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Abstract: Background: Many studies link G protein-coupled receptors (GPCRs) to cancer. Some
endocrine tumors are unresponsive to standard treatment and/or require long-term and poorly toler-
ated treatment. This study explored, by bioinformatics analysis, the tumoral profiling of the GPCR
transcriptome to identify potential targets in these tumors aiming at drug repurposing. Methods:
We explored the GPCR differentially expressed genes (DEGs) from public datasets (Gene Expression
Omnibus (GEO) database and The Cancer Genome Atlas (TCGA)). The GEO datasets were available
for two medullary thyroid cancers (MTCs), eighty-seven pheochromocytomas (PHEOs), sixty-one
paragangliomas (PGLs), forty-seven pituitary adenomas and one-hundred-fifty adrenocortical can-
cers (ACCs). The TCGA dataset covered 92 ACCs. We identified GPCRs targeted by approved drugs
from pharmacological databases (ChEMBL and DrugBank). Results: The profiling of dysregulated
GPCRs was tumor specific. In MTC, we found 14 GPCR DEGs, including an upregulation of the
dopamine receptor (DRD2) and adenosine receptor (ADORA2B), which were the target of many drugs.
In PGL, seven GPCR genes were downregulated, including vasopressin receptor (AVPR1A) and PTH
receptor (PTH1R), which were targeted by approved drugs. In ACC, PTH1R was also downregulated
in both the GEO and TCGA datasets and was the target of osteoporosis drugs. Conclusions: We
highlight specific GPCR signatures across the major endocrine tumors. These data could help to
identify new opportunities for drug repurposing.

Keywords: G protein-coupled receptors; endocrine tumors; paraganglioma; pheochromocytoma;
adrenocortical cancer; medullary thyroid cancer; pituitary adenoma; drug repurposing

1. Introduction

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors
involved in many types of cellular responses. The GPCR family represents approximately
4% of the human genes, with more than 800 members [1]. GPCRs are involved in im-
portant functions, such as cardiac function, hormone regulation, immune responses and
neurotransmission. Abnormal expression or activity is associated with several human
diseases [2]. As a result, GPCRs are considered as therapeutic targets in many diseases.
Drugs that target GPCRs account for about 34% of the current medicines, making it the
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largest family of validated pharmacological targets [3], with cumulative sales for 2011 to
2015 of $890 billion in the United States [4]. The pharmacological targeting of GPCRs is a
well-established approach for treatment in many human diseases.

Recent evidence supports the involvement of many GPCRs and their ligands in
controlling the initiation and progression of tumors (cell proliferation, metastasis, adhesion
or angiogenesis) [5–7]. Recently, many studies revealed that GPCRs are mutated and/or
their expression dysregulated in multiple cancers [5,8]. Therefore, GPCRs can be considered
as attractive targets for novel therapeutic treatments of tumors or for the repurposing of
approved drugs with a target-based approach.

Bioinformatics approaches have allowed for the identification of potential therapeutic
and/or prognostic targets in cancer. The Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases are the most frequently used to identify differentially
expressed genes (DEGs). GEO is a database repository of microarrays gene expression data.
The Cancer Genome Atlas (TCGA) is a project that has generated publicly available genomic
and clinical data for various types of cancer [9]. GPCRomic studies have been conducted for
the most frequent cancers, such as prostate or breast cancer [7,10,11]. In addition, the team
of P. Insel focused more specifically on pancreatic adenocarcinoma [10,12,13]. Moreover,
we recently established an atlas of GPCRs in radioactive iodine-resistant thyroid cancer by
compiling data from the GEO database, TCGA cohort and our transcriptomic analysis [14].
However, the dysregulation of GPCR expression has not been investigated in depth in
other endocrine tumors.

