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The blood-brain barrier (BBB) is a structural and functional
barrier that protects the central nervous system (CNS) from
invasion by blood-borne pathogens including parasites.
However, some intracellular and extracellular parasites can
traverse the BBB during the course of infection and cause
neurological disturbances and/or damage which are at times
fatal. The means by which parasites cross the BBB and how the
immune system controls the parasites within the brain are still
unclear. In this review we present the current understanding
of the processes utilized by two human neuropathogenic
parasites, Trypanosoma brucei spp and Toxoplasma gondii, to
go across the BBB and consequences of CNS invasion. We
also describe briefly other parasites that can invade the brain
and how they interact with or circumvent the BBB. The roles
played by parasite-derived and host-derived molecules
during parasitic and white blood cell invasion of the brain
are discussed.

Introduction

The spread of a pathogen to the brain during an infection is in
general considered as a rare but serious complication of the
disease. However, certain parasites have a propensity to infiltrate
into the central nervous system (CNS), which may provide a
so-called immune-privileged site and therefore be of advantage
for survival of the invading microbe. For such parasite-host
interactions certain sets of parasite-derived molecules may facili-
tate invasion of the parasites into the tissues, while host-derived
immune response molecules are produced with the aim to inhibit
their spread. A number of mechanisms have also evolved by which
the immune response against a parasite may be dampened. For
instance, the Th1 immune response, which is directed against

intracellular pathogens, can be inhibited during infections with
certain microbes in which the Th2 response, which is directed
against extracellular pathogens, instead is promoted; the two arms
of the immune response being mutually inhibitory.1

Recent reviews have been focused on bacterial invasion across
the BBB, but also covered broader aspects by which various
microbes spread to the nervous system.2-4 In this review we will
describe the mechanisms by which one extracellular parasite,
Trypanosoma brucei (T. b.) may pass across the blood-brain barrier
(BBB) to enter the brain parenchyma, since this event is con-
sidered to be of crucial importance for therapeutic considerations.
In order to disclose any distinguishing features in the passage of
this parasite, comparisons will be made other parasites and in
particular with Toxoplasma gondii that can be both extra- and
intra-cellular, but predominantly intracellular.

The two human pathogenic trypanosome subspecies T. b.
gambiense and T. b. rhodesiense invariably cause fatal meningoen-
cephalitis if the infections are left untreated, while the Toxoplasma
gondii parasites can remain dormant for long periods of time in
cysts within neurons and astrocytes, but can be reactivated if the
host is immunocompromised and result in encephalitis that also
is lethal if not treated.5,6 Before reviewing mechanisms for
neuroinvasion by the pathogens, certain properties of the BBB
that the parasites have to overcome to be able to enter into the
brain parenchyma will be high-lighted.

In order to maintain constancy of the CNS internal environ-
ment, which is vital for neuronal function, the passage of
molecules across blood vessels in the CNS is restricted and tightly
regulated compared with other tissues. This is attributed to the
BBB7,8 (Fig. 1A), which has been described in detail by reviews
referred to above. Here we will only highlight certain features of
relevance for an understanding of passage of the parasites, which
are the focus of this review. The cerebral endothelial cells are
bound together with tight junctions, which provide a structural
barrier that prevents the diffusion of molecules between the
endothelial cells into the brain parenchyma, i.e., through the
paracellular pathway. The cerebral endothelial cells have low levels
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of pinocytotic activity or transcytosis and form a functional
barrier by selectively transporting only specific molecules into
the brain parenchyma.8,9 The endothelial basement membrane
enwraps pericytes, which among other things are important for
regulating transcytosis across the BBB.10 At the level of capillaries,
where exchange of metabolites across the BBB mainly occurs, one
basement membrane separates endothelial cells and astrocytes,
whereas at the level of post-capillary venules, where infiltration
of white blood cells (WBCs) into the brain parenchyma occurs
during inflammation, two basement membranes separate the
endothelial cells and the abutting astrocytic endfeet, namely
the endothelial and the parenchymal basement membranes.11,12

The latter basement membrane is also referred to as the astro-
cytic basement membrane because it is produced principally by
astrocytes and deposited at their endfeet.13 The laminin isotype
composition of these two basement membranes plays a role in
infiltration of WBCs into the brain parenchyma. The endothelial
basement membrane containing laminin a4 is permissive to WBC
penetration, while the one with laminin a5, which in contrast to
laminin a4 has a patchy distribution, is not. Penetration of WBCs
across the parencyhmal basement membrane, which contains
laminin a1 and a2, requires focal activation of the matrix
metalloproteases (MMP) 2 and 9. These proteases cleave the
dystroglycan receptors, which anchor the astrocytic end-feet to
this basement membrane.11 Before activation of the MMPs
occur, infiltrating WBCs are trapped between the two basement
membranes.14

