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SUMMARY

Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of down-

stream transcription factors. Identification of subsequent off-target toxicity in these chemicals has

often required extensive chemical testing in animal models. An alternative, integrated in vitro/in silico

approach for predicting toxic off-target functional responses is presented to refine in vitro receptor

identification and reduce the burden on in vivo testing. As part of the methodology, mathematical

modeling is used to mechanistically describe processes that regulate transcriptional activity following

receptor-ligand binding informed by transcription factor signaling assays. Critical reactions in the

signaling cascade are identified to highlight potential perturbation points in the biochemical network

that can guide and optimize additional in vitro testing. A physiologically based pharmacokineticmodel

provides information on the timing and localization of different levels of receptor activation informing

whole-body toxic potential resulting from off-target binding.
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INTRODUCTION

Many drugs are designed to interact specifically with cell surface, cytoplasmic, or nuclear receptors to pro-

duce a beneficial therapeutic effect. However, drugs can often bind to and interact with receptors that are

not their intended targets, and such ‘‘off-target’’ binding may cause what is now often termed a molecular

initiating event (MIE), e.g., receptor activation of toxicological relevance that may ultimately lead to an

adverse drug reaction (ADR) (Edwards and Aronson, 2000; Guengerich, 2011; Muller and Milton, 2012).

In many instances, ADRs can lead to significant morbidity and mortality as well as contribute to high levels

of attrition during drug development (Lazarou et al., 1998; Pirmohamed et al., 2004). This can primarily be

attributed to an incomplete understanding of themolecular mechanism of action of a given compound and

the lack of ability to predict which receptors may be activated unintentionally.

The sole use of in vitro-based experimental strategies in the early stages of drug development and chem-

ical testing is important but can lead to an unreliable and incomplete understanding of reactions (Coleman,

2011). Therefore, often considerable numbers of animals are used to screen out chemicals that may cause

off-target toxicity, with figures for the UK reporting that 306,000 in vivo toxicology safety procedures were

performed in 2014 (Home Office, 2015). In addition, the chemical industry used almost 345,000 animals in

the EU for toxicological or other safety evaluations (European Commission, 2013), and in the United States

3–6 million fish are used annually for whole effluent toxicity testing (Scholz et al., 2013). Furthermore, phar-

macokinetics and pharmacodynamics are significantly different between animal models and humans, di-

minishing their effectiveness in detecting toxicity through pre-clinical studies (Lauschke et al., 2016). There

is therefore a clear need to develop scientific approaches to identify toxicologically relevant off-target re-

ceptor binding to reduce the burden of animal use in toxicity testing. The development of a more ethical,

non-animal toolkit for initial chemical toxicological assessment using an integrated human-based in vitro/in

silico system would enhance current strategies and may even expedite the drug development pipeline.

In intracellular signaling, ligand/receptor interactions lead to the activation of a distinct set of transcription

factors, the effects of which tend to be tissue specific. Several companies now offer transcription factor acti-

vation profiling platforms, and so it is possible to identify and catalog the transcription factor activation

profiles of toxicologically relevant receptors upon binding of their known ligands/drugs. It is assumed

that transcription factor profiles generated from off-target receptor activation of any given drug can be
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matched against known ligand/receptor transcription profiles to predict which specific receptor (or class

of receptors) has been activated in the initial off-target MIE. However, when testing off-target profiles of

new compounds, the resulting transcription profile may not precisely match that of a known receptor

(e.g., partial agonism or the binding of multiple receptors), and therefore a method of refinement is

required to narrow the subset of off-target receptors. Our approach aims to refine the in vitro receptor

identification process for off-target receptors by using information about the changes in receptor-medi-

ated transcription factor activity following the introduction of a given compound and integrating this infor-

mation with predictive in silico models and analysis. This approach allows for the identification of relevant

perturbations in the transcription factor signaling pathway that signify the binding of a receptor or smaller

range of receptors as well as other points of interest in the transcription factor signaling network that can

contribute toward and guide subsequent off-target receptor identification.

Translating the wealth of knowledge on network interactions of cellular components to dynamic models is

generally limited by the amount of available quantitative information to accompany these relationships,

such as molecular amounts and reaction rates. However, qualitative dynamic network modeling can be

used to compare with routinely generated semi-quantitative experimental time course data, where pertur-

bations can provide valuable information about the system. In silico modeling of this type then provides a

platform for the refinement of more quantitative (parameter-based) modeling (Fisher et al., 2013). In such a

scenario, the network modeling method of Petri nets provides an effective tool, particularly in the complex,

stochastic framework of molecular biological pathways (Chaouiya, 2007; Heiner et al., 2008; Heidary et al.,

2015). Petri nets are often used tomodel multiple species and reactions without defining large quantities of

unknown parameters, as modeling emphasis is on network topology and relative amounts of species rather

than on specific reaction rates. This emphasis on network structure can then be translated to methods such

as flux balance analysis and metabolic control analysis (MCA) without knowledge of rate constants, as was

shown for the switching of the metabolic pathway in E. coli (Edwards et al., 2001; Kitano, 2002).

The identification of off-target receptor binding alone for a given compound is insufficient to predict

significant off-target toxicity, and so we aim to provide additional information to support and refine the

subsequent evaluation of toxic potential. This is achieved by translating knowledge of receptor binding

properties and relative distribution of the receptor throughout the body to a whole-body response to

the xenobiotic. This approach utilizes a physiologically based pharmacokinetic (PBPK) model adapted spe-

cifically for describing receptor activation throughout the body following compound exposure. A PBPK

model is a mechanistic, multi-compartment mathematical model that describes the time course dynamics

and overall kinetics of an administered drug dose throughout the organism of interest. PBPK models inte-

grate the physicochemical properties of the substance with the specific physiology of the organism such

that the evolution of the ADME (absorption, distribution, metabolism, and excretion) processes can be

simulated in silico. Drug/substance properties include tissue affinity, membrane permeability, enzymatic

stability, etc., whereas the organism/system components include properties such as organ mass/volume

and blood flow (Rowland et al., 2011). PBPK modeling is used in this work to couple the pharmacokinetics

of a drug to dose-response parameters with the associated off-target receptor in different tissues to

generate spatiotemporal dynamics of the off-target receptor activation.
RESULTS

Development of the Signaling Pathway Model

As proof of concept, an in silicomodel of the histamine H1 receptor signaling pathway was formulated. This

pathway was chosen owing to the well-understood intracellular signaling interactions involved upon recep-

tor stimulation and the existence of a known off-target partial agonist, lisuride (Bakker et al., 2004). The H1

receptor is a G-protein-coupled receptor that, upon activation, leads to dissociation of Gaq/11 and the

Gbg complex. Gaq/11 activates phospholipase Cb (PLCb), leading to hydrolysis of phosphatidylinositol

4,5-biphosphate (PIP2) and the formation of inositol triphosphate (IP3) and diacylglycerol (DAG) (Bakker

et al., 2001; Sandal et al., 2013). IP3 mediates a transient intracellular calcium release from the ER (Shah

et al., 2015) that eventually mediates the activation of nuclear factor of activated T-cells (NFAT) (Macian,