Endocrine tumors include tumors in glands that produce hormones (thyroid, parathy-
roid, pituitary, adrenal gland) and those originated from neuroendocrine cells. Medullary
thyroid cancer (MTC) is a neuroendocrine tumor and arises from parafollicular cells or
C cells. For patients with progressive and multi-metastatic MTC, the first-line systemic
treatment is represented by multiple tyrosine kinase inhibitors (cabozantinib, vandetanib).
These treatments have shown transient and/or partial efficacy with numerous side effects.
However, there is a lack of evidence for the use of other therapies, such as chemotherapy
or metabolic radiotherapy. Pituitary neuroendocrine tumors (PitNETs), traditionally desig-
nated as pituitary adenomas, include different groups of neoplasms of anterior pituitary
cell origin [15]. They are classified according to the expression pattern of anterior pituitary
hormones, the hormone hypersecretion and the tumor mass [16]. PitNETs are mostly well
controlled after surgery. However, these tumors may exhibit aggressive behavior, with
resistance to conventional treatments. The current chemotherapy, temozolomide, is effec-
tive in only one-third of the patients [17]. The same is true for primary malignant adrenal
tumors, including pheochromocytoma (PHEO) and adrenocortical cancer (ACC). Pheochro-
mocytomas (PHEOs) are tumors derived from the neural crest in the adrenal medulla.
They are grouped with paragangliomas (PGLs), which share the same histological origin
but are located in the paraganglia of the autonomic nervous system. The management
of metastatic PHEO and PGL remains a major challenge since, to date, even though they
represent less than 25% of cases, there are no curative treatment options [18]. For advanced
ACC, besides surgical resection and loco-regional treatments, treatment with mitotane
combined with chemotherapy (etoposide, doxorubicin and cisplatin) is often proposed
according to prognostic parameters [19]. This treatment is both limited by systemic toxicity
and by transient or partial efficacy.

These neuroendocrine tumors (NETs) share some features, such as slow growth and
poor response to standard chemotherapies. To date, the somatostatine/somatostatine recep-
tor (SSTR) is the only hormone-GPCR with an approved indication in the treatment of NETs.
The identification of new therapeutic targets is required. We, therefore, used a GPCRomic
approach to identify differentially expressed GPCRs genes in several endocrine tumors in
order to identify GPCRs that may be new therapeutic targets for drug repurposing.
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2. Materials and Methods
2.1. Collection of GEO Datasets and TCGA Data

To comprehensively evaluate GPCRs expression between endocrine tumors and non-
tumoral tissues, we incorporated the expression data of GPCRs from GEO. We selected
four types of endocrine tumors: medullary thyroid cancer (MTC), pituitary neuroendocrine
tumors (PitNETs), pheochromocytoma (PHEO) and paraganglioma (PGL) and adrenocor-
tical carcinoma (ACC). An electronic search of the GEO databases was carried out with
the following key terms: “medullary thyroid”, “adrenocortical”, “pituitary” “pheochromo-
cytoma”, “paraganglioma”, AND “cancer OR carcinoma OR tumor”. The GEO datasets
published before 1 April 2020 were included. We filtered data by ‘Expression profiling by
array’ in ‘homo sapiens’. The reference lists were manually reviewed for further identification
of relevant studies. We selected the studies with the following inclusion criteria: studies
contained mRNA expression data in tumoral and non-tumoral tissues in previous cited
endocrine tumor. The exclusion criteria were: cell lines, xenograft studies, miRNA analyses,
no comparison with normal tissue, duplicate. The microarray datasets were downloaded
from the GEO database for each endocrine tumor and are summarized in Table 1.

To validate transcriptomic analysis, we also obtained the GPCRs expression profile
of human ACC from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/,
accessed on 17 December 2021) and adrenal normal tissues from The Genotype-Tissue
Expression Database (GTEX, https://gtexportal.org/home/, accessed on 17 December
2021) with online analysis tool (https://insellab.github.io/, accessed on 17 December 2021).
Data for other endocrine tumors were not available.

https://cancergenome.nih.gov/
https://gtexportal.org/home/
https://insellab.github.io/
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Table 1. Gene Expression Datasets from GEO Database.

