
Integrated Network Pharmacology
Analysis and Experimental Validation
to Investigate the Mechanism of
Zhi-Zi-Hou-Po Decoction in
Depression
Yongtao Bai1,2†, Yingchun Zhang3†, Shuolei Li 2, Wenzhou Zhang1, Xinhui Wang3,
Baoxia He1,2* and Wenzheng Ju4*

1Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,
2Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,
3College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China, 4Department of Clinical
Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China

Zhi-Zi-Hou-Po Decoction (ZZHPD) is a well-known traditional Chinesemedicine (TCM) that
has been widely used in depression. However, the antidepressant mechanism of ZZHPD
has not yet been fully elucidated. The purpose of this study was to explore the
pharmacological mechanisms of ZZHPD acting on depression by combining ultra flow
liquid chromatography with quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF/
MS) and network pharmacology strategy. The chemical components of ZZHPD were
identified using UFLC-Q-TOF/MS, while the potential drug targets and depression-related
targets were collected from databases on the basis of the identified compounds of ZZHPD.
Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of
genes and genomes (KEGG) pathway enrichment analyses were used to unravel potential
antidepressant mechanisms. The predicted antidepressant targets from the
pharmacology-based analysis were further verified in vivo. As a result, a total of 31
chemical compounds were identified by UFLC-Q-TOF/MS; 514 promising drug targets
were mined by using the Swiss Target Prediction; and 527 depression-related target
genes were pinpointed by the GeneCards and OMIM databases. STRING database and
Cytoscape’s topological analysis revealed 80 potential targets related to the
antidepressant mechanism of ZZHPD. The KEGG pathway analysis revealed that the
antidepressant targets of ZZHPDweremainly involved in dopaminergic synapse, serotonin
synapse, cAMP, and mTOR signaling pathways. Furthermore, based on the animal model
of depression induced by chronic corticosterone, the regulatory effects of ZZHPD on the
expression of MAOA, MAOB, DRD2, CREBBP, AKT1, MAPK1, HTR1A, and GRIN2B
mRNA levels as well as the cAMP signaling pathway and monoaminergic metabolism were
experimentally verified in rats. Our study revealed that ZZHPD is expounded to target
various genes and pathways to perform its antidepressant effect.
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INTRODUCTION

Depression, a prevalent mental illness with high economic and
social costs, poses a major risk for human health (Shafiee et al.,
2018; Wang et al., 2020). Major depressive disorder (MDD)
shows the characteristics of “three highs,” that is, high
prevalence, high recurrence rate, and high disability rate (GBD
2015 Disease and Injury Incidence and Prevalence Collaborators,
2016; Khosravi et al., 2020). From 1990 to 2017, the prevalence of
depression in China increased from 3,224.6 per 100,000 to
39,905/100,000, with an increased rate of 24.7%. Among the
cases, women and adults over 55 years of age are at a high risk of
depression, which is a huge challenge to China’s healthcare (Ren
et al., 2020). Although diverse hypotheses have been suggested,
including monoaminergic deficiency, immune system disorders,
hypothalamic-pituitary-adrenal axis (HPA) unbalance,
neurotrophic factors reduction, and neuroplasticity pathway
impairment, the exact neurobiological mechanism of
depression is still unclear (Dean and Keshavan, 2017; Robson
et al., 2017; Levy et al., 2018). In current clinical practice, most
antidepressants primarily act by targeting the monoamine
neurotransmitter system, such as fluoxetine or venlafaxine.
However, these drugs often lead to obvious adverse effects,
such as fractures, upper gastrointestinal bleeding, adverse drug
reactions, and withdrawal symptoms (Coupland et al., 2018;
Hengartner et al., 2019). Thus, it is necessary to find an
alternative antidepressant with low toxicity and high efficiency.

As we know, TCM has been used in clinic for thousands of
years in China and has played an important role in people’s
health. At present, TCM is still an efficient and reliable resource
for drug discovery (Cheung, 2011; Han et al., 2020). Many studies
have shown that TCM has broad prospects in the prevention and
treatment of major depression disorder (Sun et al., 2018; Ye et al.,
2019). Zhi-Zi-Hou-Po Decoction (ZZHPD), being composed of
the stem, branch, and root barks ofMagnolia officinalis Rehder &
E.H.Wilson (Hou-Po, HP), the ripe fruit of Gardenia jasminoides
J.Ellis (Zhi-Zi, ZZ), and the young fruit of Citrus × aurantium L.
(Zhi-Shi, ZS), is a classic prescription for relieving restlessness
and removing fullness in the TCM masterpiece “Treatise on
Febrile and Miscellaneous Diseases,” compiled by Zhang
Zhongjing (AD 150–219) (Wang and Feng, 2019; Zhang and
Feng, 2020). ZZHPD has often been utilized in clinical practice to
treat mental disorders, especially major depression disorder (Luo
and Feng, 2016). There is accumulating evidence that ZZHPD
can significantly improve depressive symptoms by balancing
energy metabolism, monoaminergic system, and amino acid
metabolism and enhancing hippocampal neurogenesis (Xing
et al., 2015; Xing et al., 2019). In addition, some studies have
found that a single herb of ZZHPD had an antidepressant effect in
animals. Two standardized fractions of Zhi-Zi had an
antidepressant-like effect associated with BDNF signaling in
mice (Ren et al., 2016; Ruan et al., 2019). Acute treatments
with Hou-Po extract could attenuate the forced swim-induced
experimental depression in mice (Nakazawa et al., 2003), and
Zhi-Shi aqueous extract was proved to have an antidepressant
effect in vivo and in vitro (Wu M. et al., 2015). Although the
effects of ZZHPD and the single herb on depression have been

studied, the antidepressant mechanism has not yet been
systematically clarified because of the complexity of ZZHPD
with multiple compositions.