The endothelial cells of the leptomeningeal vessels are also
linked together by tight junctions, but in spite of this they are
more permeable to proteins than the cerebral vessels and they are
not equipped with an astrocyte-derived parenchymal basement
membrane.15 Of relevance for spread of parasites to the brain also
is the choroid plexus, which has fenestrations in the endothelial
cells of the vessels that permit passage of proteins from the blood
into the stroma. Further passage into the cerebrospinal fluid
(CSF) is, however, prevented by the choroid plexus epithelial
cells, which are linked to each other by tight junctions. Similarly,
the vessels of the circumventricular organs (CVOs), which are
secretory or sensory organs distributed along the walls of the third
and fourth cerebral ventricles, are fenestrated to provide direct
contact between nervous tissue elements and the blood.

These differences in the permeability of the vessels within these
three territories, i.e., the brain parenchyma, leptomeninges and
the choroid plexus/CVOs, play a role in the targeting of different
parasites to the brain.

Parasite-Derived Factors that Promote BBB Crossing
by Parasites

In order to enter into an organism or a cell, several parasites
produce and secrete proteases to facilitate their passage across
the skin, epithelial cells layers or plasma membranes.16-19 The
question has therefore arisen as to whether parasites in the
bloodstream could secrete proteases that would also facilitate their
passage across the BBB (Box 1).

In vitro studies have shown the capabilities of free Toxoplasma
gondii parasites to cross epithelial barriers made up of human
foreskin fibroblast (HFF) cell monolayers.20,21 The Toxoplasma
gondii adhesin micronemal protein 2 (MIC2) interaction with
intercellular adhesion molecule 1 (ICAM-1) initiates this pro-
cess.21 Proteases and kinases that are released from Toxoplasma
gondii’s apical secretory organelles rhoptries, micronemes and
dense granules, in particular, serine- and cysteine-proteases play
an important role in the parasite invasion of host cells by pro-
cessing and shedding parasite-derived proteins that execute the
penetration into the host cell (reviewed by Li et al.).22 In this way
the parasite can invade almost any nucleated cell in the body of
the host including endothelial cells.23-25 Although Toxoplasma
gondii parasites infect endothelial cells and modulate the trans-
criptome of these cells, almost none of the free parasites migrate
across an in vitro co-culture (brain endothelial cells and astrocytes)
model of the BBB in the absence of leukocytes.24 In addition,
in an in vivo study very few Toxoplasma gondii tachyzoites
injected into the tail vein of mice were observed in the brain.26

Thus, although Toxoplasma gondii can invade endothelial cells,
its ability to cross the BBB as extracellular parasites in vivo is
not clear.

Similarly, there are several molecules that are expressed on
and released from the external surface of Trypanosoma brucei
spp, which might promote their passage across endothelial cells.
Trypanosomes express phosphatases on their external surface
and can release cysteine- and metallo-proteases.27-30 A few of these
proteases have been described to play a role in parasite penetra-
tion across cerebral endothelial cells in in vitro models of the
BBB.31-34 For instance, in such in vitro models of human BBB,
RNA interference against the cysteine proteases cathepsin L
(brucipain) resulted in reduced passage of T. b. brucei31 similar to
the effects of an irreversible inhibitor of cathepsin-L like pro-
teases on passage of a T. b. rhodesiense strain.32 Data from Grab
and coworkers have also indicated that T. b. brucei transmigrate
across a BBB in vitro model via the parasite-derived cysteine
proteases or parasite-induced activation of endothelial cell G
protein-coupled receptors (i.e., protease-activated receptor-2,

Box 1. Suggested roles of parasite-derived factors in Trypanosoma brucei
spp and Toxoplasma gondii crossing of the BBB.
Trypanosoma brucei spp cross the BBB as extracellular parasites.
T. brucei-derived cysteine proteases (i.e., brucipain) may interact with
host endothelial cell G protein-coupled receptors (i.e., protease-activated
receptor-2, PAR2). It has been suggested that this results in an increase in
BBB permeability which promote parasite crossing of the BBB.31-35 The
extracellular form of Toxoplasma gondii’s adhesin MIC2 interacts with
host ICAM-1 to initiate the free parasite to cross epithelial barriers made
up of human foreskin fibroblast (HFF) cell monolayers.20,21 In order to cross
the BBB as an intracellular parasite Toxoplasma gondii secreted cyclophilin
18 interacts with the chemokine receptor CCR5 and attracts WBCs to the
site of infection.36,37 Toxoplasma gondii derived proteases process and shed
parasite-derived proteins necessary for the penetration into the host cell.
Once the parasite has invaded the immune cells (e.g., CD11b+ monocytes
or dendritic cells) it increases their motility and migratory activities from
blood vessels to deliver parasites into the brain extravascular space in a
manner that is dependent on CD11b integrin function.38-41
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PAR2).34,35 These studies therefore indicate a role for parasite-
derived proteases, specifically brucipain, in the migration of
trypanosomes across the BBB. The route for the passage taken
by the parasite for crossing the BBB in vitro models is not clear,
since both a paracellular and a transcellular route have been
indicated.29,32,33