Tumor Type Series Contributors Samples Platforms

Medullary Thyroid Cancer GSE27155 Giordano TJ [20,21] 2 MTC vs. 4 normal GPL96: Affymetrix Human Genome U133A Array

Pituitary Neuroendocrine Tumor

GSE36314 Oyesiku NM [22] 4 PitNET vs. 3 normal GPL8300: Affymetrix Human Genome U95 Version 2 Array

GSE119063 Wu Z (unpublished) 5 PitNET vs. 4 normal GPL13607: Agilent-028004 SurePrint G3 Human GE 8 × 60 K Microarray

GSE51618 Feng J (unpublished) 8 PitNET vs. 3 normal GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F

GSE26966 Donsom AM [23] 14 PitNET vs. 9 normal GPL570: Affymetrix Human Genome U133 Plus 2.0 Array

GSE63357 Barry S [24–26] 16 PitNET vs. 5 normal GPL570: Affymetrix Human Genome U133 Plus 2.0 Array

Pheochromocytoma

GSE50442 Shankavaram U (unpublished) 3 PHEO vs. 8 normal GPL6244: Affymetrix Human Gene 1.0 ST Array

GSE39716 Shankavaram U [27–29] 21 PHEO vs. 8 normal GPL6244: Affymetrix Human Gene 1.0 ST Array

GSE19422 López-Jiménez E [30] 61 PHEO vs. 6 normal GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F

GSE60459 Choi Y-L (unpublished) 2 PHEO vs. 3 normal GPL13607: Agilent-028004 SurePrint G3 Human GE 8x60K Microarray

Paraganglioma

GSE50442 Shankavaram U (unpublished) 4 PGL vs. 8 normal GPL6244: Affymetrix Human Gene 1.0 ST Array

GSE39716 Shankavaram U [27–29] 24 PGL vs. 8 normal GPL6244: Affymetrix Human Gene 1.0 ST Array

GSE19422 López-Jiménez E [30] 23 PGL vs. 6 normal GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F

GSE60459 Choi Y-L (unpublished) 10 PGL vs. 3 normal GPL13607: Agilent-028004 SurePrint G3 Human GE 8x60K Microarray

GSE90713 Fraber JM (unpublished) 57 ACC vs. 4 normal GPL15207: Affymetrix Human Gene Expression Array

GSE14922 Szabó PM [31] 4 ACC vs. 4 normal GPL6480: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F

GSE12368 Soon PS [32] 12 ACC vs. 6 normal GPL570: Affymetrix Human Genome U133 Plus 2.0 Array

GSE19750 Bussey KJ [33,34] 44 ACC vs. 4 normal GPL570: Affymetrix Human Genome U133 Plus 2.0 Array

GSE33371 Heanton JH [35] 33 ACC vs. 10 normal GPL570: Affymetrix Human Genome U133 Plus 2.0 Array

Abbreviations: Medullary thyroid cancer (MTC), Pheochromocytoma (PHEO), Paraganglioma (PGL), Pituitary neuroendocrine tumor (PitNET), Adrenocortical carcinoma (ACC).
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2.2. Identification of Differentially Expressed Genes

DEGs between tumoral and normal samples were identified using the GEO2R web ap-
plication (http://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/geo/geo2r/, accessed
on 7 January 2022). GEO2R is an interactive online tool, which compares two groups of
samples (i.e., normal vs. tumoral) to obtain genes with different expressions under the same
experimental conditions. It uses Bioconductor R packages to transform and analyze GEO
data with GEO query and limma analyses [36]. We applied adjustment to the P-values with
the Benjamini & Hochberg method (false discovery rate, FDR) and a log2 transformation to
the data. We saved the NCBI annotations where possible. Then, we filtered, from the set of
genes studied, a list of 396 GPCRs (Table S1). The DEGs with an adjusted p < 0.05 were
considered as the cut-off criteria. Then, to strengthen the significance of the data, we chose
to select DEGs obtained from all independent datasets of tumor tissue samples rather than
combine the GSE data, as in previous publications [11,37]. We applied for Venn software
online (http://www.interactivenn.net/, accessed on 26 June 2020) to obtain the common
DEGs in all independent cohorts for each endocrine tumor [38].