Network pharmacology is a comprehensive approach for
modern TCM research that integrates multiple disciplines
including bioinformatics, systems biology, and traditional
pharmacology (Zhang R. et al., 2019). As a new methodology,
network pharmacology conforms to the holistic view and the
principle of syndrome differentiation and treatment system of
TCM, thus providing different research thoughts and feasible
technical approaches for probing into the underlying mechanism
of Chinese herbal formulae (Banerjee et al., 2019; Yu et al., 2019).

In this context, firstly, we used the UFLC-Q-TOF/MS to
identify the chemical composition of alcohol extracts of
ZZHPD. Next, we mined the potential mechanisms in the
treatment of depression using network pharmacology based on
the identified phytochemical components of ZZHPD. Several
databases were used to collect information in order to predict
the phytochemical compound targets, depression-related
molecular targets, molecular signaling, and network
construction. Finally, a rat depression model induced by
corticosterone injection was established to verify the predicted
antidepressant targets from pharmacology-based analysis
(Figure 1). This study showed that the antidepressant activity
of ZZHPD involves the regulation of the expression of MAOA,
MAOB, DRD2, CREBBP, AKT1, MAPK1, and HTR1A mRNA
levels, as well as the monoaminergic system and cAMP signaling
pathway. The present study was the first to use UFLC-Q-TOF/
MS-based network pharmacology to explore the possible
antidepressant mechanisms of ZZHPD, thereby improving the
understanding of this representative antidepressant herbal
prescription, which will help to extend its further practical
application for patients with depression.

MATERIALS AND METHODS

Materials and Reagents
Reference substance synephrine, geniposide, naringin,
neohesperidin, geniposidic acid, chlorogenic acid, caffeic acid,
hesperidin, rutin, honokiol, magnolol, and deacetyl asperulosidic
acid methyl ester (purity > 98% by HPLC, respectively) were
obtained from Chengdu Munster Biotechnology Co., Ltd.
(Chengdu, Sichuan, China). Genipin 1-gentiobioside (99.1% by
HPLC) was supplied by Shanghai Yuanye Bio-Technology
(Shanghai, China). Formic acid (MS-grade), dopamine (DA),
and serotonin (5-HT) were from Sigma-Aldrich (St. Louis, MO,
United States). The ripe fruit of Gardenia jasminoides J. Ellis was
originally harvested in Hubei and the stem bark of Magnolia
officinalis Rehder and E. H.Wilson and the young fruit ofCitrus ×
aurantium L. were grown in Sichuan, and they were provided by
Beijing Tongrentang Pharmacy (Beijing, China) with batch
numbers 20150301, 20150301, and 150401, respectively, and
were authenticated by Dr. Qian Zhang from the Jiangsu
Province Hospital of Chinese Medicine (Nanjing, Jiangsu,
China). Fluoxetine (Flu) was obtained from Lilly Co., Ltd.
(Suzhou, Jiangsu, China). Corticosterone was supplied by
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Tokyo Chemical Industry Co., Ltd. (Shanghai, China). Methanol,
acetonitrile, and pyridine (MS-grade) were supplied by Merck
Company (Darmstadt, Germany). The ultrapure water was
produced by a Milli-Q purification instrument (Milford, MA,
United States). And other reagents used in the experiment were of
analytical grade and purchased from commercial reagent
companies.

Standard Sample Preparation
Reference standards were precisely weighed using a Sartorius
balance with 1/100,000 accuracy and diluted in methanol to
prepare stock solutions except for hesperidin, which was
dissolved in methanol-pyridine solution (50:50). Before use,
these individual reference stock solutions were mixed
according to an appropriate amount of each standard sample
and then diluted in methanol to obtain reference standard
solution.

Sample Preparation
ZZHPD samples were prepared according to a previously
developed method in our laboratory (Bai et al., 2019). Raw
medicinal materials were crushed into pieces and sieved through
a 40 mesh sieve before extraction. The ethanol extract of ZZHPD
was prepared by reflux extraction method with 75% ethanol two
times (1 h each) with the ratio 1:1.2:1 of Zhi-Zi, Hou-Po, and Zhi-

Shi. The two filtrates were mixed and condensed to 1.2 g of raw
materials per ml alcohol extract. Then, an accurate amount of
1 ml of the alcohol extract and 79 ml of acetonitrile water (50:
50) was mixed and sonicated (250 W, 50 kHz) for 30 min.
Afterward, the herbal samples were diluted with acetonitrile
water (50:50) to 100 ml volume, aliquoted into 1.5 ml test
tubes, and centrifuged twice at high speed of 12,000 rpm for
10 min at 4°C. The supernatant was collected and passed
through 0.22 μm filter membrane and injected with 5 μl for
UFLC-Q-TOF/MS analysis.