Since most studies suggest that Toxoplasma gondii most likely
invade the CNS as an intracellular parasite, research activities

have tried to elucidate how parasite derived molecules play a role
in attracting and increasing the migration of infected cells. A
molecule secreted by Toxoplasma gondii, cyclophilin 18, interacts
with the chemokine receptor CCR5 and this results in the
production of nitric oxide (NO), interleukin 12 (IL-12), and
tumor necrosis factor a (TNFa) as well as attraction of macro-
phages to the site of infection to increase the chances of parasite-
leukocyte interaction.36,37 Once the parasite has invaded the

Figure 1. Crossing of the blood-brain barrier (BBB) by parasites associated with WBCs. (A) Illustration of a cerebral post-capillary vessel showing the BBB,
consisting of a complex of cerebral endothelial cells and their tight junctions, basement membranes and pericytes as well as astrocytic end-feet.
Note the perivascular space that is noticeable during inflammation. (B) Toxoplasma gondii crossing the BBB. (1) Induction of vascular cell adhesion
molecule 1 (VCAM-1) and adhesion molecules activated leukocyte cell adhesion molecule (ALCAM) in the brain during infection might aid the monocytes
infected Toxoplasma gondii tachyzoites to cross the BBB. The infection cause an increased motility of the monocytes which may facilitate their migration
into the brain. Toxoplasma gondii can invade endothelial cells, however, its ability to cross the BBB as extracellular parasites in vivo is not clear.
(C) The extracellular parasite Trypanosoma brucei spp and T cells cross the endothelial cell layer, the endothelial basement membrane and
the parenchymal to invade the brain parenchyma. (1) TNFa and IFNa/b are released upon TLR9/MyD88-mediated activation of the innate immune
response. (2) TNFa induces ICAM/VCAM on cerebral endothelial cells which allow attachment of T cells. IFNa/b induces a limited release of CXCL10
by endothelial cells and/or astrocytes, which is enough for penetration of T cells accompanied by some trypanosomes into the perivascular space.
(3) Trypanosome-derived antigens taken up and expressed by macrophages could then be recognized by sensitized T cells to induce IFNc,
which augment the process through (4) induction of CXCL10 production by astrocytes and (5) molecules that open the parenchymal basement
membrane for spread of both T cells and trypanosomes into the brain parenchyma. (6) Once inside the brain the parasites are most likely controlled by
macrophages or microglia which produce trypanotoxic or static molecules.
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immune cells it increases their motility and migratory activities
via a Gi-protein coupled receptor signaling pathway.38-40 How
the parasite activates the Gi-protein coupled receptor signaling
pathway is still not known. Toxoplasma gondii-infected dendritic
or monocytic CD11b+ cells, migrate from blood vessels to deliver
parasites into the brain extravascular space of rodents (Fig. 1B)
in a manner which is dependent on CD11b integrin function.41

At the level of the blood-CSF barrier, Toxoplasma parasites
can, in immunosuppressed humans42 as well as in experimental
models,43 localize to the choroid plexus, which may serve as an
point of entrance for the parasites to the CSF similar to what is
described during infections with the lymphocytic choriomeningi-
tis virus (LCMV).44 In experimental rodent models, T. b. brucei
also crosses the fenestrated vessels in the stroma of the choroid
plexus (Fig. 2) and CVOs very early after infection accompanied
by WBCs and induction of cytokines including TNFa.45,46 TNFa
can disrupt the choroid plexus epithelial barrier,47 and trypano-
somes may appear early during infection in the CSF when
trypanotoxic drugs that do not pass across the BBB are still
effective as seen in a primate model of the disease.48 Although
trypanosomes may cross damaged choroid plexus epithelial cells
into the CSF, they do not seem to enter the brain parenchyma
through the ependymal cell layer. Neither are there signs of
accumulation of Toxoplasma parasites or Toxoplasma-infected
cells around the ventricles.43 Instead there are perivascular
accumulations of WBCs and parasites around the intracerebral
vessels, and this is most prominent within the white matter of
the trypanosome-infected brain.