2.3. Identification of GPCRs as Targets for Approved Drugs

We evaluated drug targets among GPCRs differentially expressed between normal
and tumoral samples and the list of approved drugs for each of these receptors. This was
conducted using two pharmacological databases: ChEMBL and DrugBank. DrugBank is a
clinically oriented drug database that provides information about drug and drug action
for more than 500,000 drugs [39]. ChEMBL is an open database containing information
extracted from the medicinal chemistry literature regarding the compounds tested and
their primary target [40]. Approved drugs were verified with those listed by the Food
and Drug Administration (FDA) (https://www.fda.gov, accessed on 3 January 2022) and
by the European Medicines Agency (EMA) (https://www.ema.europa.eu, accessed on
3 January 2022).

2.4. Survival Analysis

The GEPIA database (http://gepia.cancer-pku.cn, accessed on 14 February 2022) was
used for survival analysis of the dysregulated GPCR genes. Data from TCGA-ACC project
(88 patients with ACC) were analyzed. To analyze the prognostic value of GPCR genes,
the patient samples were split into 2 groups according to the median expression of the
biomarker. The two patient cohorts were compared by a Kaplan–Meier survival plot, and
the logrank P value was calculated.

3. Results
3.1. Medullary Thyroid Cancer

For medullary thyroid cancer (MTC), only one study was available from the GEO
database (GSE27155). The samples consisted of four normal thyroid tissues and two
medullary carcinomas. The analysis revealed 14 DEGs for GPCRs (seven downregulated
and seven upregulated) (Table 2). The TSH receptor (TSHR) was the main receptor down-
regulated in MTC compared to normal thyroid tissue (log2FC: −2.22) as well as GPRC5A; an
orphan receptor was also found to be downregulated (log2FC: −1.93). For the upregulated
GPCRs, the majority were weakly upregulated, such as dopamine receptor (DRD2, log2FC:
0.62) and cholecystokinin receptor (CCKBR, log2FC: 0.59). The two most upregulated
GCPRs compared to normal thyroid tissue were the adhesion receptor ADGRG2 (log2FC:
1.42) and the receptor LGR5 (Leucine Rich Repeat Containing G Protein-Coupled Receptor
5, log2FC: 1.43).

http://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/geo/geo2r/
http://www.interactivenn.net/
https://www.fda.gov
https://www.ema.europa.eu
http://gepia.cancer-pku.cn
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Table 2. List of DEGs Selected from Analysis of Medullary Thyroid Cancer Datasets.