LC-TOF/MS Analysis
LC-MS analysis of ZZHPD was implemented on a Shimadzu
UFLC 20ADXR instrument matched with a SIL-20AD-XR
automatic sampler, CTO-20AC column oven, and 20AD-XR
binary pump, and liquid chromatographic analysis was
performed using an Agilent ZORBAX SB-C18 column
(5 μm, 250 mm × 4.6 mm i.d.). The mobile phase,
consisting of acetonitrile (component A) and 0.1% formic
acid water solution (component B), was run at the rate of
1 ml/min. A gradient elution process is as follows: 2–12% A
(0–20 min), 12–20% A (20–40 min), 20–28% A (40–50 min),
28–62% A (50–70 min), and 62–64% A (70–80 min). The
column temperature was maintained at 40°C throughout
the separation process. In addition, an AB SCIEX Triple

FIGURE 1 | Workflow for dissecting the antidepressant mechanisms of ZZHPD on depression.
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TOF™ 5600 equipment (Foster City, CA, United States)
coupled with a mass spectrometer with electrospray ion
source (ESI) was used for qualitative analysis for ZZHPD.
The mass spectrometer was operated in both positive and
negative ion modes with dynamic background subtraction,
high sensitivity modes, and trigger information-dependent
acquisition. The parameters of scan mode were set as follows:
auxiliary gas 60 psi, nebulizer gas 60 psi, curtain gas 35 psi,
ion source temperature 600°C, and spray voltage 4.5 kV in the
positive mode and 4 kV in the negative mode. The ESI mass
spectra were acquired in full-scan mode from 50 to 1,500 Da.
The Peak View™ Software V.2.0 (Foster City, CA,
United States) was used for all the data acquisition and
analysis.

Determination of ZZHPD
The quantitative analysis was performed on an Agilent 1100
system equipped with quaternary pump, autosampler injector,
and diode array detector. The chemical compositions were
separated on a ZORBAX SB-C18 chromatographic column
(250 mm × 4.6 mm, 5 μm). The mobile phase was composed
of acetonitrile and 0.1% formic acid water as above gradient
elution. The flow rate and chromatographic column temperature
were set at 1.0 ml/min and 40°C, respectively. The detection
wavelength was set at 254 nm and the injection volume was
set at 10 μl.

Identification of Chemical Composition
A database containing the information on the chemical
composition of raw materials of ZZHPD was established.
The database included the compound names, molecular
weight, compound formulae, and compound structures
retrieving from the databases including TCMSP (https://
tcmspw.com/tcmsp.php) (Guo et al., 2020), PubMed
(https://www.ncbi.nlm.nih.gov/pubmed), Web of Science
(http://apps.webofknowledge.com), and PubChem (https://
www.ncbi.nlm.nih.gov/pccompound) databases. The
reference solutions were used to obtain MS/MS fragment
ions and retention time under the above-mentioned mass
spectrometry conditions, and the unknown compounds
were analyzed and identified using the XIC Manager
function build in the PeakView software by referring to the
established database and literature retrieval.

Prediction of Potential Targets and
Screening of Depression-Related Targets
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) was
been utilized to collect the canonical SMILES of these
components and was used to foreshadow their molecular
targets on the Swiss Target Prediction platform (www.
swisstargetprediction.ch/) (Gao et al., 2020). Putative targets
were further verified by using the UniProt database (https://
www.uniprot.org/). Depression-related targets were obtained
by using the keyword “Depression” in the GeneCards (www.
genecards.org/) and OMIM databases (www.omim.org/) (Jiang
et al., 2020).

Construction of Component-Target
Network and Protein-Protein
Interaction (PPI)
Component-target network was established by inputting these
potential targets of 31 identified components into the Cytoscape
software (version 3.7.1) (Xie et al., 2021). PPIs were discerned
utilizing the STRING database (https://string-db.org/) (Zhai
et al., 2019). Potential target proteins for the antidepressant
components of ZZHPD were imported into this STRING
database by selecting “Homo sapiens” proteins only. The
final result was saved in TSV format and input into the
Cytoscape software for the construction of PPI mapping.

Pathway Analysis
The Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (Shen et al., 2020) (https://david.ncifcrf.
gov/summary.jsp) was employed for gene ontology (GO) and
Kyoto encyclopedia of genes and genomes (KEGG) pathway
enrichment analyses of the corresponding targets of each of
the identified ZZHPD components. The threshold of p < 0.05
was set, the top 20 of biological processes or pathways were
selected and imported into the RStudio software for plotting data,
and the top 20 pathways were selected to construct the target-
pathway network and associated target proteins to import into
the Cytoscape software. The KEGG Mapper software (https://
www.kegg.jp/kegg/tool/map_pathway1.html) was used to obtain
the antidepressant pathway mapping of the ZZHPD.

Animals and Treatment
Healthy Sprague-Dawley rats (150∼200 g, certificate number
SCXK–(SU) 2014–000) were provided by the Animal
Experimental Center of Nantong University (Nantong
University). Experimental rats were fed on a 12 h light/dark
cyclic lighting schedule in controllable temperature and humidity
conditions, with ad libitum access to food and water. After 7 days
of acclimatization, the rats were randomly assigned into six
groups (8 rats per group), i.e., control group, corticosterone
group (CORT group), corticosterone plus 3 g/kg ZZHPD (CZ-
3 g/kg), corticosterone plus 6 g/kg ZZHPD (CZ-6 g/kg),
corticosterone plus 12 g/kg ZZHPD (CZ-12 g/kg), and
corticosterone plus 20 mg/kg fluoxetine group (CF-20 mg/kg).
As previously described, CORTwas administered subcutaneously
to induce depression at 20 mg/kg once daily for 21 days (Bai et al.,
2018). ZZHPD and fluoxetine were orally administrated each day
30 min prior to the corticosterone injection.

Body Weight Test
Rat body weight was recorded on days 7, 14, and 21 after the
initiation of ZZHPD treatment. The rats were weighed by an
electronic scale and the average values of the two measurements
were recorded.