Both Toxoplasma parasites and African trypanosomes can cross
the leptomeningeal vessels, and in trypanosome infections WBC
infiltration in the leptomeninges precede inflammatory changes
in the brain parenchyma.49 Since both trypanosomes and WBCs

can pass into the CSF before they have infiltrated the brain
parenchyma, the correlation between numbers of WBCs in the
CSF and severity of the disease in human African trypanosomiasis
(HAT) patients is still under debate for therapeutic considera-
tions, i.e., the use of drugs that cross the BBB or not.

Host-Derived Factors that Promote Crossing
of the BBB by Parasites Associated with WBCs

Although the in vitro studies have shown that free-living Toxo-
plasma parasites and African trypanosomes by themselves can
cross epithelial or endothelial cell layers, it is not clear to what
extent such phenomena contributes to the neuroinvasion in vivo,
in which host-derived mechanisms also may contribute to or
even prevail in the process. As described in detail in a recent
review,50 the Toxoplasma parasite can infect monocytes and
dendritic cells and be carried within such cells across the BBB
(a “Trojan horse mechanism,” Figure 1B). The extracellular
trypanosomes may on the other hand follow T cells that pave
their way into the brain by focal and transient openings of the
BBB (Box 2).51

During toxoplasmosis and trypanosomiasis, both in humans
and experimental animal models, there is expression of host
derived molecules such as adhesion molecules, chemokines,
cytokines, metalloproteases, which play a role in the traversal of
WBCs across the BBB and thereby also in the neuroinvasion
of parasites.24,52-54

In line with this hypothesis, it was observed that infection with
Toxoplasma gondii resulted in an upregulation of the adhesion
molecules activated leukocyte cell adhesion molecule (ALCAM),
ICAM-1 and vascular cell adhesion molecule 1 (VCAM-1) in the
CNS of C57BL/6 and BALB/c mice (both haplotype H-2d).54

However, C57BL/6 mice that expressed more VCAM-1 and
ALCAM had more inflammatory cells and Toxoplasma gondii
parasites in the CNS than BALB/c mice,54 suggesting an
important role of these adhesion molecules in the differential
CNS invasion by the parasite. A higher expression of interferon
(IFN) -c in C57BL/6 mice compared with BALB/c mice was
most likely an important factor for the induction of the higher
expression of VCAM-1 in the brains of the former mice;54

Figure 2. Large accumulation of T. b. brucei (red) in the choroid plexus
following intra-peritoneal injection in a rodent model. Choroid plexus
loaded with trypanosomes is seen already one week after the infection
and before trypanosome crossing of the BBB, of which timing and
prevalence is dependent on the rodent strain.

Box 2. Suggested roles of host-derived factors in Trypanosoma brucei spp
and Toxoplasma gondii crossing of the BBB.
T. b. brucei cross the BBB into the brain parenchyma in a multi-step
passage that appear to be similar to that of T cells during inflammation.
Results obtained using animal models of African trypanosomiasis
including genetic modified rodents indicate an important role of host-
derived molecules in T cell and parasite penetration across the BBB.
These molecules include the cytokines IFNa/b, IFNc and TNFa, the
chemokine CXCL10 and possibly the adhesion molecules i.e., ICAM-
1.51,57,63 The possible role of IFNc and CXCL10 in the neuropathogenesis
of the disease has been further corroborated with a clinical study in HAT
patients and analysis of CSF of patients with HAT.63,65 The Toxoplasma
parasite most likely cross the BBB inside leukocytes.41,50 Host-derived
molecules such as ALCAM, ICAM-1, VCAM-1 and IFNc, which facilitate the
passage of leukocytes across the BBB, have also implicated in the
migration of Toxoplasma gondii infested CD11b+ monocytes/dendritic
cells to deliver parasites into the brain parenchyma.54,55
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since Toxoplasma gondii-infected IFNc-deficient mice had less
VCAM-1 than wild-type mice, but treatment of these mutant
mice with recombinant IFNc restored the expression of VCAM-1
in cerebral vessels.55

The role played by host factors in African trypanosome neuro-
invasion is further emphasized by the observation that in two
major histocompatibility complex (MHC)-matched (haplotype
H-2b) C57BL/6 and SV-129/Ev mice, an isolate of T. b. brucei
crosses extensively the BBB in one strain of the mice (C57BL/6),
but not in the other (129Sv/Ev), although the levels of parasites
in the blood are even higher in the latter mouse strain.56

