophagy in macrophages (Heduschke et al.,
2021). In macrophages, GDF-15 increases reliance on
oxidative phosphorylation for energy production and promotes
an M2-like phenotype (Jung et al., 2018), which suggests a
potential mechanism by which GDF-15 mediates anti-
inflammatory responses. GDF-15 also reduces LPS-induced
sepsis responses in mice (Abulizi et al., 2017) and suppresses
NLRP3 inflammasome activation and inflammatory responses in
adipose tissue (Kim et al., 2013; Wang et al., 2014). These findings
suggest that GDF-15 is a potent suppressor of inflammatory
responses by innate immune cells.

Some evidence suggests that GDF-15 can suppress DC
function. In perhaps the most comprehensive study to date,
Zhou et al. (Zhou et al., 2013) demonstrated impaired
expression of maturation markers, reduced inflammatory
cytokine production, and impaired T cell activation by GDF-
15-treated DCs. These findings are consistent with a study on
decidual dendritic cells, which demonstrated impaired
maturation and T cell stimulatory capacity in GDF-15-treated
DCs (Segerer et al., 2012). GDF-15 has also been shown to
promote tolerogenic DC responses, including increasing
expression of inhibitory molecules and promoting T cell

exhaustion and regulatory T cell production by DCs (Zhang
et al., 2018). Aging is known to impair DC function, including by
reducing antigen presentation (Wong and Goldstein, 2013). Age-
related increases in GDF-15 therefore represents a potential
mechanism for the observation of DC impairments during aging.

GDF-15 is also an active area of study in cancer immunity
(Wischhusen et al., 2020; Lodi et al., 2021), and GDF-15 has been
shown to allow gliomas to evade immune responses by
suppressing natural killer cell-mediated immunity and T cell
migration into the tumors (Roth et al., 2010). GDF-15 also
suppresses macrophage anti-tumor responses during early
cancer development (Ratnam et al., 2017). GDF-15 is highly
overexpressed in colorectal, ovarian, lung, and many other cancer
types (Wischhusen et al., 2020), and is therefore considered a
promising biomarker for cancer prognosis in addition to its
potential role in cancer cell evasion of anti-tumor immune
responses.

GDF-15 is additionally relevant to infectious disease
responses. GDF-15 impairs NK cell function during systemic
infection (Kleinertz et al., 2019) and regulates polarization of
adipose tissue macrophages (Lee et al., 2017). One recent paper
demonstrated that GDF-15 overproduction increases severity of
human rhinovirus infections (Wu et al., 2017), and Kleinertz et al.
reported that GDF-15 levels were increased in injury patients who
progressed to sepsis compared to those who did not (Kleinertz
et al., 2019). Likewise, GDF-15 expression is increased in cells
infected with avian influenza viruses, and this in turn limits their
production of cytokines (Zhao et al., 2021). COVID-19 patients
have elevated GDF-15 levels (Notz et al., 2020; Rochette et al.,
2021), suggesting a potential link between GDF-15 and disease
severity in the ongoing pandemic.

In septic patients, GDF-15 levels are predictive of disease
severity and mortality (Buendgens et al., 2017), giving further
evidence that GDF-15 may be of import in systemic immune
responses. Finally, GDF-15 has been shown to be released due to
infection with a variety of bacterial and viral pathogens, and that
it plays a tissue protective role during infection via regulation of
lipid metabolism (Luan et al., 2019). As such, there is abundant
evidence that GDF-15 plays a multifaceted role in immune
responses by down-regulating immune function, not unlike
impairments to the immune system noted in age-related
immunosenescence.

GDF-15 AND AGING

Within the aging field, GDF-15 has very recently become a
protein of tremendous interest. Although GDF-15 was
identified in 2010 as being associated with all-cause
mortality in Swedish males (Wiklund et al., 2010), the
protein was largely forgotten in the aging field until a 2018
publication in Aging Cell by Tanaka et al. (Tanaka et al., 2018)
profiled the plasma proteome across the lifespan. They
demonstrated that GDF-15 was the protein most strongly
associated with age and that it increased in a linear fashion as
age increased. Follow-up studies by the same authors
indicated that GDF-15 was the protein most strongly
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associated with multimorbidity, including after adjustment
for age and sex (Tanaka et al., 2020).

At least several additional papers support the finding that
GDF-15 levels increase with age (Ho et al., 2012; Doerstling et al.,
2018), and elevated GDF-15 levels are associated with the
development of anemia in older adults (Yamaguchi et al.,
2021). Underscoring this, Tavenier et al. recently described a
strong association between GDF-15 levels and accelerated aging
phenotypes in older adults, wherein individuals with frailty had
on average an approximately 60% increase in GDF-15 compared
to age-matched healthy individuals (Tavenier et al., 2021). This
finding supported a previous report linking GDF-15 levels in the
plasma to frailty (Conte et al., 2020). Although in need of further
support, these findings suggest GDF-15 as potentially prognostic
of biological aging.

A recent study by Basisty et al. (Basisty et al., 2020) profiled the
SASP across multiple cell types and in vitro senescence inducers
with the goal of developing a “SASP Atlas” to support research in
this field. GDF-15 was identified as part of the “core SASP” which
was upregulated across cell types and treatments, confirming its
importance as potential signaling molecule in cellular senescence.
These recent findings underscore the potential importance of
GDF-15 to aging, although the actual molecular contributions of
GDF-15 to aging are currently unknown.

Given its relatively recent emergence as a biomarker of aging, it is
unsurprising that little is known about the contribution of GDF-15 to
immunosenescence.My laboratory has recently described correlations
between elevated GDF-15 levels and monocyte dysfunction (Pence
et al., 2021) in a secondary analysis using data from our previous
reports on age-related metabolic and inflammatory deficits in
monocytes (Pence and Yarbro, 2018; Pence and Yarbro, 2019).
Interestingly, Moon et al. (Moon et al., 2020) recently reported
that GDF-15 is increased in aging in response to cell-free
mitochondrial DNA, and that this limits tissue inflammatory
burden. However, GDF-15 also suppressed T cell activation via
promoting regulatory T cell activity, thereby limiting immune
activation. Circulating GDF-15 levels were additionally recently
shown to be correlated to accumulation of senescent T cells during
aging (Chen et al., 2020). GDF-15may therefore be a regulatory SASP
factor which limits inflammaging at the expense of suppressing
immune function.

DISCUSSION AND CONCLUSION

Aging is associated with a substantial dysregulation of the
immune system. GDF-15 is a stress-induced cytokine which is
secreted under pro-inflammatory conditions and serves to limit
inflammatory activation in many immune cell types. This
suggests a potential inflammation-immunosuppression axis
driven by GDF-15, whereby the protein is secreted during an
inflammatory or immune activation event, and serves as a signal
to assist in self-limiting or resolving the initial pro-inflammatory
response.

By extension, chronic inflammation as induced by aging or
senescence may therefore lead to chronic elevation of GDF-15
levels, leading to sustained suppression of the immune
system. Recent evidence indicates that GDF-15 is highly
associated with aging and increases across the lifespan,
therefore GDF-15 is a strong potential link between
inflammaging and immunosenescence. While there is some
limited evidence suggesting that GDF-15 regulates immune
function during aging, a great deal more work is necessary to
convincingly demonstrate this. Nevertheless, GDF-15 is
clearly an extremely important immunoregulatory cytokine
which also has strong associations with biological aging. As
such, further research in this area is likely to uncover
additional links between GDF-15 and age-related immune
dysfunction.
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