Sucrose Preference Test
An SPT was performed to evaluate anhedonia based on the
animal’s natural preference for sweets (Liu et al., 2018). All
rats in each group were trained to adapt to 1% sucrose
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solution in two bottles on the 18th day of the experiment and
replace a bottle of sucrose solution with fresh water on the 19th
day. After the adaptability, water and food were deprived for 12 h,
the SPT lasted 4 h (14:00–18:00), and the positions of two bottles
were exchanged at 16:00. Sucrose preference was calculated using
the formula as follows:

Sucrose preference (%) � Sucrose consumption (ml)/[Water
(ml) and Sucrose consumption (ml)] × 100% (Ali et al., 2015).

Forced Swim Test
An FST was done as the previous description but with slight
modification (Bahi et al., 2014). In brief, on day 21 of the
experiment, rats were put into a cylindrical red plastic bucket
filled with 30 cm high room temperature water. The test lasted
6 min and during the last 4 min, and each rat was forced to swim
without touching the bottom of the bucket. The water was
changed with fresh water after every test to reduce the
interference from previous tests.

Hippocampal Samples Collection and
cAMP Level
After forced swim test, the rats were euthanized under anesthesia
with chloral hydrate. After draining the blood from the
abdominal aorta, the whole brain tissue was removed, and the
blood on the brain surface was washed with a precooled
phosphate-buffered saline solution. Then, these bilateral
hippocampi were isolated on an ice bag and stored at −80°C.
The concentrations of cAMP in the hippocampal samples were
detected using a commercial ELISA kit according to the
manufacturer’s instructions (Nanjing Jiancheng Bioengineering
Institute, Nanjing, Jiangsu, China).

LC-MS/MS for 5-HT and Dopamine Levels
The levels of 5-HT and DA in the hippocampal samples were
analyzed using an AB Sciex QTRAP 5500 coupled to a
Prominence™ UFLC system under a multiple reaction
monitoring (MRM) mode. Chromatography was selected on a
Waters XBridge BEH amide column (3.5 μm, 2.1 mm × 100 mm
i.d.) according to the preexperiment results. The mobile phase
consisted of pump A (0.2% formic acid acetonitrile) and pump B
(0.2% formic acid solution) with a flow rate of 0.8 ml/min. The
gradient elution program was as follows: 0–4 min, 95–50% A;
4–8 min, 50–95% A; 8–9 min, 95–95% A. The injection volumes
were 1 μl for 5-HT and DA. The optimal operation conditions
were as follows: source temperature (TEM), 550°C; spray voltage,
5,000 V; curtain gas (CUR), 35 psi; ion source gas 1 (GS 1), 55 psi;
heater gas (GS 2), 55 psi. The Q1, Q3, declustering potential (DP),

dwell time (DT), collision cell exit potential (CXP), and collision
energy (CE) values of 5-HT, DA, and isoproterenol (internal
standard, IS) were optimally selected by Applied Biosystems/
MDS Sciex Analyst software (version 1.5.2). The MRM
transitions at 177.1 → 160.1, 154.1 → 137.1, and 212.2 →
194.1 were selected to analyze 5-HT, DA, and IS, and the
suitable multiple reaction monitoring values are listed in Table 1.

Hippocampal tissues were accurately weighed and
homogenized in PBS solution. These samples were centrifuged
at high speed of 12,000 rpm after vortexing for 3 min. 50 μl
supernatant was placed in an EP tube, and then 150 μl of 1%
formic acid in acetonitrile containing 800 ng/ml isoproterenol
was also added and vortex-mixed thoroughly for 3 min. After
another high-speed centrifugation, 100 μl aliquot of the solution
was transferred to an autosampler vial and analyzed using LC-
MS/MS system.

Quantitative RT-qPCR Analysis
The total mRNA was extracted from the hippocampal tissues
using TRIzol following the instructions provided by the
manufacturer. RNA purity between 1.8 and 2.1 was considered
acceptable as indicated by the ratio of absorbance at 260 and
280 nm using a UV spectrophotometer. RNA was reverse-
transcribed to cDNA carried out using the PrimeScript RT
reagent kit (TaKaRa) with gDNA Eraser. The reaction was
performed on an ABI StepOnePlus Real-Time PCR System.
The PCR programs are as follows 95°C for the 30 s, 95°C for
5 s, and 60°C for 60 s. Forty cycles of PCR were performed, and
relative gene expression levels were calculated using the 2−ΔΔCt

method after normalization to β-actin. The primer sequences are
shown in Table 2.

Western Blot Analysis
Total proteins were extracted from the hippocampal tissue using
RIPA lysis buffer containing 1× protease and phosphatase

TABLE 1 | MRM parameters of 5-HT, DA and internal standards (IS).

Analyte Precursor ion
(m/z)

Product ion
(m/z)

Dwell time
(ms)

DP (V) CE (ev) CXP (V)

5-HT 177.1 160.1 50 130 17 16
DA 154.1 137.1 50 52 17 14
IS 212.2 194.1 50 130 14 14

TABLE 2 | The primers for RT-PCR.