2005), cAMP response element-binding protein (CREB) (Johannessen and Moens, 2007), and myocyte

enhancer factor-2 (Mef2) transcription factors (Lu et al., 2000). DAG simultaneously activates protein

kinase C (PKC), and this phosphorylates IkB kinase (IKK), ultimately leading to nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) transcription factor activation (La Porta and Comolli,

1997). The Gbg complex also plays a role in histamine signal transduction, regulating many effectors,
iScience 4, 84–96, June 29, 2018 85



Transcription Factor Fold Change in Relative

Luciferase Units

NFAT 1.97 G 0.063

NF-kB 2.18 G 1.47

CREB 1.54 G 0.027

MEF2 2.74 G 1.31

ATF2 1.67 G 8.99

Table 1. Transcription Factor Changes

Alterations in expression levels of specified genes in the presence of histamine after 6 hr expressed as mean fold changes in

relative luciferase units with SD(n = 3) as determined by Cignal reporter assay.
including adenylate cyclase (AC) (Maruko et al., 2005) and phosphoinositide 3 kinase (PI3K) (Gautam et al.,

1998). AC mediates the subsequent activation of protein kinase A via cyclic AMP (cAMP) leading to CREB

phosphorylation and transcription factor activation (Mosenden and Taskén, 2011). PI3K mediates the acti-

vation of Akt, NF-kB, and activating transcription factor 2 (ATF2) (Bence et al., 1997; Breitwieser et al., 2007).

To provide semi-quantitative information for the relative transcription factor dynamics as described earlier,

we assayed pathway perturbations using a luciferase reporter-based transcription factor array to calibrate

the fold increase expected of key signaling outputs upon stimulation with an agonist. These transcription

factors were identified as NFAT, NF-kB, CREB,Mef2, and ATF2. Incubation of H1 receptor-expressing HeLa

cells with histamine showed considerable activation of these transcription factors (Table 1).

A stochastic Petri net model of the histamine H1 receptor signaling pathway was formulated based on

existing knowledge of the pathway and network interactions with the five critical transcription factors deter-

mined to be activated following ligand binding. The pathway in this proof of concept provides an illustra-

tive example of what should ultimately form part of a larger cell signaling model that incorporates the

complexity of the known toxicological receptors and associated transcription factors in the proposed

methodology. The H1 Petri net includes the key dynamic molecular species and appropriate network inter-

actions that are activated during ligand-binding-induced signaling. This pathway is depicted using the

modified Edinburgh pathway notation (mEPN) format (Freeman et al., 2010) in Figure 1 and directly corre-

sponds to the layout of the Petri net. All rates are equal such that all stochastic transitions are equally likely

to fire but are effectively modulated by the concentration of upstream reactants in a mass action process.

Time is interpreted qualitatively reflecting the relative order of events. Varying quantities in the mathemat-

ical model, such as the amount of ligand introduced (‘‘dose’’) and the total amounts of system species (i.e.,

moieties of active and inactive states for each protein), modulate the scale of transcriptional activity regu-

lation, and as such, these values were optimized to correlate with the experimental signaling assays. This

optimization was carried out by assuming a large-scale continuum approximation of the Petri net to a sys-

tem of ordinary differential equations (ODEs) and fitting to the corresponding transcription factor output

data (Figure 2). It should be noted that the optimal parameter set is non-identifiable for such a large system

with relatively few data points to fit. However, this issue was the precise motivation for the combined Petri

net/MCA approach, which is well suited to understanding the relative impact of small perturbations on

the transcription factors of interest and prioritize network connectivity information in favor of accurate

predictions of parameters and dynamics (Koch et al., 2010). Corresponding pathway reactions, moieties,

and ODEs can be found in the supplementary material. In addition to providing static information on

the network interactions of the signaling pathway and relative changes in steady state activity following

receptor activation, Petri nets can also be used to simulate transient temporal dynamics, providing further

dynamic information on the relative order and scale of transcriptional regulation (Figure 3) following a re-

ceptor-ligand binding event. However, it is clear that more data would be required for one to relate this

dynamic output to the biological context and validate any potential predictions about transient dynamics.

Analysis of Network Perturbations to Identify Off-Target Responses

The identification of significant pathway reactions upstream of transcription was achieved using metabolic

control analysis (MCA), which is a mathematical technique that tests the sensitivity of a given variable to

network perturbations (Kacser and Burns, 1973; Heinrich and Rapoport, 1974). Specifically, scaled MCA
86 iScience 4, 84–96, June 29, 2018



Figure 1. Schematic Representation for the Petri Net of the Histamine H1 Receptor Signaling Pathway Using mEPN Notation

The Petri net describes the key relationships between components of the signaling pathway system culminating in the regulation of downstream

transcription factor expression stimulated by the binding of a ligand to the histamine H1 receptor.
concentration control coefficients provide the ratio between a relative measure of change in the steady

state of a system variable as affected by perturbations in network reaction rates. In our illustrative H1

example model, MCA coefficients were calculated for each transcription factor that was experimentally

determined to show significant change in activity following binding of the H1 receptor (Figure 4). The

rows of the heatmap in Figure 4 correspond to the numbered reactions as indicated in the supplementary

material. MCA points not only to the direct regulation of gene transcription as critical to H1-associated
iScience 4, 84–96, June 29, 2018 87
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Figure 2. Optimized Transcription Factor Output

The ligand (histamine) was introduced at t = 0 (Petri net time units) in the model simulation. Before t = 0 the model was run

to steady state. Themodel solution was fit to the data via optimization of the conservedmoieties of the signaling pathway.

Dotted lines represent the fold increase in transcriptional activity for the relevant transcription factor observed in the

transcription assays. Solid lines represent the normalized model solution for the corresponding transcriptional activity as

simulated by luciferase dynamics.
transcriptional activity (white patches in Figure 4), but also to other reactions within the cascade, upstream

of the transcription factors and downstream of the target receptor. For example, in this system the tran-

scriptional activity of Mef2 is sensitive to relatively distant biochemical reactions, such as the rate of calcium

release from the ER (24% of maximum sensitivity provided by perturbation of Mef2 transcription rate). Also,

the model suggests that the transcriptional activity of ATF2 is more sensitive to perturbations in PIP2 syn-

thesis than to the regulation of the BTK:PIP3 complex that directly activates ATF2 by phosphorylation.

The identification of these sensitive perturbation points within the signaling pathway model provide infor-

mation beyond the transcription factor activity measurements found experimentally, which allows for more

optimized, directed experimental designs for receptor identification, if initial screening fails to identify the

off-target receptor. For example, for a given compound that was shown to regulate Mef2 transcriptional

activity but did not interact with the H1 receptor, this model would inform a proposal to screen for recep-

tors that are known to interact with biochemical reactions identified as being sensitive, such as calcium

release, during MCA.