GPCR Gene Symbol Log2FC Adj-p-Val

TSHR −2.22 0.0001
GPRC5A −1.93 0.0002

OPN3 −0.98 0.0011
FZD1 −0.89 0.0005

ADGRE5 −0.84 0.0014
F2RL1 −0.67 0.0043
FZD2 −0.56 0.0041

CCKBR 0.59 0.0025
DRD2 0.62 0.0030

ADORA2B 0.64 0.0029
CELSR3 0.80 0.0032
GPR19 0.84 0.0021

ADGRG2 1.42 0.0049
LGR5 1.43 0.0003

3.2. Pituitary Neuroendocrine Tumors (PitNETs)

For PitNETs, five gene expression profiles (GSE119063, GSE51618, GSE36314, GSE63357,
GSE36966) were acquired from the GEO database. The dataset contained from four to
sixteen tumor samples and from three to nine normal samples. The datasets consisted
of several pathological subtypes of PitNETs (prolactinoma, non-functioning or GH ade-
noma). To be more representative, a specific pathological type was not selected. The
analysis of these datasets revealed from one to sixty-six DEGs (Figure 1, Table S2). Among
them, the Frizzled 7 receptor FZD7 was downregulated in the five datasets (GSE119063,
log2FC = −4.26, p = 0.004, GSE51618, log2FC = −3.7, p = 0.029, GSE36314, log2FC = −0.88,
p = 0.034, GSE63357, log2FC = −0.70, p = 0.009, GSE36966, log2FC = −3.57, p < 0.001).
Interestingly, in the GSE51618 dataset, we could also compare the expression profile be-
tween invasive and non-invasive nonfunctional pituitary adenomas. SSTR1 was highly
upregulated in invasive adenoma (log2FC = 9.14, p = 0.005) as well as the adhesion receptor
ADGRG2 (log2FC = 5.26, p = 0.026), the serotonin receptor HTR4 5 (log2FC = 3.68, p = 0.007)
and the prostaglandin receptor PTGER2 (log2FC = 3.06, p = 0.038). Conversely, adhesion
receptors ADGRA1 and ADGRL3 were downregulated in invasive tumors (log2FC = −3.41,
p = 0.040, log2FC = −5.66, p = 0.042, respectively) (Figure 1).
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Figure 1. Dysregulated GPCR in pituitary neuroendocrine tumors. (A) Volcano plots for GSE119063,
GSE51618, GSE26966, GSE63357 and GSE36314. Each GPCR transcript was represented by a spot.
Log2 fold change was plotted against the −log10 p-value (<0.05, horizontal line). Differentially
expressed GPCR genes were selected with adjusted p < 0.05 among the mRNA expression profiling
datasets; (B) Venn diagram for GSE119063, GSE51618, GSE26966, GSE63357 and GSE36314 datasets.
For each dataset, the number of significant DEGs was indicated in brackets. One GPCR gene (FZD7)
was identified in the five datasets; (C) list of DEGs selected from analysis of invasive vs. non-
invasive PitNETs in GSE51618 datasets. Abbreviation: PitNETs (pituitary neuroendocrine tumors),
FC, fold-change.
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3.3. Pheochromocytoma and Paraganglioma

Four gene expression profiles (GSE50442, GSE39716, GSE19422, GSE60459) were ac-
quired from the GEO database for pheochromocytoma and paraganglioma. The dataset
contained from two to sixty-one pheochromocytoma samples, four to twenty-four para-
ganglioma and from three to eight normal samples (medullar adrenal tissue). All PHEOs
were non-metastatic. For PGL, GSE39716 and GSE60459 included ten and three metastatic
paraganglioma, respectively.

The data for PHEO were quite heterogeneous among the four studies. The number
of GPCRs with a significant difference in expression between healthy and tumor tissue
varied between 12 and 86 (Figure 2, Table S3). Although there was no receptor significantly
common to all four series, the angiotensin II type 2 receptor (AGTR2) was found to be
downregulated in the tumor tissue in all the studies (GSE60459, log2FC = −1.1, p = 0.03;
GSE50442, log2FC = −0.56, p = 0.493; GSE39716, log2FC = −0.75, p = 0.003; GSE19422,
log2FC = −0.60, p = 0.003).

In PGL, the analysis revealed from 37 to 69 DEGs for GPCRs. Venn diagram analysis
revealed that seven GPCRs were down regulated compared with normal adrenal gland
in the four datasets (AVPR1A, MC2R, NPY5R, NPY6R, RXFP1, LGR4, PTH1R) (Figure 3,
Table S4). When we compared metastatic PGL and non-metastatic PGL in GSE39716 and
GSE60459, no significant DEG were found.
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diagram for GSE50442, GSE39716, GSE19422, GSE60459 datasets. For each dataset, the number of
significant DEGs was indicated in brackets. Seven GPCR genes were identified in the four datasets.
Abbreviation: PGL: paraganglioma, FC, fold-change.

3.4. Adrenocortical Carcinomas

For ACC, five gene expression profiles (GSE14922, GSE90713, GSE12368, GSE19750,
GSE33371) were acquired from the GEO database. The dataset contained from four to fifty-
seven cancer samples and from four to ten normal samples. The analysis of these datasets
revealed six, eight, fifteen, nine and fifty-two DEGs, respectively. Venn diagram analysis
revealed that PTH1R was the only gene downregulated in the five datasets (Figure 4,
Table S5). To validate this finding, TCGA data (TCGA-ACC Project) were used to quantify
differential expression of PTH1R by comparing tumors against adrenal normal tissue from
the Gene Tissue Expression Project (GTEx) database. In the TCGA cohort, PTH1R was also
downregulated (log2FC: −3.37, p < 0.0001).