Genes Forward primer (5-39) Reverse primer (5-39)

MAOA ACTGCTCGGGAATTTGCGTA CAAATTTCCGTTCCTGGCCG
MAOB GGGACAGAGTGAAGCTGGAG CCCAAAGGCACACGAGTAAT
DRD2 CATTGTCTGGGTCCTGTCCT GACCAGCAGAGTGACGATGA
CREBBP ATCCCATAGACCCCAGTTCC CGGCTGCTGATCTGTTGTTA
AKT1 ACTCATTCCAGACCCACGAC CCGGTACACCACGTTCTTCT
MAPK1 TCTCCCGCACAAAAATAAGG GCCAGAGCCTGTTCAACTTC
HTR1A TGTTGCTCATGCTGGTTCTC CCGACGAAGTTCCTAAGCTG
GRIN2B GTGAGAGCTCCTTTGCCAAC TGAAGCAAGCACTGGTCATC
β-Actin AGCCATGTACGTAGCCATCC CTCTCAGCTGTGGTGGTGAA
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inhibitor cocktail. The proteins were loaded on a 12% SDS-
PAGE gel and transferred onto 0.45 µm PVDF membrane
(Millipore, Billerica, MA, United States). After blocking with
5% nonfat dried milk for 1 h at room temperature, the
membranes were incubated with BDNF (1:1,000; Abcam,
Cambridge, MA, United States), PKA (1:2,000; CST, Danvers,
MA, United States), CREB (1:2,000; CST, Danvers, MA,
United States), and p-CREB (1:2,000; CST, Danvers, MA,
United States) approximately 12 h at 4°C. Subsequently, the
membranes were rinsed thrice with PBS/0.1% Tween-20 (PBST)
and then exposed to secondary antibodies 1 h at room
temperature. The protein blots were washed with PBST, and
immunoreactive signals were visualized by enhanced
chemiluminescence equipment. The band densities of the
proteins were measured by Image Lab software (Bio-Rad
Laboratories, Hercules, CA, United States).

Statistical Analyses
SPSS 18.0 (IBM, Chicago, IL, United States) was used for testing
the differences between multiple groups by ANOVA. A value of
p < 0.05 was considered statistically significant. Figures were

prepared using GraphPad Prism 6.0 software (San Diego, CA,
United States).

RESULTS

Ingredient Identification of ZZHPD Based
on LC-TOF/MS
In order to obtain the high sensitivity and optimized
chromatographic conditions of alcohol extracts of ZZHPD,
several mobile phase systems including methanol-0.1% formic
acid water, acetonitrile-0.1% formic acid water, methanol-water,
and acetonitrile water were selected. The results showed that
acetonitrile water with 0.1% formic acid had the best separation
and abundant signal response regardless of positive and negative
ion scanning modes in the optimized gradient mode. Total ion
chromatograms of alcohol extracts of ZZHPD in the positive and
negative ion modes are represented in Supplementary Figure S1,
and the extracted ion chromatographs (EIC) of the qualitative
samples of ZZHPD are presented in Supplementary Figures
S2–S32. In light of the chromatographic peak retention time,

TABLE 3 | Compounds identified in the alcohol extracts of ZZHPD by UFLC-TOF/MS.

Peak
no.

RT
(min)

Adduct Extraction
mass
(Da)

Found
mass
(Da)

Error
(ppm)

MS/MS Formula Identification Origin

1 2.68 +H 168.10191 168.1018 −0.9 150, 135, 107, 91 C9H13NO2 Synephrine* ZS
2 11.41 −H 391.12459 391.12322 −3.5 229, 211,193,

167, 149
C16H24O11 Shanzhiside (Wu H. et al., 2015) ZZ

3 11.94 −H 373.11402 373.11209 −5.2 211, 193, 167,
149, 123

C16H22O10 Geniposidic acid* ZZ

4 13.16 −H 403.12459 403.12221 −5.9 241, 223, 191, 139 C17H24O11 Deacetyl asperulosidic acid methyl ester (Wang
et al., 2015)

ZZ

5 14.2 −H 389.10894 389.10669 −5.8 345, 183, 139 C16H22O11 Deacetylasperulosidic acid* ZZ
6 14.35 −H 403.12459 403.12209 −6.2 371,241, 223,127 C17H24O11 Gardenoside (Wu H. et al., 2015) ZZ
7 15.41 −H 405.14024 405.13759 −6.5 359, 197, 153 C17H26O11 Shanzhiside methylester (Yue et al., 2013) ZZ
8 15.73 −H 403.12459 403.12328 −3.2 241, 223,139 C17H24O11 Feretoside (Wang et al., 2015) ZZ
9 19.17 −H 353.08781 353.08624 −4.4 191 C16H18O9 Chlorogenic acid* ZZ
10 20.9 −H 549.18249 549.17963 −5.2 225, 207, 123 C23H34O15 Genipin 1-gentiobioside* ZZ
11 21.04 −H 179.03498 179.03486 −0.7 135 C9H8O4 Caffeic acid* ZZ
12 24.18 −H 387.12967 387.12733 −6.1 225, 207, 147 C17H24O10 Geniposide* ZZ
13 24.19 −H 225.07685 225.07675 −0.4 207, 147, 101 C11H14O5 Genipin (Jia et al., 2019) ZZ
14 34.88 +H 611.16066 611.1601 −1 303 C27H30O16 Rutin* ZZ
15 40.02 +H 581.18648 581.1853 −2 419, 273, 435 C27H32O14 Narirutin (Ma et al., 2011) ZS
16 42.16 +H 581.18648 581.1855 −1.6 273, 153 C27H32O14 Naringin* ZS
17 42.99 −H 577.15628 577.14988 −1.1 269, 577 C27H30O14 Rhoifolin (Li et al., 2013) ZS
18 44.07 +H 611.19705 611.1954 −2.7 465, 449, 303, 413 C28H34O15 Hesperidin* ZS
19 45.79 +H 611.19705 611.1954 −2.8 465, 449, 303 C28H34O15 Neohesperidin* ZS
20 54.04 +H 595.20213 595.2004 −2.9 287, 153 C28H34O14 Poncirin (Ma et al., 2011) ZS
21 56.84 −H 271.0612 271.05906 −7.9 177, 151, 119 C15H12O5 Naringenin (Li et al., 2013) ZS
22 60.91 +H 373.12818 373.1274 −2.1 358, 343, 315, 181 C20H20O7 Isosinensetin (Wang et al., 2007) ZS
23 61.68 +H 217.04954 217.0492 −1.5 202, 174, 146 C12H8O4 Bergapten (Liao et al., 2018) ZS
24 62.43 +H 473.21699 473.2156 −3.1 369, 187, 161 C26H32O8 Deacetylnomilin (Tian and Schwartz, 2003) ZS
25 63.2 +H 373.12818 373.1273 −2.3 357, 343, 315 C20H20O7 Sinensetin (Wang et al., 2007) ZS
26 63.73 +H 471.20134 471.2001 −2.6 425, 161 C26H30O8 Limonin (Tian and Schwartz, 2003) ZS
27 65.61 +H 403.13874 403.1376 −2.7 388, 373, 358, 330 C21H22O8 Nobiletin (Wang et al., 2007) ZS
28 66.05 +H 515.22756 515.2255 −4.1 469, 161 C28H34O9 Nomilin (Cai et al., 2016) ZS
29 68.32 +H 373.12818 373.1271 −2.8 358, 343, 328, 300 C20H20O7 Tangeretin (Wang et al., 2007) ZS
30 71.07 +H 267.13796 267.137 −3.5 239, 226, 197, 165 C18H18O2 Honokiol* HP
31 74.03 +H 267.13796 267.1372 −2.7 239, 226, 197, 165 C18H18O2 Magnolol* HP