Translation to Tissue Scales Using a PBPK Model

Following an in silico identification of an off-target receptor, extrapolation to the study of potential in vivo

toxicity can be performed using a PBPK model. For our illustrative example, receptor binding properties

are provided by EC50 dose-response curves for the off-target H1 agonist, lisuride (Figure 5A), andmeasure-

ments of the corresponding binding affinity, Kd (Bakker et al., 2004). The dose-response curves were esti-

mated by fitting the following equation to the dose-response data:

Response%=Min+
ðMax �MinÞLn

ECn
50 + Ln

; (Equation 1)
88 iScience 4, 84–96, June 29, 2018
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Figure 3. Transient Dynamic Output of the Histamine H1 Receptor Signaling Pathway Using the Stochastic

Petri Net

This figure illustrates the dynamic output of the stochastic Petri net when a small transient perturbation to the ligand

concentration is made at t = 200 units, representing the pre-stimulation steady state. Dynamics are shown for model

variables that correspond to luciferase signals for transcription factors associated with a receptor stimulation

perturbation.
for ligand concentration L. The optimized parameter values are given in Table 2. To provide tissue-

specific responses we also used western blot measurements of relative H1 receptor expression in

different tissues (Figures 5B and 5C) and calculated modified tissue-specific EC50 values using

EC50i =
KdEC50

RiðKd +EC50Þ � EC50

where i denotes the ith tissue, Kd is the dissociation equilibrium constant for lisuride, and Ri is a mea-

sure of receptor abundancy in tissue i (see Table 3). For simplicity, this model assumes that the same

amount of receptor binding is required to achieve 50% response in each tissue in the absence of any

other information, particularly as the responsemeasured is proximal to receptor binding attenuating

any potential amplification effects arising from potential signaling cascades in different tissues

(Kenakin, 2009). For further information regarding this derivation see the Supplemental Information.

To simulate the pharmacokinetics of lisuride throughout the body, physicochemical properties of the com-

pound were required, which were obtained from previously published measurements. These properties

include lipophilicity, whether the drug is neutral/acid/base, solubility (obtained from the DrugBank data-

base [Wishart et al., 2006]), molecular weight (O’Neil, 2013), acid dissociation constant (Meloun et al.,

2005), and effective permeability (Winiwarter et al., 1998). The time course dynamics simulated by the

PBPKmodel for drug concentration in each tissue compartment of the body were then coupled to receptor

binding properties and relative receptor expression in tissues to provide a predictive temporal response

throughout the body. This response can be produced for any dosage regimen and various methods of

administration, such as intravenous, oral, and inhalation. The PBPK model was based on the form derived

by Peters (2008). The model was optimized for lisuride physicochemical and binding properties and the

H1 receptor distribution throughout the different tissues. Example lisuride response kinetics following

both intravenous (IV) and oral administrations can be found in Figure 6. The IV dose of 25 mg/mL used in

Figure 6 was the same as that used in a previous pharmacokinetic study for relevance (Krause et al.,

1991). These experimental data were also the IV data used to optimize the PBPK model to recapitulate

the lisuride dynamics in the venous blood compartment and also simulate corresponding oral profiles as

per the methodology described by Peters (2008). The oral dose of 0.1 mg chosen for the PBPK model

was deemed relevant by matching previous pharmacological studies (Koizumi et al., 1985; Al-Sereiti and

Turner, 1989). The dynamic response of the H1 receptor is visualized over time as a solution to Equation (1)
iScience 4, 84–96, June 29, 2018 89
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Figure 4. Metabolic Control Analysis (MCA) of the H1 Signaling Pathway

Scaled concentration control coefficients as a result of MCA are plotted for the activity of five transcription factors

modulated by histamine H1 receptor binding. Each row of the heatmap numerically corresponds to a reaction term in the

signaling pathway model (see Supplemental Information). Maximum and minimum values in the heatmap (white patches)

represent maximum sensitivity to perturbation of the reaction terms in the model depicting direct transcriptional

regulation rates and luciferase decay rates.
with tissue-specific EC50 values for the pharmacokinetics of lisuride (L) in different parts of the body. Both IV

and oral administration simulations are plotted to also highlight the impact of delivery route. This is partic-

ularly pertinent in this case where we are studying a receptor that has a relatively high concentration in the

gastrointestinal tract. IV administration results in relatively high receptor stimulation in the liver, brain, small

intestine, and colon at earlier times, whereas oral administration results in a more gradual accumulation in

these tissues and the receptors in the colon are stimulated at a near-maximal level for a relatively long time

after oral ingestion. These simulations allow us to compare how the off-target response varies throughout

the body over time depending on the pharmacokinetics of the drug coupled with physiologically relevant

receptor availability and receptor binding information. Such information is potentially useful to determine

whether or not an identified off-target agonist is likely to elicit an off-target receptor response in an area of

high target density based on its physicochemical properties.

DISCUSSION

ADRs are a major cause of patient morbidity, mortality, and drug attrition during development (Pirmo-

hamed et al., 2004). This can be attributed to a poor understanding of the mechanisms underlying the toxic

response and also to a lack of current tools for the prediction of a toxic outcome. Animal models have a

limited scope, and data obtained using such models may not be ideal for ascertaining toxicity seen in hu-

mans. As such, computational systems biology models can be essential tools to improve chemical reaction

predictivity (Krewski et al., 2010). In this study, we describe a new in silico modeling method that can be

used to enhance the current knowledge of pathway perturbations to provide a new toxicity-testing para-

digm based on human biology. In this method, chemical-mediated activation of transcription factors

and intracellular signaling pathway molecules were used as readouts to inform and drive a pathway-based

in silico approach to identify possible upstream receptor(s) engaged by such chemicals. In vitro data were

then used to inform a PBPK in silicomodeling platform to understand and rank the risk of toxicity at tissue,

organ, and whole-body levels over time. Key to this integrative approach was the coupling of in vitro

experimental techniques and advanced in silico modeling to create a unique resource that, with further
90 iScience 4, 84–96, June 29, 2018



Figure 5. Histamine/Lisuride Dose Response, EC50, and Kinetic Parameters

(A) Ligand (histamine) and partial agonist (lisuride) dose-response assays used to calculate EC50 values.

(B) Immunoblotting of H1 receptor in murine organs.

(C) Relative quantification of immunoblot relative to HeLa cell lysates.
development and parameterization, could be used to predict the off-target toxicity of compounds that can

then inform and direct more focused in vivo experimentation.

Mathematical modeling was used to mechanistically describe the processes that lead to regulation of tran-

scriptional activity following the binding of ligand to receptor. This was achieved by designing a signaling

pathway model that represented all the relevant processes and biochemical reactions downstream of

ligand binding, culminating in the regulation of transcription. We have established a novel in vitro/in silico

approach using data from assays measuring transcription factor activation and chemically induced pertur-

bations of intracellular signaling pathways to inform in silico pathway modeling. This unbiased pathway-led

approach uses computational simulations to identify causality between receptor activation and pathway

perturbations to aid identification of the upstream receptor/s engaged by the initial MIE. As proof of

concept, an in silico Petri net model of the histamine H1 receptor-signaling pathway was formulated
iScience 4, 84–96, June 29, 2018 91



Parameter Value SE Units

Min 7.98% 1.066 /

Max 36.55% 0.5863 /

logEC50 �7.968 0.06724 mol/L

n (Hill coefficient) 0.8411 0.1009 /

Kd 8 3 10�9 0.0577 mol/L

Table 2. Kinetic Parameters of Lisuride and the Histamine H1 Receptor

Receptor activation of the H1 histamine receptor was studied with known agonist (histamine) and off-target agonist (lisuride).