We have observed that African trypanosomes enter the brain
in two phases, namely first across the fenestrated vessels in the
choroid plexus and CVOs as well as through leptomeningeal
vessels, and then in a multi-step passage across the BBB. The role
played by molecules released by the immune response for the
multi-step passage of trypanosomes across the BBB has been
studied systematically using a series of gene knockout C57BL/6
mice. Based on the following observations the passage of
T. b. brucei across the BBB into the brain parenchyma appears
to similar to that of WBCs during inflammation. Mice deficient
of TNFa had reduced numbers of both parasites and T cells
in the brain parenchyma compared with wild type mice.57 Such
mice also had a reduced expression of adhesion molecules, e.g.,
ICAM-1 on the cerebral endothelial cells, indicating that TNFa
could facilitate T cell and parasite penetration by increasing
expression of adhesion molecules.58-61 Furthermore, we have
found that mice deficient of IFNc, its receptor or recombination
activating gene (RAG) had higher parasitemia than wild type
mice, while the parasites as well as T cells accumulated in the
perivascular space like cuffs.51 The parasites passed the endothelial
cell layer and its basement membrane but were trapped between
this and the parenchymal basement membranes, which can be
transiently opened for passage of T cells by activation of MMP-2
and -9.62

Mice deficient of the IFNc inducible chemokine CXCL10 or
its receptor CXCR3 were found to have less parasites in the
brain parenchyma albeit similar parasitemia levels compared with
wild type mice.63 CXCL10 was induced during the infection
and expressed on cerebral endothelial cells and most prominently
on astrocytes. This indicates that astrocytes by expressing
CXCL10 could play a role by increasing the trafficking of both
T cells and trypanosomes across the BBB or their retention in
the brain parenchyma. However, cuffing of trypanosomes and
T cells around cerebral vessels was not seen in these mice, which
suggests that different IFNc-regulated genes are involved in
attraction or retention of T cells and trypanosomes on one hand
and opening the parenchymal basement membrane for their
passage on the other.

Interestingly, IFNa/β also plays a role in the neuroinvasion
of T cells and trypanosomes, since IFNa/β receptor knockout
mice show both less infiltration into the brain parenchyma as
well as reduced levels of CXCL10. IFNa/β has been suggested
to initiate a series of events that are amplified when IFNc is
induced following antigen-T cell recognition in the brain during
infections with LCMV.44 The following sequence of events for

T. b. brucei crossing the BBB could therefore be suggested: The
innate immune response molecules TNFa and IFNa/β are
released upon activation of macrophages after stimulation of toll-
like receptor (TLR) 9 by trypanosomal CpG-DNA.57 TNFa
induces ICAM/VCAM on cerebral endothelial cells which allow
attachment of T cells. IFNa/β induces a limited release of
CXCL10, which is enough for penetration of T cells accompanied
by some trypanosomes into the perivascular space. Trypanosome-
derived antigens taken up and expressed by macrophages could
then be recognized by sensitized T cells to cause IFNc release
to augment the process; induce more CXCL10 in astrocytes
and open the parenchymal basement membrane for more spread
of both T cells and trypanosomes into the brain parenchyma
(Fig. 1C).

It is not clear why the T cells and trypanosomes have a
predilection for invasion of the white matter and hypothalamic
areas, but cytokines released into the CSF from the infected
choroid plexus and CVOs could diffuse between ependymal cells
and then permeate through the relatively wide extracellular spaces
of the white matter, and nearby hypothalamic nuclei, respectively.
Inflammatory cytokines in these areas could increase the immune
response to augment T cells and trypanosome passage across the
post-capillary venules.64

The possible role of IFNc and CXCL10 in the neuropathogen-
esis of the disease has been further corroborated with a clinical
study in HAT patients.65 Patients with higher plasma titers of
IFNc had increased frequency of progression to and severity of
the meningoencephalitic stage of HAT than those with lower
titers of the cytokine.65 Moreover, CXCL10, which may be a
biologically meaningful marker for inflammatory processes within
the brain parenchyma since it is induced in astrocytes, was
expressed more in the CSF of patients with late stage HAT in
comparison to early stage HAT patients caused by either T. b.
gambiense or T. b. rhodesiense.63,66-68

From these studies it is apparent that immune response
molecules and reaction to them play a crucial role for the brain
invasion of both Toxoplasma gondii and T. b. brucei (Table 1).
Infections with intracellular pathogens, like Toxoplasma gondii,
activate mainly the Th1 arm of the immune response, whereas
infections with extracellular pathogens including helminthes elicit
Th2 cell responses.69-71 It is therefore paradoxical that infections
of C57BL/6 mice with T. b. brucei elicit mainly a Th1 response
in the host resulting in elevated levels of pro-inflammatory
cytokines such as IFNc and TNFa.72-76 Since these cytokines
facilitate the infiltration of WBCs across the BBB in to the brain,
the immune response promotes parasite dissemination into the
brain in contrast to their traditional one in parasite control.77-79

Parasite Survival and Death in the Brain Parenchyma

As described in the previous section it is apparent that immune
response derived molecules can facilitate the passage of WBCs and
parasites across the barriers provided by the BBB. These molecules
could therefore serve a dual function since they also provide an
immunological barrier against further replication and spread of
the parasites within the brain parenchyma. The immunological
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control of a pathogen within the immune-privileged brain
presents a high order of complexity that is not well understood50

and beyond the scope of the present review. Only a few
observations of relevance for the accumulation of parasites in the
brain as a result of processes regulating both their spread into and
control within the parenchyma will be pointed out.

