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ABSTRACT: In this study, variations in the free radical
concentration, degree of swelling (Q), and extraction yield of
Buertai coal (C%, 80.4%) in 11 solvents with different character-
istics were determined to investigate the interaction between the
coal and solvent, as well as the bond cleavage during solvent
extraction. Derivative thermogravimetry (DTG) results for the
residues and raw coal were compared to confirm whether the
covalent bond breaks during solvent extraction. The free radical I
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concentration decreases in certain solvents but increases in a few Coal
others. The relative free radical concentration, Q, and extraction

yield are positively correlated. The charge-transfer capability of the

solvent, and in particular its electron-donating capability, plays an essential role in influencing the interaction between the coal and
solvent. The increase in the free radical concentration during solvent extraction can be attributed to (1) the formation or
decomposition of charge-transfer complexes, (2) dissociation of charge-transfer complexes into radical ions, and (3) breakage of
weak covalent bonds. DTG results show the occurrence of weak covalent bonds breakage at temperatures of 133.9—320.1 °C during

solvent extraction due to the reduction of the bond energy caused by the formation of radical ions.

1. INTRODUCTION

Coal is an important fossil fuel with a complex structure
consisting of a macromolecular phase connected by cross-links,
forming a three-dimensional network and a small molecular
phase." The two phases are mainly connected by noncovalent
bonding forces such as van der Waals forces, hydrogen bonds,
m—nm interactions, and charge-transfer interactions.”™> The
solvent extraction of coal is an important process to investigate
the molecular structure of coal’® extraction and refining of
organic matter in coal,’”” and pretreatment of coal.'’”"*

Solvent properties play an important role in solvent
extraction. The viscosity of solvents affects solvent penetration
and extractive diffusion; for example, the extraction yield of
CS,/N-methyl pyrrolidone (NMP) is high because the
addition of CS, reduces the viscosity of the NMP solvent,
enabling the penetration and diffusion of the solvent."
Chemical properties influence the interaction between coal
and the solvent, resulting in different weakening effects on the
cross-links in coal, thereby affecting the extraction yield and
swelling. For example, the extraction yields of Buertai (BET)
coal (C%: 80.4%) in n-hexane, toluene, tetralin, tetrahydrofur-
an (THF), and NMP solutions at room temperature are 0.7,
1.2, 1.2, 1.9, and 6%, respectively,'* and the degrees of swelling
of Illinois No. 6 coal (C%: 80.6%) at 20 °C after 10 days of
storage in methanol, ethanol, I-propanol, 1-butanol, #-
propylamine, n-butylamine, and n-hexylamine are 1.23, 1.24,
1.36, 1.34, 2.45, 2.64, and 3.19, respectively.15
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When a solvent penetrates coal, the interaction between the
solvent and coal molecules would negatively affect the
interactions among the coal molecules, causing changes in
the three-dimensional structure of coal.'"'® Most researchers
believe that covalent bonds break only at 300 °C or above
because of their relatively higher energy. Therefore, many
phenomena such as swelling and an increase in the extraction
yield at elevated temperatures are primarily attributed to the
breakage of noncovalent bonds,"”™*° which possess lower
energy. Mathews et al.”” extensively summarized the literature
and noted that the higher extraction yields (>20%) could be
attributed to hydrogen bond breakage rather than covalent
bond breakage in coal. However, they noted that the influence
of covalent bond breakage on the increase in the solvent
extraction yield at temperatures higher than 350 °C remained
unclear. Chen et al."® proposed that the swelling of coal was
mainly induced by the breakage of noncovalent bonds, such as
hydrogen bonds and bonds held together by van der Waals
forces. Zhang et al.”' reported that the dissolution behavior of
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low-molecular-weight compounds in coal is essentially
determined by the strength of noncovalent interactions
between such compounds and the macromolecular structure
of coal.

However, some studies have shown that covalent bonds
break at low temperatures. Lv et al.”* found that the oxidation
of Yanshan petroleum coke with sodium hypochlorite at 30 °C
can produce various arene carboxylic acids and that O,e™ plays
an essential role in the depolymerization of condensed
aromatic moieties. Yi et al.”® reported that a Se—N covalent
bond with an estimated bond energy of 46.11 kcal mol™" could
be dynamically cleaved by heating or treatment with stronger
electron-donating pyridine derivatives. Kozlowski et al.**
reported the breakage of the C—C bond in the reduction
reaction of a K/liquid ammonia system. Xiong et al*
indicated that H,O, breaks the bridge bonds and side chains
connected to aromatic clusters during the oxidation of coal
with H,0, at 60 °C. Our previous studies found that the free
radical concentrations of the three coals increased during
solvent extraction with NMP.'* The increase is likely due to
the breakage of weak covalent bonds, as covalent bond
breakage always generates free radicals. However, aspects such
as the mechanism for the breakage of weak covalent bonds
during solvent extraction and further elucidation explaining the
increase in the free radical concentration during solvent
extraction remain to be addressed.