* Identifications confirmed with standard compound. Notes: HP, Magnolia officinalis; ZZ, Gardenia jasminoides; ZS, Citrus × aurantium.
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relative molecular mass, typical fragment ions, and structural
characteristics, as well as comparison to the reference standards
and literature searching, a total of 31 compounds were identified
in ZZHPD samples. Of them, 13 compounds were
unambiguously confirmed by matching the retention time and
fragment ions between the samples and reference chemicals. In
addition, the data of ZZHPD compounds including retention
time, extraction mass, error values, and MS/MS fragment ion
were used to analyze the structure of unknown chemical
composition, as shown in Table 3.

Quantitative Analysis of Seven Compounds
As shown in Supplementary Figure S33, seven compounds in
ZZHPD showed a peak shape and reached better baseline

separation in 80 min under optimum conditions. They were
genipin 1-gentiobioside 2.45 mg/g, geniposide 12.32 mg/g,
naringin 21.90 mg/g, hesperidin 1.77 mg/g, neohesperidin
22.17 mg/g, honokiol 1.49 mg/g, and magnolol 4.44 mg/g in
ZZHPD.

Predicted Targets and Component-Target
Network
To understand the pharmacological activities of the identified
components in the alcohol extracts, potential molecule targets of
these components were predicted using the Swiss Target
Prediction platform (Gu et al., 2020; Zhang et al., 2020). A
total of 1,484 putative targets closely related to 31 identified

FIGURE 2 | The network construction for ZZHPD components and targets. (A)Composition-target network, and (B) PPI network related to the active components
of ZZHPD.
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components were retrieved, and 514 targets were finally obtained
after removing duplicates (Supplementary Table S1). Furthermore,
527 depression-related target genes were pinpointed by the
GeneCards and OMIM databases after deleting duplicates. By
comparing these depression-related target genes, 80 genes that
may be involved in the antidepressant activity of ZZHPD were
recorded. Figure 2A shows the component-target network diagram
generated by the Cytoscape software. The network involved 31
chemical components, 80 targets, 111 nodes, and 242 edges. The
network characteristics included the network density of 0.040, the
characteristic path length of 3.295, an average number of adjacent
nodes of 4.360, the network heterogeneity of 1.114, and the network
centrality of 0.210. The chemical components with a higher degree
value were honokiol (degree � 27), deacetylnomilin (degree � 21),
nomilin (degree � 21), magnolol (degree � 18), synephrine (degree�
17), and limonin (degree � 17), indicating that these components are
important for the therapeutic effect of ZZHPD on depression.

PPI Network
To further explore the complex mechanism of action of ZZHPD,
the PPI relationship was further evaluated by using the Cytoscape
software and STRING database to create a PPI network. As shown
in Figure 2B, the constructed PPI network had 80 targets, 80
nodes, and 700 edges. The size of the node degree value is indicated
by the size and color of the nodes; that is, the bigger the node and

the closer the color to red, the higher the node degree value. The
results showed the network density of 0.222, the characteristic path
length of 1.95, an average number of adjacent nodes of 17.5, the
network heterogeneity of 0.542, and the network centrality of
0.305. The node degrees of the genes, AKT1, APP, GRIN2B,
CASP3, VEGFA, MAPK1, GRM5, and DRD2, were greater
than 30, suggesting that these genes as potential targets are
involved in the treatment of depression with ZZHPD.

Gene Function and Pathway Analysis
To test whether active components in the alcohol extracts of
ZZHPD can modulate target gene-related signaling pathways,
DAVID online database was utilized to analyze GO and KEGG
pathway enrichment in the biological system networks (Ou et al.,
2020). Figures 3A,B showed the enriched GO and KEGG
analyses of 80 target genes of 31 active components,
respectively (Supplementary Tables S2, S3). The top 20
biological processes or pathways were analyzed and shown. By
importing the first 20 KEGG pathways and associated target
proteins into the Cytoscape software, the target-pathway network
was generated (Figure 3C).