3.5. Identification of Dysregulated G Protein Coupled Receptors as Targets for Approved Drugs

Among the dysregulated GPCR, we determined which receptors were targeted by
approved drugs and how many drugs were available for these targets. The data were
summarized in the Table 3. In MTC, among the 14 DEG, CCKBR, D2R and Adenosine A2B
receptor (ADORA2B) were the target of drugs. DRD2 was the most frequently targeted
receptor with over 40 anti-psychotic agents acting as DRD2 antagonists. For PitNET, any
drug did not target FZD7. Interestingly, three up-regulated GPCR in invasive PitNET
were targeted receptor: SSTR1, HTR4 and PTGER2. Among the seven down-regulated
GPCRs in paraganglioma, Arginine Vasopressin Receptor 1A (AVPR1A), ACTH receptor,
MC2R, and PTH1R were the target of 2 to 4 drugs each. PTH1R also found to be down-
regulated in adrenocortical cancer, was targeted by 3 agonists used in osteoporosis or
hypoparathyroidism.
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were selected with adjusted p < 0.05. Differentially expressed GPCR genes were selected with adjusted
p < 0.05 among the mRNA expression profiling datasets; (B) Venn diagram for GSE14922, GSE12368,
GSE19750, GSE33371, GSE90713 datasets. For each dataset, the number of significant DEGs was
indicated in brackets. One GPCR gene (PTH1R) was identified in the five datasets. Abbreviation: FC,
fold-change.
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Table 3. List of GPCRs with Approved Drugs.

GPCR Mode of Action Main Indication(s)

ADORA2B
Caffeine Antagonist pulmonary complications of premature birth

Enprofylline Antagonist Asthma
Theophylline Antagonist Asthma

Adenosine Agonist supraventricular tachycardia
AVPR1A
Atosiban Antagonist pre-term labour

Conivaptan Antagonist SIADH
Felypressin Agonist diabetes insipidus
Terlipressin Agonist bleeding caused by esophageal varices.

CCKBR
Pentagastrin Agonist evaluation of gastric acid secretory function

DRD2
>40 Drugs Antagonist antipsychotic agent
Alizapride Antagonist anti-emetic

Bromopride Antagonist anti-emetic
Domperidone Antagonist anti-emetic

Droperidol Antagonist anti-emetic
Metoclopramide Antagonist anti-emetic

8 Drugs * Agonist Parkinson’s disease
Cabergoline Agonist pituitary adenoma
Quinagolide Agonist pituitary adenoma

HTR4
Vilazodone Agonist Depressive disorder
Mosapride Agonist Gastroprokinetic agent
Cisapride Agonist Gastroprokinetic agent

Prucalopride Agonist Gastroprokinetic agent
Cinitapride Agonist Gastroprokinetic agent
Tegaserod Agonist Gastroprokinetic agent

Metoclopramide Antagonist anti-emetic
MC2R

Corticotropin Agonist diagnosis agent
Tetracosactide Agonist diagnosis agent

PTGER2
Alprostadil Agonist erectile dysfunction

Dinoprostone Agonist labor induction
Misoprostol Agonist gastric ulcer
Gemeprost Agonist pregnancy termination
Limaprost Agonist Ischemic ulcer

PTH1R
Abaloparatide Agonist Osteoporosis

Parathyroid hormone Agonist Hypoparathyroidism
Teriparatide Agonist Osteoporosis

SSTR1
Octreotide Agonist NeuroEndocrine tumor
Pasireotide Agonist NeuroEndocrine tumors

For each endocrine tumor, common dysregulated GPCR were reviewed and approved drugs were listed with
their mode of action and their main indications. Abbreviations: SIADH = Syndrome of inappropriate antidiuretic
hormone secretion. *: The eight DRD2 agonist were: Amantadine, apomorphine, Levodopa, lisuride, pergolide,
pramipexole, ropinirole, rotigotine.