To overcome these challenges, it is important to first
understand the interaction between the solvent and coal during
solvent extraction. Therefore, in this study, 11 solvents with
different properties were used for the solvent extraction of BET
coal. The changes in the free radical concentrations, degree of
swelling (Q), and extraction yields were determined to
investigate the interaction between the solvents and coal, as
well as the bond cleavage in coal. To confirm the occurrence of
covalent bond cleavage during solvent extraction, the derivative
thermogravimetry (DTG) results for the residues after solvent
extraction were acquired and compared with that of raw coal.

2. RESULTS AND DISCUSSION

2.1. Changes in the Free Radical Concentration and
Q during Solvent Extraction. Based on testing, the solvents
contained no free radicals, and none were produced after
storage at room temperature. The BET coal inherently
possesses many free radicals, the concentrations of which
remain unchanged after a while. Interestingly, we found that
when solvents were added to the BET coal, its free radical
concentration changed over time, even at room temperature
(Figure 1). The variation in the free radical concentration was
different for different solvents. According to Figure 1, the
changes in the free radical concentration of the BET coal can
be approximately classified into three stages during solvent
extraction. For n-hexane, benzene, and toluene, the free radical
concentrations decrease gradually over time; for ethanol, 1,4-
dioxane, THF, and acetone, the free radical concentrations
decrease first and then increase slightly after 10 h of solvent
extraction but are lower than the original values; for DMF,
dimethyl sulfoxide (DMSO), pyridine, and NMP, the free
radical concentrations increase gradually up to 30% over time.

The decrease in the free radical concentration can be
attributed to the combination of free radicals."**® In the coal
structure, small and medium-sized molecules are embedded in
the macromolecular network of coal via noncovalent bonds.
During solvent extraction, the interactions between the coal
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Figure 1. Variation in the free radical concentration during solvent
extraction.

and solvent inhibit those between the small molecules and the
macromolecular network structure. When the small molecules
separate from the macromolecular network of coal, the radicals
on the small molecules and the macromolecular network of
coal are exposed, enabling their binding.

An increase in free radical concentration always means the
generation of free radicals caused by the breakage of the
covalent bond.”” However, typically, covalent bond cleavage is
not considered during solvent extraction. Therefore, it is
difficult to understand the reason for the increase in the radical
concentration during solvent extraction; the same will be
discussed later.

By observing the changes in the free radical concentration
during solvent extraction, we found that the coal swelled in the
sample tube. The Q values of the coal samples were
subsequently determined and calculated. Figure 2 shows that
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Figure 2. Changes in Q during solvent extraction.

the coal samples swell significantly in NMP, DMSO, 1,4-
dioxane, DMF, and pyridine; swell moderately in toluene,
THEF, benzene, and ethanol; and swell slightly in acetone and
n-hexane. Q increases with time for solvents such as NMP,
DMSO, 1,4-dioxane, and DMF, but decreases with time for the
other solvents. It is generally considered that during solvent
extraction, the solvents penetrate the coal, break the non-
covalent bonds, and reduce the cross-linking density of the
coal.”® Consequently, the structure of the coal is fully stretched
and relaxed, leading to the swelling of the coal.'® This can be
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Figure 3. SEM images of (A) coal and residues (B) after NMP extraction and (C) after THF extraction: (1) X1.0k; (2) X4.0k; and (3) x10.0k.

verified by the scanning electron microscopy (SEM) images of
the residues (Figure 3). According to Figure 3, the residue
after NMP extraction has a looser structure and more debris
than the raw coal.

The decrease in Q in this experiment was unusual. Two
possible reasons could explain this phenomenon. The first is
that the amount of solvent penetrating the coal structure is
lower than the amount of coal dissolved in the solvent during
solvent extraction, which leads to the collapse of the coal
structure. According to the SEM images of the residue after
THF extraction (Figure 3), the residue has more gaps, but the
lumpy part is denser in structure compared with the raw coal,
which confirms the above speculation. The collapse of the coal
structure further led to the combination of free radicals during
solvent extraction, especially in the macromolecular network of
coal. The second reason is the settling of pulverized coal over
time because the experiment was carried out in a closed glass
tube, and it was impossible to perform centrifugation before
measuring the height.

The extraction yields were also detected and compared with
the experimental results shown in Figures 1 and 2. Solvents
with a high Q, such as NMP and DMF, were found to possess a
high relative radical concentration and high extraction yield.
Therefore, we correlated the data for Q, the extraction yield,
and relative free radical concentration on the 10th day of
solvent extraction (Figure 4). From Figure 4, we found that
solvents with a high Q always exhibit an increased free radical
concentration and high extraction yield. This phenomenon
indicates that solvent extraction is not merely a simple physical
process. It is inevitably accompanied by the destruction of
some kind of force in the coal molecule. Simultaneously,
solvent properties are an essential factor affecting the
extraction process.
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Figure 4. Relationships among the relative radical concentration, Q,
and extraction yield on the 10th day of solvent extraction.