In studies aiming at defining the role of host factors as
determinants of parasite neuroinvasion or control of parasites it is
often difficult to separate between these two different events, i.e.,
opening of the BBB for passage of parasites and control of their
replication within the parenchyma. From studies on T. b. brucei
infections in C57BL/6 mice data indicate that while TNFa and
IFNa/β derived from the innate immune response promote the
initiation of brain invasion of T cells and trypanosomes, they do
not contribute to control of parasite growth in the brain.57

Although the induction of TNFa and IFNa/β and the control of
parasite growth in the brain is dependent on TLR9-myeloid
differentiation primary response gene (88) (MyD88)-mediated
signaling, the effector molecules for the control of parasite growth
are distinct from those promoting invasion, but their nature is
still not clear.57

Once Toxoplasma gondii tachyzoites enter the brain par-
enchyma inside monocytes/dendritic cells they are transmitted
to astrocytes, microglia and neurons. The rapidly replicating
tachyzoites transform in to the very slowly replicating bradyzoites,

which form cysts and persist as a chronic latent infection in
the immunocompetent host. The importance of the immune
response also in the control of growth of this parasite in the
brain is demonstrated by the reactivation of the infection in an
immunodeficient host, which results in encephalitis that can be
fatal if not treated.5,6,80,81 IL-12 and IFNc play an important
role in the control of Toxoplasma gondii within the CNS and a
number of effector molecules produced by different cells such as
macrophages, microglia and astrocytes have been proposed.82-84

In addition, although infections with Toxoplasma gondii elicit a
prominent Th1 immune response, a balancing Th2 immune
response within the CNS has been observed in mice on a resistant
BALBc background. IL-33, which is a recently described cytokine
that amplifies the Th2 response, plays an essential role in
controlling Toxoplasma gondii within the brain and limiting
immune mediated neuropathology.85 The effector molecules for
the control of parasites in these mice, which is independent of
TNFa and IFNc, are not clear; a CD40-CD40L signaling, which
increase autophagocytosis, has been pointed out as one possible
mechanism for the parasite growth control.85

BBB Interactions with other Parasites

Several other parasites, besides Toxoplasma gondii and Trypano-
soma brucei spp, affect the CNS resulting in devastating or lethal

Table 1. Interaction of selected blood-borne parasites with the blood-brain barrier (BBB)

Parasite Intracellular or
extracellular
parasite

Name/Nature of
disease caused after
entering the CNS

Crossing of the blood-brain
barrier

Molecules important for
interaction/crossing of the BBB

References

Parasite-derived
molecules

Host derived-
molecules

Toxoplasma
gondii

Predominantly
intracellular

Toxoplasmic encephalitis Crosses the BBB inside monocytes MIC2 ALCAM, ICAM-1,
VCAM-1, IFNc,

21, 54, 55

Trypanosoma
brucei spp

Extracellular Stage 2 or late stage HAT,
meningoencephalitis

Crosses the BBB Brucipain CXCL10, IFNa/b,
IFNc, PAR2, TNFa,

34, 35, 51,
57, 63

Trypanosoma
cruzi

Intracellular. Meningoencephalitis Crosses infrequently the BBB
inside WBCs

ND ND 87, 88

Plasmodium
falciparum

Intracellular Cerebral malaria Do not cross the BBB.
Infected red blood cells adhere

to endothelial cells and sequester

PfEMP-1 ICAM-1 125–129

Acanthamoeba
spp

Extracellular Granulomatous amoebic
encephalitis, Acanthamoeba

amoebic encephalitis

Crosses the BBB MBP, Serine
proteases

ND 130, 131

Balamuthia
mandrillaris

Extracellular Granulomatous amoebic
encephalitis, Balamuthia
amoebic encephalitis

Crosses the BBB. GBP,
Metalloproteases

ND 95, 97–99,
132, 133

Toxocara
canis

Extracellular Neurotoxocariasis, cerebral
toxocariasis

Crosses the BBB ND ND 101, 134

Taenia
solium

Extracellular
larvae

Neurocysticercosis Lodge in cerebral vessels and
form cysts

ND ND 102, 104, 105

Schistosoma
spp

Extracellular
helminths

Cerebral schistosomiasis
or neuroschistosomiasis

Parasite or its eggs lodge in
vessels to elicit an immune reaction

ND ND 107-109

ALCAM, activated leukocyte cell adhesion molecule; BBB, blood-brain barrier; CNS, central nervous system; CXCL10, C-X-C motif chemokine 10;
GBP, galactose-binding protein; HAT, human African trypanosomiasis; ICAM-1, intercellular adhesion molecule 1; IFN, interferon; MIC2, micronemal protein 2;
MBP, mannose-binding protein; ND, not defined; PAR2, protease-activated receptor-2; PfEMP-1, Plasmodium falciparum erythrocyte membrane protein 1;
TNF, tumor necrosis factor; VCAM-1, vascular cell adhesion molecule 1; WBCs, white blood cells.
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consequences to the host, with or without crossing the BBB as
will be briefly described for comparisons (Table 1).