Using these assays, each parameter was calculated using GraphPad Prism.
with the off-target compound, lisuride. The output of this system provides semi-quantitative temporal dy-

namics for the entire pathway that can be used to investigate system perturbations, simulate experiments,

and provide structural pathway predictions. In vitro reporter assay data were then used to parameterize

and validate the model, and the identification of critical candidate perturbation points was achieved using

MCA. Signaling pathway models can be purposely used in this methodology to provide a library of MCA

coefficients for a range of transcription factors associated with receptor binding and toxicity and guide

further experimentation. In the example shown, calcium release from the ER and PIP2 synthesis are high-

lighted as important upstream events for the transcriptional activity of Mef2 and ATF2. If a new compound

is shown to induce the activity of these transcription factors but the receptor responsible is not identified via

screening, for instance, further testing could be guided toward targets that modulate these upstream pro-

cesses. This illustrates the feasibility of this approach in directing further experimentation toward relevant

pathway mechanisms or receptor clusters during the process of receptor identification via focused in vitro

assay testing.

In vitro to in vivo extrapolations of whole-body consequences of receptor binding was explored using

PBPK modeling. The structure of PBPK models typically revolves around the anatomical structure of the

organism, with different organs and tissues of varying perfusion rates being separated into distinct com-

partments. These compartments are then coupled through the circulation, whose arterial and venous

flow is described to connect the organs in a physiological way. Entrance points (e.g., absorption) of the

model depend on the drug administration method (e.g., inhalation, ingestion, injection), whereas exit

points (e.g., excretion) are generally described via the kidneys and intestine. The flow kinetics of the model

determine distribution, whereas metabolism occurs in the liver and intestine. The inherent physiological

basis distinguishes true PBPK models from their PK model counterparts that usually simplify the physiology

to fewer hypothetical compartments of different flow rates, driven by the data/process of interest, such that

they are often more tractable analytically. In contrast, PBPK models are generally more complex but are

designed to have a better global representation such that valid extrapolations can be made and disparate

experimental data can be integrated during model parameterization. In this way, PBPK models are less

reliant on data fitting to obtain appropriate values for equation parameters and essentially the samemodel

(with appropriate modifications) can be suitably applied in many different pharmacological scenarios for

quantitative risk assessment and therapy optimization.

PBPK model simulations are increasingly being used in pharmacology, in both academia and industry, to

provide important predictions of the pharmacokinetic properties and toxic potential of new drugs at an

early stage in drug development (Zhao et al., 2011; Jones and Rowland-Yeo, 2013; Tsamandouras et al.,

2015). This type of in silico testing can offer a quicker, cheaper, and more ethical alternative method

when compared with traditional in vivo experiments performed. Ideally, both experimental and computa-

tional methods are used harmoniously to provide a cycle of information and enhanced knowledge iteration

as the accuracy of PBPK models inevitably rely on quality experimental data to calibrate rates within the

differential equations. In the method reported here, physicochemical properties of the chemical are

combined with tissue-specific receptor expression and EC50 data to predict time course dynamics of the

chemical concentrations in each tissue, as well as tissue-level receptor-activation responses to that

chemical. These predictions can be produced for any dosage regimen and various methods of administra-

tion. In the example study of the off-target partial agonist of the histamine H1 receptor, lisuride, the com-

bination of lisuride pharmacokinetics and relative H1 receptor distribution throughout the body allowed us
92 iScience 4, 84–96, June 29, 2018



Parameter Value Tissue

RHE 5.60 Heart

RLU 3.56 Lungs

RKI 6.64 Kidney

RLI 11.63 Liver

RBO 3.88 Skeletal muscle

RBR 5.78 Brain

RSP 5.83 Spleen

RSI 5.56 Small intestine

RCO 25.90 Large intestine

Table 3. Relative Amounts of Histamine H1 Receptor in Murine Tissue Calculated Using Immunoblot Analysis

Values were used to calculate tissue-specific receptor scaling factors for lisuride EC50 values when binding to the histamine H1

receptor.
to predict that the dose response would be most significant in the brain, liver, and gastrointestinal system.

In this case example, these results are supported by prior knowledge of the compound and receptor,

although the modeling was done agnostic of such prior in vivo findings. In particular, receptor response

localized to the brain is somewhat expected since lisuride is primarily a psychotherapeutic drug, affecting

dopamine and serotonin regulation (Marona-Lewicka et al., 2002). Lisuride is primarily metabolized in the

liver, where there is a relatively high expression of histamine receptors. There is also high receptor expres-

sion in the gastrointestinal tract owing to the role of histamine in intestinal secretion and motility (Leurs

et al., 1995; Sander et al., 2006). Furthermore, lisuride administration in patients with Parkinson disease

has been associated with gastrointestinal side effects (Ebadi and Pfeiffer, 2004). Although relative response

rates have been quantified by the model in different parts of the body at different times, to translate what

such a response directly represents in the context of toxicity and clinical relevance is very complicated, and

restricted in this methodology, establishing a challenge beyond the scope of this paper. However, these

PBPK-based extrapolations do allow us to generate predictive data relevant to risk assessment and further

translation to toxicity at the organ and whole-body levels for off-target receptor perturbations. The output

provided by this method is intended to identify toxic potential and guide subsequent in vitro and in vivo

experimentation to organs of interest/importance.

The operating parameters of the approach are circumscribed by the extent of current knowledge regarding

receptors and their function. This represents a potential limitation of the strategy, although the mathemat-

ically driven signaling pathway model has the potential to identify novel, uncharacterized receptor targets.

The challenge of identifying sensitive perturbation points within large-scale networks of receptor signaling

pathways required that a semi-quantitative network-based approach be used. This inevitably limits the

amount of predictive, dynamic information that can be extrapolated, and caution must be exercised

such that the utility of mathematical models is preserved by acknowledging the relevant application that

stimulated its design. The approach is experimental (with elements of modeling and extrapolation to

assess and rank toxicological risk) and does not incorporate prediction of receptor binding based on chem-

ical or receptor structures. The strength of the methodology is predicated on currently available, validated

experimental methods, as it does not require the development of new, untested technologies and relies on

sound criteria-based selection of receptors and quantifying receptor function and binding using estab-

lished experimental techniques. Future work requires the development of multiple pathway models based

on training chemical data as well as the integration of pathways, which should be optimized and validated

with non-training data. Furthermore, the current PBPK framework can be extended to ensure improved

predictive potential by incorporating mechanistic tissue models, catering for a wider range of chemicals

and capturing population-level responses. More work is also needed to translate tissue-level receptor acti-

vation responses to measures of toxicity, such as relevant biomarkers. Carefully calculated person-to-per-

son variation and covariances within organism-related parameters would also allow for the prediction of a

population response whereby different individuals within a sample population may exhibit different levels

of exposure and therefore associated toxicity from the same dosage levels. The combined in vitro/in silico
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Figure 6. Temporal Tissue Response Predicted by PBPK Modeling Following Doses of Lisuride

(A) 25 mg/mL administered intravenously.