3.6. Survival Analysis

Survival data were only available for ACC from TCGA. We, therefore, chose to study
the gene expression of PTH1R for ACC. Using the GEPIA database to explore the association
between gene expression and survival, we found that PTH1R expression was neither
significantly correlated with overall survival nor disease-free survival of ACC patients
(log-rank p = 0.72 and log-rank p = 0.88, respectively) (Figure 5).
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Figure 5. Survival analysis for PTH1R in adrenocortical cancer. To analyze the prognostic value
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4. Discussion

This study constitutes the first atlas of GPCRs within major endocrine tumors after
thyroid cancer [14]. Drug repurposing strategies provided a new approach for revealing
new clinical applications of an approved drug and for developing antitumor drugs. The
use of GPCRomic approaches leads to the discovery of GPCRs that could contribute to
cancer pathophysiology and, thus, may be therapeutic targets.

4.1. Medullary Thyroid Cancer

We confirmed the upregulation of cholecystokinin 2 receptor (CCKBR/CCK2R) expres-
sion in MTC, which is targeted by radiolabeled peptide analogs for molecular imaging and
targeted radiotherapy of different human tumors, such as MTC [41,42]. The dopamine re-
ceptor DRD2 was also upregulated. It is known that L-dopa inhibits calcitonin secretion in
MTC, and a new chimeric somatostatin-dopamine analog has recently shown an anti-tumor
effect in vitro [43]. Interestingly, DRD2 is the target of many drugs already approved and is,
therefore, accessible for drug repurposing. Like DRD2, the adenosine receptor ADORA2B
was upregulated and the target of approved drugs. However, sparse data are available on
the role of these treatments in thyroid cancer, although previous studies have shown a role
for adenosine receptors in calcitonin secretion in C-cells [44]. ADGRG2/GPR64 was also
over-expressed in MTC (log2FC = 1.42, p = 0.0049) as in a number of carcinomas derived
from breast cancer, parathyroid tumors, Ewing sarcomas, prostate, kidney or lung, and the
inhibition of its expression promotes invasiveness and metastatic spread [45,46]. GPRC5A
was downregulated (log2FC = 1.93, p = 0.0002) as previously reported in other cancers,
especially in lung cancer, where it displayed a tumor suppressive role [47]. FZD1 was
also downregulated as previously described in non-medullary thyroid cancer, in which
inhibition increased invasiveness, indicating a possible pathogenesis role [48]. However,
to have only one study with a very small number of samples limits the significance of
the findings for medullary thyroid cancer. In addition, the different histological origin
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between the normal tissue (mainly of follicular origin) and tumor tissue (medullary origin)
probably explains part of the results. This is the case, for example, with the downregulation
of the TSH receptor (TSH-R), which is strongly expressed in normal thyroid tissue but was
negligible in MTC, as expected [49].

4.2. Pituitary Neuroendocrine Tumors (PitNETs)

Five studies were available in the GEO database comparing pituitary adenomas and
the normal pituitary. Data regarding aggressiveness were not available. Independent
of tumor characteristics (secreting or non-secreting, invasive or non-invasive), Frizzled
receptor 7 (FZD7) was downregulated in PitNETs. Interestingly, in invasive adenomas
compared to the normal pituitary gland (GSE51618) FZD7 was also found to be downregu-
lated. To date, this data was not described before in the literature. However, SFRP2 and 4
(secreted-frizzled related protein), Wnt antagonists, considered as tumor suppressor genes,
were downregulated in pituitary adenomas, in particular in invasive tumors, suggesting a
role of the Wnt pathway in the progression of PitNETs [50–52]. Among the differentially
expressed GPCR genes between non-invasive and invasive tumors, the somatostatin type
1 receptor (SSTR1) was known and already targeted by somatostatin analogs. HTR4 and
PTGER2 were also targeted by agonists. The antitumoral and antiangiogenic effects of
HTR4 agonists were thus shown [53,54].

4.3. Pheochromocytoma or Paraganglioma

For PHEO, no receptor was significantly common to all four series. However, even if,
in one study, angiotensin II type 2 receptor (AGTR2) was not statistically downregulated, it
was found to be downregulated in the tumoral tissue in all the studies. Indeed, the absence
or a very low expression of AGTR2 has been described in PHEO [55]. Interestingly, this
receptor has been also described for its antiproliferative role in cancer, including in the
pheochromocytoma PC12 cell line in response to angiotensin II [56]. However, unlike the
angiotensin II type 1 receptor, no approved drug targets the AGTR2. In addition, it would
be interesting to have metastatic pheochromocytomas to compare the profile between
metastatic and non-metastatic, as for paragangliomas. However, no data were available.