In contrast to the African trypanosomes, Trypanosoma cruzi,
which is prevalent in Latin America, replicates intra-cellularly.
Infrequently, and mainly in children less than 2 y old, the
parasites can spread to the brain and form nests in astrocytes at
an acute stage of the disease. In immunosuppressed patients
with chronic disease the infection in the brain can be reactivated
showing necrosis and large nodular lesions with numerous
parasites in astrocytes.86 The mechanisms for spread of the para-
sites to the brain are not clear, but probably involve dissemination
of infected WBCs through the BBB.87,88

The endothelial cells and their tight junctions present the first
impediments parasites encounter when they cross the BBB. In
addition, they play an important role in the neuropathogenesis
of infections with the parasite Plasmodium falciparum, which
does not enter the brain.89 P. falciparum infested erythrocytes
attach to the activated cerebral vessel endothelial cells via the
P. falciparum erythrocyte membrane protein-1 (PfEMP-1), thus,
are sequestered in the CNS and cause microcirculatory and
neurological dysfunctions (cerebral malaria) without crossing the
BBB. However, during cerebral malaria there is disruption of
the BBB integrity and function.90,91 In experimental models of
cerebral malaria there is induction of pro-inflammatory cytokines
such as IFNc and IL-12, which contribute to the neuropathology
of the disease.92 It is hypothesized that cerebral malaria could be
a result of various factors such as pro-inflammatory immune
mediated pathology, mechanical damage by sequestered infected
erythrocytes, platelets or microparticles, or a combination of both
factors i.e., immune pathology and mechanical damage.93

Acanthamoeba invade the brain to cause granulomatous
encephalitis mainly in immune compromised individuals. In
vitro studies suggest that its passage across the BBB is facilitated
by extracellular serine proteases which degrade the tight junction
proteins resulting in increased permeability of the BBB.94

Balamuthia mandrillaris also invades the CNS to cause encepha-
litis. Within the CNS the parasites are usually found clustered
around blood vessels in localized areas of the brain, but they have
also been found in the CSF of a patient who died of Balamuthia
encephalitis.95,96 Using in vitro models the crossing of the human
BBB by Balamuthia seems to be aided by a galactose-binding
protein (GBP), induction of host cytokines and parasite metallo-
proteases.97,98 Balamuthia surface GBP can bind to endothelial cell
galactose-containing glycoproteins and laminin, which possibly
leads to attachment of the parasite to the BBB and later release of
parasite proteases which degrade the tight junction proteins and
basement membranes to aid its passage across the BBB.95,97,99,100

Toxocara canis larvae have been found in the choroid plexus
and adjacent brain areas after oral administration of embryonated
eggs. The mechanisms of invasion of the larvae into the brain
parenchyma are not clear, but the presence of larvae is not
correlated with enhanced BBB permeability.101

Larvae of the pork tapeworm, Taenia solium can spread in the
bloodstream and upon reaching small blood vessels in the brain,
they lodge and start to develop into cysts. When the larvae die,
after 3–5 y, an inflammatory reaction ensues and neurocysticercosis

may develop, which results in neurological symptoms including
epilepsy and intracranial hypertension.102 Patients with sympto-
matic neurocysticercosis have increased expression of pro-
inflammatory cytokines and adhesion molecules, TNFa, IFNc,
IL-1β and ICAM-1.103 In a murine model of neurocysticercosis
breakdown of the BBB and blood-cerebrospinal fluid barrier
was observed and found to be associated with leukocyte migra-
tion into the CNS.104 Recently, extensive astrogliosis, neuronal
damage, rapid angiogenesis and disruption of BBB, which
allowed an influx of WBCs into brain lesions, were observed in
a porcine model of neurocysticercosis.105

Neuroschistosomiasis is a severe clinical outcome associated
with infection with the human pathogenic subspecies of
Schistosoma, i.e., S. mansoni, S. hematobium and S. japonicum.
Schistosoma eggs may spread to the CNS, through the arterial
system after crossing previously developed pulmonary shunts
or anastomosis or through retrograde venous flow. They are
deposited in cerebral vessels and secrete antigens such as glycans
and glycoproteins that elicit a Th2 immune response leading to
granuloma formation.106-108 Adult worms can also migrate via
vessels to reach meninges and the choroid plexus where they may
shed massive amounts of eggs into the CNS.107-109