(B) 0.1 mg administered orally. Tissues are labeled as follows: heart (HE), lungs (LU), kidneys (KI), liver (LI), bone (BO), brain

(BR), spleen (SP), small intestine (SI), and colon (CO).
approach of this study has shown how the multidisciplinary, iterative process of systems biology can be

applied to direct experiments, optimize the utility of generated data, and challenge and refine theoretical

modeling to improve methods for detecting and predicting toxicity caused by compounds that bind to off-

target receptors.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, two figures, and four tables and can be found

with this article online at https://doi.org/10.1016/j.isci.2018.05.012.
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Supplementary Material 

Transparent Methods 
Experimental Methods 

Cell culture 

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium supplemented with 10% 
foetal bovine serum, 2 mM glutamine and incubated at 37 °C in a 5% CO2 humidified 
atmosphere. 

Quantification of transcription factor activation 

Transcription factor activation was measured using Cignal Reporter dual-luciferase assay 
(Qiagen) as per manufacturer’s instructions, to determine intracellular signal transduction 
perturbation and transcription factor activation data for in silico modelling. Briefly, HeLa 
cells were plated in 96-well plates and transfected with inducible transcription factor 
responsive constructs composed of specific transcription factor response elements linked to 
firefly luciferase along with a constitutively expressing Renilla construct as an internal 
control. Transfection was performed with Attractene transfection reagent (Qiagen) as per 
manufacturer’s instructions. Transfected cells were stimulated with histamine (Sigma) for 6 
or 24 h and activation of specific transcription factors quantified by luminometer using the 
Dual-Luciferase Reporter Assay System (Promega). 

Receptor activation 

Activation of histamine receptor H1 with its known agonist, histamine and the off-target 
partial agonist, lisuride was determined using PathHunter® Chinese Hamster Overy (CHO)-
K1 reporter cells that over-express ProLink™-tagged human histamine H1 receptor and the 
Enzyme Acceptor (EA)-tagged β-Arrestin (DiscoverX) as per manufacturer’s instructions. In 
these cells activation of histamine receptor H1 by a ligand forces H1 receptor coupling with 
EA-tagged β-Arrestin leading to the formation of a functional enzyme that is able to generate 
a chemiluminescent signal upon substrate cleavage. These assays were used to calculate 
EC50 values for both histamine and lisuride.  

Immunoblotting analysis  

Mouse organs from wild type C57 mice (Charles River) were snap frozen in liquid nitrogen 
and whole tissue lysates homogenised in lysis buffer (250 mM sucrose, 50 mM Tris.HCl,1 
mM MgCl2, 1% Triton X-100, 1 mM PMSF). Lysates were also generated from HeLa and 
CHO cells over-expressing histamine H1 receptor. The lysates were centrifuged at 5000 g for 
15 minutes at 4 °C and 20 µg of total protein separated using SDS-PAGE and analysed using 
standard immunoblotting techniques. Membranes were blocked overnight in 5% milk powder 
in blocking buffer (0.2% Triton X-100 in PBS) at 4 °C and then incubated with rabbit 
polyclonal anti-H1R antiserum (Abcam; 1:1000) followed by horseradish peroxidase-
conjugated goat anti-rabbit antiserum (Jackson Labs; 1:2500). Immuno-reactive proteins were 



visualized using enhanced chemiluminescent substrate detection (ThermoFisher). 
Densitometry analysis was carried out using Image J and fold-changes in expression relative 
to HeLa cells calculated. 

Petri Nets 

The stochastic Petri net model of the histamine H1 receptor signalling pathway was 
formulated using Snoopy software (Heiner et al., 2012). In the context of cellular signalling 
pathways, a Petri net is a bipartite graphical representation of a biochemical network with 
“tokens”/dots-or-numbers (representing number of molecules or concentration) in 
“places”/circles (network species, proteins etc.). A reaction is represented by the “firing” of a 
“transition”/square where tokens are moved from one place to a downstream place as 
indicated by connecting “arcs”/arrows. A transition may fire only if all upstream places 
contain sufficient tokens, i.e. all reactants must be present for a specific reaction to occur. 
Petri nets use mass action and Gillespie algorithm principles such that transitions with a 
higher number of upstream tokens fire with a higher probability.  

Parameter Optimisation and Metabolic Control Analysis 

The signalling pathway model large-scale continuum approximation to an ODE system was 
solved using a Runge-Kutta 4/5th order method with Matlab R2015b software. Pathway 
moieties (conserved quantities defined in supplementary material S1.2) were optimised such 
that model signalling output was consistent with experimental data. Optimisation was carried 
out by minimising the error between fold-increase in transcription factor levels in the model 
and the data. Metabolic scaled concentration control coefficients were calculated using 
Copasi 4.15 software (Hoops et al., 2006). The Peters (2008) PBPK model code was written 
and solved with Matlab R2015b software. 



1 Modelling the H1 receptor signalling pathway 
Table S1, related to Figure 1: Histamine H1 receptor signalling pathway reactions. Each reaction in the Petri net of Figure 1 is described 
explicitly with associated description and mass action kinetics. 

Reaction 
No. 

Reaction Description Mass action flux terms 

1.  ! + #: %&: '()*+ → !: # + %& + '()-+ Ligand binding causes dissociation of '()-+ 
(i.e. GTP bound	'() and %& from the receptor 

/0 = ! ∗ #: %&: '()*+ 

2.  3#42 + %& → 3#42∗ Activation of G protein coupled receptor 
kinase 2 (3#42) by binding to free %&  

/6 = 3#42 ∗ %& 

3.  3#42 + %&
789:78:;8<=>?@ABC

3#42∗ DEF: DE (defined below) mediated plus 
background deactivation of 3#42 

/G = 3#42∗ ∗ DEF: DE + 3#42∗ 

4.  '()-+ → '()*+ Background hydrolysis of '()-+to '()*+ /H = '()-+ 

5.  '()*+ + 3#42∗ → 3#42 + %&: '()*+		 '()*+ will scavenge %& from complexes to 
give a %&: '()*+	complex 

/I = '()*+ ∗ 3#42∗ 

6.  !: #
)JK6∗

L!: # 3#42∗  phosphorylates agonist-activated 
receptors 

/M = !: # ∗ 3#42∗ 

7.  L!: # → # The phosphorylated receptors are recognized 
by arrestins that bind to the receptor which 
targets it for internalization 

/N = L!: # 

8.  !: # → #  Background degradation of ligand /O = !: #  



Reaction 
No. 

Reaction Description Mass action flux terms 

9.  %& + '()*+ → %&: '()*+ '()*+ binding with free %& /P = %& ∗ '()*+ 

10.  %&: '()*+ + # → #: %&: '()*+ Binding of %&: '()*+ to free receptor to give 
#: %&: '()*+ 

/0Q = %&: '()*+ ∗ # 

11.  '()-+ + R!D → R!D: '()-+ R!D and '()-+ binding 

 

/00 = '()-+ ∗ R!D 

12.  R!D: '()-+ → R!D + '()*+ Dissociation of R!D: '()-+ hydrolyses '()-+ 
to '()*+ 

/06 = R!D: '()-+ 

13.  ∅ → RTR2 Background production/synthesis  /0G = U0 

14.  RTR2 → ∅ Background decay/utilisation /0H = RTR2 

15.  RTR2
+V7:WXYZ[

TR3 + ]^3 R!D: '()-+ catalysed separation of RTR2 
into	TR3 and ]^3 

/0I = RTR2 ∗ R!D: '()-+ 

16.  TR3 → ∅ Background decay/utilisation /0M = TR3 

17.  ]^3 → ∅ Background decay/utilisation /0N = ]^3 

18.  TR3 + _# → TR3: _# TR3 binding to receptors on the _# 
(endoplasmic reticulum) 

/0O = TR3 ∗ _# 

19.  TR3 + _# ← TR3: _# TR3: _# dissociation /0P = TR3: _# 

20.  ∅
a+G:bJ:;8<=>?@ABC

DE TR3: _# induces Calcium (DE) release from 
the _#. Plus background  release/production 

/6Q = TR3: _# + U6 

21.  DE → ∅ DE is sequestered back in to _#  /60 = DE 



Reaction 
No. 