GO enrichment analysis revealed three aspects: cellular
components, molecular functions, and biological processes.
Cellular components were mostly related to the integral
component of plasma membrane, postsynaptic membrane,

FIGURE 3 | Network pharmacology analysis of thirty-one validated constituents of ZZHPD. (A) GO enrichment analysis, (B) KEGG enrichment analysis, and (C)
target-pathway network in the antidepression effects of ZZHPD.
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axon, neuron projection, and GABA-A receptor complex. The
biological processes mainly included the positive regulation of
peptidyl-serine phosphorylation, prepulse inhibition, negative
regulation of adenylate cyclase activity, chemical synaptic
transmission, protein phosphorylation, and intracellular signal
transduction. Molecular functions were chiefly associated with
serine/threonine kinase activity, ATP binding, and serotonin
binding protein. KEGG analysis indicated the pathways
predominantly involved in the antidepressant effects of
ZZHPD, including serotonergic synapse, neuroactive ligand-
receptor interaction, dopaminergic synapse, cAMP signaling
pathway, and mTOR signaling pathway.

Effects of ZZHPD on Body Weight, Sucrose
Preference Test, and Forced Swim Test
After subcutaneous injection of CORT for 21 consecutive days,
the model group showed obvious depressive behavior. Compared
with the control group, the CORT group had a marked reduction
in body weight and sucrose intake rate (Ps < 0.01) and a
significantly longer immobility time during the FST
experiment (p < 0.01), indicating that the CORT-induced

depression model was successfully constructed. The ANOVA
test showed that ZZHPD produced significant effects on SPT and
FST in rats. As shown in Figure 4, ZZHPD treatment at the doses
of 6 and 12 g/kg/d (Ps < 0.01) significantly increased body weight
and sucrose uptake rate (Ps < 0.01). In addition, ZZHPD
decreased the immobility time of FST versus the CORT group.

Effects of ZZHPD on cAMP, 5-HT, and
Dopamine Levels of Hippocampus
Varying cAMP levels in hippocampal tissue were shown in
Figure 5. ZZHPD at a low dose (3 g/kg) had no effect on
cAMP levels, while medium and high doses of ZZHPD (6 and
12 g/kg; Ps < 0.05) significantly increased the cAMP levels in the
hippocampus compared with the model group. As expected, the
positive control (fluoxetine) significantly increased the cAMP
levels (p < 0.01). Hippocampal 5-HT and DA levels in the model
group were significantly lower than those in the control group,
but they were significantly increased following ZZHPD treatment
at a high dose of ZZHPD (p < 0.05). In addition, elevated levels of
5-HT and DA were observed with fluoxetine treatment
(Ps < 0.01).

FIGURE 4 | The synergetic antidepressant effects of ZZHPD in rats subjected to CORT administration. (A) Body weight, (B) sucrose consumption, and (C)
immobility time in the forced swim test. All data were represented as the mean ± SD. n � 8. Compared with model group, *p < 0.05 and **p < 0.01; compared with the
control group, #p < 0.05 ##p < 0.01.

FIGURE 5 | Effects of ZZHPD on cAMP, 5-HT, and DA levels in hippocampi of rats exposed to CORT. All data were represented as the mean ± SD. n � 8. Difference
was analyzed using one-way ANOVA followed by Dunnett’s post hoc test, *p < 0.05 and **p < 0.01 compared withmodel group; #p < 0.05 and ##p < 0.01 compared with
the control group.
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RT-qPCR Detection of Related Gene
Expression
The results of RT-qPCR indicated that the expression levels of
CREBBP, AKT1, and HTR1A were significantly lower, while
those of MAOA, MAOB, DRD2, and MAPK1 were higher in
the model group than in the control group. As shown in Figure 6,
the group undergoing ZZHPD treatment showed a marked
increase in CREBBP, AKT1, and HTR1A mRNA levels.
Meanwhile, the mRNA levels expression of MAOA, MAOB,

DRD2, and MAPK1 in the ZZHPD-treated group were
significantly attenuated compared with those in the CORT group.

Effects of ZZHPD on Protein Expression of
PKA, BDNF, and p-CREB
In order to further explore the antidepressant mechanism of
ZZHPD, cAMP signaling pathway was studied by detecting the
protein expression levels of PKA and BDNF and the

FIGURE 6 | Effects of oral administration of ZZHPD on eight genes detected by RT-qPCR. All data were expressed as the mean ± SD. n � 3. *p < 0.05 and **p <
0.01 compared with model group; #p < 0.05 and ##p < 0.01 compared with the control group.

FIGURE 7 | Effects of ZZHPD on PKA, CREB, p-CREB, and BDNF protein expression in the hippocampus of CORT-treated rats. All data were expressed as the
mean ± SD. n � 3. *p < 0.05 and **p < 0.01 compared with model group; #p < 0.05 and ##p < 0.01 compared with the control group.
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phosphorylation status of CREB by WB. As shown in Figure 7,
the model group rats showed marked downregulation of the
expression levels of PKA, BDNF, and phosphorylated CREB
compared with the control group. Meanwhile, the protein
expression levels of PKA, p-CREB, and BDNF increased
significantly following treatment with medium and high doses
of ZZHPD.