Olfactory Route

One way to circumvent the BBB is to invade the brain via the
olfactory route, i.e., from the olfactory epithelia in the nasal cavity
along the olfactory nerve into the CSF and brain. Although
infrequent, certain free-living parasites found in water can
infect humans along this route of neuroinvasion. The most
prominent example is Naegleria fowleri, which can thrive in
warm lakes as well as in untreated swimming pools, resort spas
and hot springs.110

After inhalation, the amoeba can attach to the olfactory
epithelium possibly via a Nfa1 protein expressed in their food
pockets.111,112 They may then move along the spaces between the
unmyelinated nerve fibers of the fila olfactoria and traverse the
cribriform plate to reach the CSF and olfactory bulbs.113 Through
further release of proteases, the parasites digest the olfactory bulb
and spread into the brain parenchyma to cause a granulomatous
meningoencephalitis.114 Since it was first described in 1965, cases
of infection by this amoeba have been observed around the world
and the infections are almost invariably fatal.110

Consequences of Parasite Invasion of the Brain

In general, infection of the CNS by a parasite is considered as a
serious complication of the disease. Several parasitic infections of
the brain are lethal if left untreated, (e.g., Balamuthia, African
trypanosomes), while others can be controlled by the immune
response to remain as a chronic or persistent infection (e.g.,
Toxoplasma gondii, Trypanosoma cruzi) or be cleared over time
(e.g., Taenia solium larvae, the rat lungworm A. cantonensis), in
spite of the fact that the brain provides an immunoprivileged site.
In addition to life-threatening conditions, parasitic infections
of the brain can cause disturbances of the brain function. For
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instance, they are a common cause of seizures and epilepsy
(Taenia solium larvae, P. falciparum), disruption of the sleep
pattern (African trypanosomes) and behavior or cognitive
disturbances (P. falciparum).64,102,115

By being inside the brain, parasites may have an advantage
because of the less efficient immune responses in the brain and
also be protected behind the BBB from circulating antibodies.
Thereby, Toxoplasma parasites may remain in the brain for the
life span of an infected rodent. To facilitate the spread of the
parasite to its definite host, the cat, it has been suggested that
persistent Toxoplasma infections in rodents may change the
rodents’ behavior to show reduced avoidance of the predator
cats.116,117 It has also been suggested that African trypanosomes
may hide in the brain, behind the BBB, between relapses in sub-
optimally treated individuals.118-121 In contrast to toxoplasmosis,
there are no obvious changes in the behavior of the host caused be
this parasite that could be associated with an increased rate of
transmission. However, persistence over long periods of time in a
host animal would favor the chances of spread of the parasite
within populations, since it is transmitted by tsetse flies, the bite
of which is a relatively rare event.

Conclusions

Both intracellular and extracellular parasites that invade the brain
can result in devastating or lethal consequences to the host. These
parasites pose a significant threat to human health, mostly in low-
income countries. There are gaps in knowledge in terms of the
interplay between the parasite-derived molecules and host-derived
molecules and the weight of their roles in parasite traversal of the
BBB into the brain parenchyma. Parasite derived molecules,

including adhesins and proteases, promote cell penetration of
several parasites, and several studies indicate that they play an
important role also in the traversal of Toxoplasma gondii and
Trypanosoma brucei spp across in vitro models of the BBB. The
role of these parasite derived molecules in migration of parasites
across the BBB in an in vivo setting warrant to be evaluated,
because they might present novel drug targets to reduce neuro-
pathology in these parasitic infections. For instance, molecules
on the surface of parasites, which play a role in parasite inter-
action with the BBB, such as MIC2 for Toxoplasma gondii,
PfEMP-1 for Plasmodium falciparum, are plausible targets for
anti-parasitic vaccine development.122-124 In in vivo settings host
derived immune response molecules are, however, crucial in the
migration of these parasites into the brain parenchyma. The
immune response molecules that promote passage of the parasites
across the BBB may be distinct from those that inhibit their
growth within the brain. The immune response can therefore
have the dual and partly paradoxical function to on one hand
reduce parasite growth in the brain, but on the other promote
their brain invasion. Further research on the role of host derived
molecules and the immune system on the invasion of the CNS
and control of the parasites inside the CNS would not only
further the knowledge of the neuropathology of parasitic diseases,
but could provide a platform for drug discovery to reduce CNS
invasion and ameliorate immune mediated pathology in these
parasitic CNS infections.
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