Reaction Description Mass action flux terms 

22.     

23.  DE + DEF → DEF: DE DE binds with Calmodulin (DEF).  /66 = DE ∗ DEF 

24.  DE + DEF ← DEF: DE DEF: DE dissociation /6G = DEF: DE 

25.  DEF: DE + DEc → DEF: DE: DEc DEF: DE binds to Calcineurin (DEc).  /6H = DEF: DE ∗ DEc 

26.  DEF + DEc ← DEF: DE: DEc DEF: DE: DEc dissociation /6I = DEF: DE: DEc 

27.  Lcd^e
789:78:78f

cd^e DEF: DE: DEc induced dephosphorylation of 
Lcd^e 

/6M = Lcd^e ∗ DEF: DE: DEc 

28.  Lcd^e → cd^e (background) dephosphorylation of Lcd^e	 /6N = Lcd^e 

29.  cd^e
)gKGh

Lcd^e Lcd^e = inactive cd^e (no signal) /6O = 3i43% ∗ cd^e	 

30.  cd^e → 	Lcd^e (background) phosphorylation of cd^e	 /6P = cd^e 

31.  3i43%
+K7:*j)

L3i43% R4D:]^3 catalysed phosphorylation of 
glycogen synthase kinase 3 beta (3i43%) 

/GQ = 3i43% ∗ R4D:]^3 

32.  3i43%
j=l∗

L3i43% ^Um∗ catalysed  phosphorylation of 3i43% /G0 = 3i43% ∗ ^Um∗ 

33.  3i43% ← L3i43% Dephosphorylation /G6 = L3i43% 

34.  ∅
fnj-

opq(F7 − 8)  Luciferase F7-8 signal /GG = cd^e 

35.  opq(d7 − 8) → ∅  Decay of luciferase signal /GH = opq(d7 − 8)  

36.  R4D + ]^3 → R4D:]^3 Binding /GI = R4D ∗ ]^3 

37.  R4D + ]^3 ← R4D:]^3 Dissociation   /GM = R4D:]^3 



Reaction 
No. 

Reaction Description Mass action flux terms 

38.     

39.  T44
+K7:*j)

T44L R4D:]^3 catalysed  phosphorylation of T44 /GN = T44 ∗ R4D:]^3 

40.  T44
j=l∗

T44L ^Um∗ catalysed  phosphorylation of T44 /GO = T44 ∗ ^Um∗ 

41.  T44 ← T44L Dephosphorylation /GP = T44L 

42.  Twx
aKKy:;8<=>?@ABC

LTwx T44L catalysed phosphorylation of Twx.  /HQ = Twx ∗ T44L + Twx 

43.  Twx ← LTwx Dephosphorylation /H0 = LTwx 

44.  cdwx + Twx → Twx:cdwx Binding /H6 = cdwx ∗ Twx 

45.  Twx:cdwx
aKKy:;8<=>?@ABC

LTwx:cdwx T44L catalysed  phosphorylation of	Twx /HG = Twx:cdwx ∗ T44L
+ Twx:cdwx 

46.  LTwx:cdwx → LTwx + cdwx Dissociation  /HH = LTwx:cdwx 

47.  ∅
fnKz

opq(E11 − 12)  Luciferase E11-12 signal /HI = cdwx 

48.  opq(_11 − 12) → ∅  Decay of luciferase signal /HM = opq(_11 − 12)  

49.  %& + ^D → %&: ^D Binding of Adenylyl Cyclase (^D, an enzyme) 
to %& 

/HN = %& ∗ ^D 

50.  %& + ^D ← %&: ^D Dissociation  /HO = %&: ^D 

51.  '()*+ + %&: ^D → ^D + %&: '()*+		 '()*+ will scavenge %& from complexes to 
give a %&: '()*+		complex 

/HP = '()*+ ∗ 	%&: ^D 

52.  R4^
h}:j7

R4^∗ Activation of Protein Kinase A (R4^) /IQ = R4^ ∗ %&: ^D 



Reaction 
No. 

Reaction Description Mass action flux terms 

53.     

54.  R4^ ← R4^∗ Dissociation  /I0 = R4^∗ 

55.  D#_x
+Kj∗

LD#_x R4^∗ catalysed  phosphorylation of D#_x  /I6 = D#_x ∗ R4^∗ 

56.  D#_x
789:78:789K

LD#_x DEF: DE: DEF4 (defined below) catalysed  
phosphorylation of D#_x 

/IG = D#_x ∗ DEF: DE: DEF4 

57.  D#_x ← LD#_x Dephosphorylation /IH = LD#_x 

58.  LD#_x + LD#_x → LD#_x: LD#_x Homerdimer formation /II = LD#_x ∗ LD#_x 

59.  D#_x + D#_x ← LD#_x: LD#_x Dissociation /IM = LD#_x: LD#_x 

60.  ∅
y7Jbz:y7Jbz

opq(A11 − 12)  Luciferase A11-12 signal /IN = LD#_x: LD#_x 

61.  opq(^11 − 12) → ∅  Decay of luciferase signal /IO = opq(^11 − 12)  

62.  DEF: DE + DEF4 → DEF: DE: DEF4 DEF: DE binding reversibly to DEF kinases 
(DEF4).  

/IP = DEF: DE ∗ DEF4 

63.  DEF + DEF4 ← DEF: DE: DEF4 Dissociation /MQ = DEF: DE: DEF4 

64.  F�Ä2:Å]^D
789:78:789K:;8<=>?@ABC

F�Ä2: LÅ]^D 

DEF: DE: DEF4 catalysed + background 
phosphorylation of Å]^D within the 
F�Ä2:Å]^D complex.  

/M0 = F�Ä2:Å]^D
∗ DEF: DE: DEF4
+F�Ä2:Å]^D 

65.  F�Ä2: LÅ]^D → F�Ä2 + LÅ]^D Dissociation /M6 = F�Ä2: LÅ]^D 



Reaction 
No. 

Reaction Description Mass action flux terms 

66.     

67.  Å]^D
789:78:789K:;8<=>?@ABC

LÅ]^D DEF: DE: DEF4 catalysed + background 
phosphorylation of free Å]^D 

/MG = Å]^D ∗ DEF: DE: DEF4
+ Å]^D 

68.  LÅ]^D → Å]^D Background dephosphorylation /MH = LÅ]^D 

69.  F�Ä2 +Å]^D →F�Ä2:Å]^D Binding of myocyte enhancer factor-2 (F�Ä2) 
to Å]^D.  

/MI = Å]^D ∗ F�Ä2 

70.  ∅
9ÇÉ6

opq(E3 − 4)  Luciferase E3-4 signal /MM = F�Ä2 

71.  opq(_3 − 4) → ∅  Decay of luciferase signal /MN = opq(_3 − 4)  

72.  %& + RT34 → RT34∗ Binding to give active phosphoinositol-3-
kinase (RT34∗).  