For PGL, seven GPCRs were found to be downregulated when compared to normal
medulla adrenal tissue. However, no data are available in the literature regarding their
expression level or their role in paragangliomas. Interestingly, the arginine vasopressin
receptor, AVPR1A, was also found to be downregulated in thyroid cancer and associated
with progression-free survival, while it was upregulated in castration-resistant prostate
cancer with an antitumoral effect of a selective AVPR1A antagonist [14,57]. Moreover,
AVPR1A agonist and antagonists are approved drugs and could be tested as proof of
concept. When we compared malignant paraganglioma and benign paraganglioma, no
significant DEGs were found. The patient numbers were small in the two datasets, probably
limiting the statistical power of the analyses.

4.4. Adrenocortical Carcinoma

In ACC, PTH1R was found downregulated in 5/5 datasets. This result was confirmed
in ACC samples from the TCGA cohort. PTH1R is a major endocrine regulator of skeletal de-
velopment and mineral homeostasis. It was also found that PTH1R enhanced the secretion
of steroid hormones by human adrenocortical cells via a signaling mechanism involving the
activation of both the Gs and Gq pathways [58]. PTH1R was previously immunolocalized
in the cytoplasm in a normal adrenal cortex [59]. The PTH1R mRNA expression level
was significantly higher in aldosterone-producing adenomas than in cortisol-producing
adenoma [59] but seemed to be similar between ACCs and adenomas [60]. To the best of
our knowledge, this is the first comparison between ACCs and a normal adrenal cortex.
We found a downregulation of PTH1R, while PTHrp seemed to have a positive effect on
the proliferation of the H295R lineage [60]. This could be explained by a downregulation
of PTH1R by PTHrP, as described in vascular smooth muscle, osteoblastic or kidney cell
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lines [61]. The role of PTH1R in tumor progression is still poorly understood. Indeed,
PTH1R knockdown increased cell migration and invasion and decreased tumor differentia-
tion in neuroblastoma but had an opposite effect in osteoblastoma [62]. Finally, the PTH1R
expression was neither significantly correlated with overall survival nor disease-free sur-
vival in ACC patients. However, there were only 88 patients in the study, probably limiting
the statistical power of the analyses. Moreover, the absence of an association with survival
should not, in our opinion, compromise potential therapeutic targets, as in thyroid cancer,
where TSH inhibition influences survival even though its receptor expression level in the
tumor is not associated with overall survival [14,63].

RNA-seq and microarrays that assess GPCR expression have certain limitations. First,
RNA expression does not necessarily reflect protein expression. However, methods to
assess GPCR protein expression are limited. Immunological techniques are limited by
the lack of well-validated and specific GPCR antibodies [64]. The low expression of
GPCRs compared to other proteins makes detection of GPCRs complicated. Moreover,
recent studies found a closer relationship between the mRNA and protein, especially for
GPCRs [65,66]. Another alternative to validate GPCR expression would be cell signaling
and functional assays. Second, the clinical data were not associated with the microarrays
data in the GEO repository, which limits the evaluation of the prognostic impact of these
GPCRs on recurrence or progression. The data from the GPCRomic analyses need to be
validated by further prospective studies for specific GPCRs with clinical evaluation.

5. Conclusions

This study presented all the data available to date regarding GPCRs in endocrine
tumors. The data could help to identify new potential pathways worth targeting, eventually
with approved drugs after proving the tumoral impact in preclinical models. The high-
throughput screening of clinically relevant GPCRs with approved drugs would then be an
interesting tool for the evaluation of these molecules in endocrine tumors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11040703/s1, Table S1: List of GPCR genes included in bioinformatics analysis. Table S2:
List of DEGs selected from analysis of pituitary adenoma datasets. Table S3: List of DEGs selected
from analysis of pheochromocytoma datasets. Table S4. List of DEGs selected from analysis of para-
ganglioma datasets. Table S5: List of DEGs selected from analysis of adrenocortical cancer datasets.
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