DISCUSSION

MDD has complex and multifactorial etiology related to
psychological, physical, emotional, and social impairment
(Leubner and Hinterberger, 2017; Li et al., 2021). At present,
effective treatments for depression are very limited, and TCM is
gaining more attention for the clinical therapy of depression
(Wang et al., 2019). However, the clinical effects of TCM are
inconsistent and difficult to evaluate due to variable composition
resulting from a nonstandard preparation process in certain
settings. Moreover, the efficacy of TCM depends largely on the
combination of multiple active compounds, rather than on any
single individual ingredient. These issues pose a big challenge for
the evaluation of the clinical efficacy of TCM and for
understanding of the material basis and molecular
mechanisms responsible for its therapeutic efficacy.
Fortunately, network pharmacology has evolved from systems
biology and multidirectional pharmacology, thus revolutionizing
the practice of TCM by shifting the paradigm of “one drug, one
target, one disease” towards the model of “multicomponent,
multitarget, multidisease,” therefore making it possible to
uncover the complex relationship between active components
and their targets (Wang J. et al., 2018; Yu et al., 2018; Sun et al.,
2021).

ZZHPD is an effective TCM formula used for the treatment of
depression. Yao et al. utilized FST and TST to assess the
antidepressant effect of ZZHPD after the last administration.
The results demonstrated that the antidepressant-like mechanism
of ZZHPD was related to the monoaminergic system (Yao et al.,
2013). However, the chemical composition and the interactions
of herbs in ZZHPD during codecoction are unclear. Liu et al.
developed an effectively integrated method based on HPLC-MS
coupled with chemometrics to identify the compounds in
ZZHPD and to reveal the potential physicochemical changes
during decoction (Liu et al., 2016). Our study used the UFLC-Q-
TOF/MS to identify the chemical composition of alcohol extracts
of ZZHPD and mined the potential mechanism in the treatment
of depression using network pharmacology. By network analysis,
our study obtained an initial understanding of potential
molecular targets, major signaling pathways, important
regulatory processes, and associated cellular components in the
treatment of depression with ZZHPD by network analysis. More
specifically, the analysis of network pharmacology data suggested
that the antidepressant effects of ZZHPD were largely mediated
by the regulation of the cAMP signaling pathway and 5-HT/DA
synaptic transmission. Indeed, the cAMP/PKA/BDNF signaling
pathway is one of the most important signaling pathways
involved in antidepressant therapy. cAMP could mediate the

protein kinase A-cAMP response element-binding (CREB)
signaling pathway as an important second messenger (Wang
X. L. et al., 2018). CREB, an important transcriptional element
necessary for the survival of neurons, is mainly activated at a
particular residue, serine 133 (Ser133). And BDNF is the major
transcriptional product of CREB phosphorylation (Chen et al.,
2019; Yu et al., 2021), which acts on certain neurons of the central
nervous system to support the survival of existing neurons and
encourage the growth and differentiation of new neurons and
synapses (Kim et al., 2017; Bai et al., 2018). Meanwhile, preclinical
and clinical trials have indicated that the related proteins of
cAMP/PKA/CREB are downregulated in depression and
upregulated by antidepressant therapy (Li et al., 2009; Fujita
et al., 2017; Lian et al., 2018).

In addition, several key components including magnolol,
synephrine, honokiol, and limonin, may largely contribute to
the antidepressant efficacy of ZZHPD by network
pharmacology analysis. These active compounds share similar
pharmacological effects, although each has unique biological
activities. For example, magnolol—the main component of
Magnolia officinalis—has antioxidative, antitumor, and
antidepressant effects via suppressing neuroinflammation and
decreasing the levels of p-ERK, GSK3β, and Smad (Cheng et al.,
2018; Chei et al., 2019), synephrine has antitumor and
antidepressant properties through inhibition of Galectin-3-AKT/
ERK signaling and the stimulation of α1 adrenoceptors (Song et al.,
1996; Xu et al., 2018), and honokiol has been proven to protect
against inflammation and depression via suppressing the activation
of TXNIP-NLRP3 inflammasome and NF-κB signaling pathway,
reducing the levels of related proinflammatory cytokines (Tang
et al., 2018; Xia et al., 2019; Zhang B. et al., 2019), while limonin has
been recognized to have a medicinal value with antioxidant and
tumor-inhibiting capacities (Breksa and Manners, 2006; Su et al.,
2019). Therefore, the above-mentioned literature supports the idea
that these natural products are thought to work synergistically to
endow ZZHPD with effective antidepressant effects.

In animal behavior experiments, including body weight test,
SPT, and FST, ZZHPD showed antidepressant effects after
3 weeks of treatment. Notably, ZZHPD effectively regulated
MAOA, MAOB, DRD2, CREBBP, AKT1, MAPK1, and
HTR1A mRNA levels and upregulated BDNF expression by
the cAMP signal pathway, involving the phosphorylation of
transcription factor CREB. Meanwhile, hippocampal 5-HT and
DA contents were obviously improved with ZZHPD treatment.
These findings were in accordance with the predictive results
derived from the network analysis.

CONCLUSION

This study systematically evaluated the antidepressant
mechanism of ZZHPD by network pharmacology analysis and
experimental verification. UFLC-Q-TOF/MS-based analytical
tool was used to profile the phytochemicals of ZZHPD,
resulting in the identification of a total of 31 active
compounds in the alcohol extracts of ZZHPD. The KEGG
pathway enrichment indicated that the antidepressant
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mechanism of ZZHPD was mainly involved in the dopaminergic
synapse, serotonin synapse, and cAMP signaling pathway. The
subsequent in vivo experiments verified that the antidepressant
mechanism of ZZHPD was consistent with the predictions of
network pharmacology. In conclusion, we demonstrated that the
antidepressant mechanism of ZZHPD is based on
multicomponent, multitarget, and system regulation.
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