/MO = %& ∗ RT34 

73.  %& + RT34 ← RT34∗ Dissociation /MP = RT34∗ 

74.  '()*+ + RT34∗ → RT34 + %&: '()*+		 '()*+ will scavenge %& from complexes to 
give a %&: '()*+		complex. 

/NQ = '()*+ ∗ RT34∗ 

75.  RTR2
+aGK∗

RTR3 RT34∗  catalysed production of inositol lipid 
RTR3 from RTR2 

/N0 = RTR2 ∗ RT34∗ 

76.  RTR3 → RTR2 Catalysed by PTEN (assumed constant) /N6 = RTR3 

77.  RTR3 → ∅  Background decay/utilisation /NG = RTR3  

78.  RTR3 + ^Um + R]4 → ^Um∗ Activation of ^Um.  /NH = RTR3 ∗ ^Um ∗ R]4 

79.  RTR3 + ^Um + R]4 ← ^Um∗ Dissociation /NI = ^Um∗ 



Reaction 
No. 

Reaction Description Mass action flux terms 

80.     

81.  xe4 + RTR3 → xe4: RTR3 Reversible binding of RTR3 with Bruton’s 
tyrosine kinase (xe4).  

/NM = xe4 ∗ RTR3 

82.  xe4 + RTR3 ← xe4: RTR3 Dissociation  /NN = xe4: RTR3 

83.  ^ed2
z-K:+a+G:;8<=>?@ABC

L^ed2 xe4: RTR3 catalysed phosphorylation of 
activating transcription factor 2 (^ed2).  

/NO = ^ed2 ∗ xe4: RTR3 + ^ed2 

84.  ^ed2 ← L^ed2 Dephosphorylation /NP = L^ed2 

85.  ∅
yj-n6

opq(A1 − 2)  Luciferase A1-2 signal /OQ = L^ed2 

86.  opq(^1 − 2) → ∅  Decay of luciferase signal /O0 = opq(^1 − 2)  

87.  ∅ ↔ !  Basal degradation of ligand (and basal 
synthesis during infusion simulations)  

/O6 = UG − !  

  

 

 

 

 

 

 

 



Table S2, related to Figure 1: List of pathway moieties. Each equation represents a fixed total amount based on a sum of related variables. 

1 %&l@l8Ü = %& + #: %&: '()*+ + %&: '()*+ + %&: ^D + RT34∗ +
3#42∗  

14 cdwxl@l8Ü = cdwx + Twx:cdwx + LTwx:cdwx  

2 #l@l8Ü = # + !: # + L!: # + #: %&: '()*+  15 ^Dl@l8Ü = ^D + %&: ^D  

3 '(l@l8Ü = '()-+ + '()*+ + R!D: '()-+ + #: %&: '()*+ +
%&: '()*+ = %&l@l8Ü  

16 R4^l@l8Ü = R4^ + R4^∗  

4 3#42l@l8Ü = 3#42 + 3#42∗  17 D#_xl@l8Ü = D#_x + LD#_x + 2LD#_x: LD#_x  

5 R!Dl@l8Ü = R!D + R!D: '()-+ 18 DEF4l@l8Ü = DEF4 + DEF: DE: DEF4  

6 _#l@l8Ü = _#	 + 	TR3: _#  19 Å]^Dl@l8Ü = Å]^D + LÅ]^D +F�Ä2:Å]^D +F�Ä2: LÅ]^D  

7 DEFl@l8Ü = DEF + DEF: DE + DEF: DE: Dc +
DEF: DE: DEF4  

20 F�Ä2l@l8Ü = F�Ä2 +F�Ä2:Å]^D +F�Ä2: LÅ]^D  

8 Dcl@l8Ü = Dc + DEF: DE: Dc  21 RT34l@l8Ü = RT34 + RT34∗  

9 cd^el@l8Ü = cd^e + Lcd^e  22 ^Uml@l8Ü = ^Um + ^Um∗  

10 3i43%l@l8Ü = 3i43% + L3i43%  23 R]4l@l8Ü = R]4 + ^Um∗  

11 R4Dl@l8Ü = R4D + R4D:]^3  24 xe4l@l8Ü = xe4 + xe4: RTR3  

12 T44l@l8Ü = T44 + T44L  25 ^ed2l@l8Ü = ^ed2 + L^ed2  

13 Twxl@l8Ü = Twx + LTwx + Twx:cdwx + LTwx:cdwx    

 

 

 



Table S3, related to Figure 2: Pathway model ODEs (large-scale continuum approximation). The systems of ODEs representing the 
histamine H1 receptor signaling pathway are provided below. á[â]/ám represents the rate of change of variable â over time, m. Note that reaction 
/(å) corresponds to reaction å in Table S1.  

Ordinary Differential Equations 
á[!]
ám

	= 	/(82) 	− 	/(1) 
á[%&]
ám

	= 	/(1) 	+ 	/(3) 	+ 	/(48) 	+ 	/(69) 	− 	/(2) 	− 	/(9) 	− 	/(47) 	− 	/(68) 

á !: #
ám

	= 	/(1) 	− 	/(6) 	− 	/(8) 

á %&: '()*+
ám

	= 	/(5) 	+ 	/(9) 	+ 	/(49) 	+ 	/(70) 	− 	/(10) 

á 3#42∗

ám
	= 	/(2) 	− 	/(3) 	− 	/(5) 

á '()*+
ám

	= 	/(4) 	+ 	/(12) 	− 	/(5) 	− 	/(9) 	− 	/(49) 	− 	/(70) 

á L!: #
ám

	= 	/(6) 	− 	/(7) 

á '()-+
ám

	= 	/(1) 	− 	/(4) 	− 	/(11) 

á RTR2
ám

	= 	/(13) 	+ 	/(72) 	− 	/(14) 	− 	/(15) 	− 	/(71) 

á TR3
ám

	= 	/(15) 	+ 	/(19) 	− 	/(16) 	− 	/(18) 

á ]^3
ám

	= 	/(15) 	+ 	/(36) 	− 	/(17) 	− 	/(35) 

á TR3: _#
ám

	= 	/(18) 	− 	/(19) 

á DE
ám

	= 	/(20) 	+ 	/(23) 	− 	/(21) 	− 	/(22) 

á DEF: DE
ám

	= 	/(22) 	− 	/(23) 	− 	/(24) 	− 	/(59) 

á DEF: DE: DEF4
ám

	= 	/(59) 	− 	/(60) 



Ordinary Differential Equations 
á DEF: DE: Dc

ám
	= 	/(24) 	− 	/(25) 

á Lcd^e
ám

	= 	/(28) 	+ 	/(29) 	− 	/(26) 	− 	/(27) 

á L3i43%
ám

	= 	/(30) 	+ 	/(31) 	− 	/(32) 

á opq(d7_8)
ám

	= 	/(33) 	− 	/(34) 

á R4D: ]^3
ám

	= 	/(35) 	− 	/(36) 

á T44L
ám

	= 	/(37) 	+ 	/(38) 	− 	/(39) 

á Twx: cdwx
ám

	= 	/(42) 	− 	/(43) 

á LTwx: cdwx
ám

	= 	/(43) 	− 	/(44) 

á LTwx
ám

	= 	/(40) 	+ 	/(44) 	− 	/(41) 

á opq _11_12
ám

	= 	/(45) 	− 	/(46) 

á %&: ^D
ám

	= 	/(47) 	− 	/(48) 	− 	/(49) 

á R4^∗

ám
	= 	/(50) 	− 	/(51) 

á LD#_x
ám

	= 	/(52) 	+ 	/(53) 	− 	/(54) 	− 	2 ∗ /(55) 

á LD#_x: LD#_x
ám

	= 	/(55) 	− 	/(56) 

á opq ^11_12
ám

	= 	/(57) 	− 	/(58) 

á LÅ]^D
ám

	= 	/(62) 	+ 	/(63) 	− 	/(64) 

á F�Ä2: Å]^D
ám

	= 	/(65) 	− 	/(61) 

á F�Ä2L: Å]^D
ám

	= 	/(61) 	− 	/(62) 



Ordinary Differential Equations 
á opq _3_4

ám
	= 	/(66) 	− 	/(67) 

á RT34∗

ám
	= 	/(68) 	− 	/(69) 	− 	/(70) 

á RTR3
ám

	= 	/(71) 	+ 	/(75) 	+ 	/(77) 	− 	/(72) 	− 	/(73) 	− 	/(74) 	− 	/(76) 

á ^Um∗

ám
	= 	/(74) 	− 	/(75) 

á xe4: RTR3
ám

	= 	/(76) 	− 	/(77) 

á L^ed2
ám

	= 	/(78) 	− 	/(79) 

á opq ^1_2
ám

	= 	/(80) 	− 	/(81) 

 

 

 

 



2 Tissue-specific dose-response relationship derivation 
Lisuride response in CHO cells can be described as a function of lisuride concentration (! 
[mol/L]) as shown in equation (S1) for the parameters given in Table S4 based on data 
obtained by DiscoverX dose response assay (Figure S1).  

 
"#$%&'$#% = *+' +	

*./ −*+' !1

23451 	+	!1
 (S1) 

 

Table S4, related to Figure 6: Agonist response parameters. Parameter values used to 
describe the dose-response curve in Figure S1. 
Parameter Description Value Units 
*+'  Minimum response 7.98 % / 
*./  Maximum response 36.55 % / 
2345  Effective concentration 1.076 × 10-8 mol/L 
'  Hill coefficient 0.8411 / 
 

 

 

 

 Figure S1, related to Figure 6: Ligand and agonist dose response assay. 
Dose response assays (DiscoverX) were used to calculate relevant EC50 values 
for both ligand (histamine) and agonist (lisuride). 

 

2.1 Defining the EC50 values for different cells and tissues 

We can describe the number of bound receptors using the equilibrium Langmuir-Hill 
equation: 

"67819 = ":7:;<
!

=> + !
 

where ":7:;< represents the total number of receptors (bound + unbound), ! represents ligand 
concentration and => is the dissociation equilibrium value.  



In CHO cells, let ":7:;< = ":7:;<?@A . For the ligand concentration that causes 50% maximal 
response (i.e. ! = 2345?@A) we can derive the corresponding amount of bound receptors, 
"67819?@A

45, namely: 

"67819?@A
45 = ":7:;<?@A 2345?@A

=> + 2345?@A
	. 

We would expect the 2345 value to vary between tissues, being dependent on the relative 
amount of receptors in that tissue. But for simplicity we will assume that the amount of 
bound receptors required for a half-maximal response is the same, i.e. "67819?@A

45 =
"67819CD
E (for tissue +). Therefore, for tissue + we have a total number of receptors, ":7:;<E , and 

a new 2345 value, 2345E  defined as below: 

"67819E
45 = ":7:;<E 2345E

=> + 2345E
= ":7:;<?@A 2345?@A

=> + 2345?@A
	, 

⇒ 2345E =
=>2345?@A

":7:;<
E/?@A => + 2345?@A − 2345?@A	

	, 

where ":7:;<
E/?@A = ":7:;<E /":7:;<?@A . 2345?@A is equal to the 2345 found in Table S4 and using the 

measured => for lisuride, we can modify our EC50 value for each tissue and update our dose 
response function in equation (S1) by measuring the relative amount of receptors in tissue + 
compared to CHO cells, ":7:;<

E/?@A.  

 

  



3 Identifiability Analysis 
Pathway moieties were optimised to fit the steady state fold-changes of the transcription 
factors (Figure 2 of the main manuscript). Due to the nature of the approach taken 
(maximising network/pathway connectivity information rather than focusing on dynamics 
with a minimal model), there is an inevitable issue with model parameterisation. We have 
made efforts to find the global optimum for the parameter set through Latin hypercube 
sampling, but it is clear that other parameterisations could give fits that would at least look as 
good (by eye) and fit well within any expected variation from the biology/experimental error.  

A profile likelihood estimation method was employed to determine parameter identifiability 
analysis and, as expected, the results indicate that the parameters are not uniquely identifiable 
for such a problem since the number of free parameters far outnumber the number of data. 
The analysis was performed using Data2Dynamics software (Raue et al., 2013, Raue et al., 
2015) and the profile likelihood method to analyses parameter identifiability, as developed by 
Prof Jens Timmer’s group in Freiburg (Raue et al., 2009, Maiwald et al., 2016). The results 
of this identifiability analysis are illustrated in Figure S2.  

Additionally, local sensitivity analysis indicates that, in line with the complementary MCA 
method (as described in the main manuscript), it is the nodes that are relatively close to the 
transcription factor signal that dominate the subsequent expression following receptor 
activation. These fairly intuitive results suggest that errors arising due to parameter changes 
throughout the system can be mitigated for in order to achieve the same fold-changes seen 
experimentally, provided that (a) other parameters are also changed (in the case of sensitive 
proximal nodes) or (b) because their values are not having a large effect on the downstream 
signal (distal nodes). This emphasises the importance of the use of MCA in the proposed 
methodology as a means of identifying any distal nodes that do affect transcription factor 
signal, as identified in the paper. Of course, to acquire identifiable parameters, far more data 
would be needed (than is available for such a complex network) or typically, a minimal ODE 
model would be constructed that significantly reduces the number of variables and 
parameters that cannot be identified with given data. This minimal approach would 
potentially be useful for answering questions about the dynamics of the H1-histamine 
signalling pathway for a very specific scenario and/or ligand. However, this approach would 
be limited when trying to identify off-target receptor toxicity. 



 
Figure S2, related to Figure 2: Identifiability analysis for the H1 Histamine pathway 
Petri net. Briefly, following the identification of a globally optimal parameter set each model 
parameter is perturbed within a prescribed range, one parameter at a time. Starting from the 
optimal value, a single parameter is perturbed, set to be fixed at the new and non-optimal 
value, and the model is then re-fit, i.e. by optimising all other parameters. Then 
corresponding likelihood values are plotted for this new fit. Analysis was conducted using the 
profile likelihood method in Data2Dynamics software, solved in MATLAB 2017b. 
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