2.2, Effect of Solvent Properties. According to previous
reports, solvent properties such as solubility,”” viscosity,
polarity,® electron-donating capacity, and electron-accepting
capacity’' possibly affect the interaction between the coal and
solvent during solvent extraction. The effects of these solvent
properties on the variation in the radical concentration and
swelling were also studied. Since the solvent properties have
similar effects on the radical concentration and swelling, we
discuss only one of them in this paper.

The results in Figure S5 show that the free radical
concentrations approximately increase with the solubility
parameters, viscosity, solution dielectric constant, electron
donor number (DN), electron acceptor number (AN), and the
DN—AN of the solvents, except for ethanol. The solubility
parameters reflect the solubility of coal in solvents and follow
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Figure 5. Relationships between solvent properties and free radical concentration.

the rule of “like dissolves like”. The solubility parameter of coal
is ~25 MPa'/2,**** which is closest to that of DMF, among all
solvents; however, the free radical concentration of coal is not
the highest in the DMF solution. Physically, the viscosity of the
solvent affects solvent penetration and extractive diffusion, and
high viscosity is unfavorable for the extraction process;
however, the free radical concentration increases with the
viscosity. These phenomena indicate that the solvent
extraction of coal is a physical process accompanied by
chemical changes. The dielectric constant reflects the polarity
of a solvent. The higher the polarity of a solvent, the easier it is
to acquire or lose electrons. The DN, AN, and DN—AN are
parameters that directly reflect the capability of the solvents to
donate and accept electrons.

In Figure S, the free radical concentration exhibits the best
regularity with the data for DN and DN—AN. Thus, we can
conclude that solvent extraction is mainly affected by the
charge-transfer capability. For ethanol, the solubility and AN
are high, whereas the polarity and DN are low, and hence, the
radical concentration of the coal is low. These results indicate
that the electron-donating capability plays an essential role in
influencing the interaction between coal and solvent. Bodzek et
al.”” revealed that a higher extraction yield is obtained for a
solvent with higher electron-donating ability, and the
extraction can be regarded as a substitution reaction between
the electron-donating solvent molecules substituted with
electron-donating fragments of coal. Szeliga et al.”* reported
that the swelling of coal was strongly correlated with the
electron-donating ability of the solvent. These observations are
consistent with the results of the present study.

2.3. Reasons for the Increase in Radical Concen-
tration. The decrease in the free radical concentration during
solvent extraction is easy to understand, as explained in the
preceding section. However, an increase in the same is
complex and difficult to understand. Analysis of the variation in
the free radical concentrations during solvent extraction helps
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enhance our understanding of the interaction between the coal
and solvent. Therefore, in this section, we attempt to elucidate
why the free radical concentration increases during solvent
extraction.

2.3.1. Formation or Decomposition of Charge-Transfer
Complexes. As shown in Figure 5, the free radical
concentration increases with the DN and DN—AN of the
solvents. Charge transfer is among the predominant routes for
noncovalent coal—coal interactions in the BET coal.”**> When
solvents with electron-donating and electron-accepting capa-
bilities are added to the coal, the interactions between the
solvents and the coal may inhibit those among the coal
molecules, forming new charge-transfer complexes that replace
the coal—coal complexes.*® The substituted fragments of coal
can be molecules with or without free radicals. Further, the
formation or decomposition of charge-transfer complexes may
release radicals, leading to an increase in the radical
concentration.

Oxygen adsorption is also a charge-transfer process.”’
Oxygen is an electron acceptor and can combine with an
electron-donating group (molecules or radicals) in the coal to
form coal—oxygen complexes.”®*” Dack et al.*’ reported that
free radicals responsible for the narrow signal in brown coal
electron spin resonance (ESR) spectra interact reversibly with
atmospheric oxygen because of the formation of coal—oxygen
complexes during coal oxidation. To analyze the change in the
free radical concentration during charge transfer, we can
investigate such a change during the adsorption or desorption
of oxygen by coal.

Because coal samples may be repeatedly exposed to oxygen
during mining, transportation, and laboratory storage, we used
fresh semicoke produced by pyrolysis at 600 °C to investigate
the change in the free radical concentration during oxygen
absorption and desorption by in situ ESR. The oxygen
absorption was performed by exposing the sample tube with
semicoke to air, and deoxygenation was achieved by purging
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the sample tube containing semicoke (which was oxygenated)
with nitrogen. The results are shown in Figure 6. The free
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Figure 6. Variation in the free radical concentration during oxygen
absorption and desorption.

radical concentration of semicoke decreases after oxygen
absorption and increases after deoxidation but changes slightly
when sealed in the tube without oxygen. Bradbury et al.*’ and
Xiang et al.*' also showed that the radical concentration of
chars decreased considerably by oxygen adsorption but
increased by nitrogen purging. These phenomena can be
attributed to the formation and decomposition of coal—oxygen
complexes,””**** similar to the formation and decomposition
of charge-transfer complexes in the solvent extraction of coal.

2.3.2. Dissociation of the Charge-Transfer Complexes.
The newly formed charge-transfer complexes may also
dissociate into radical cations and radical anions under certain
conditions,**** as shown in formula 1

D4+A 2D:—> A - De + Ae” (1)

where D is the electron donor, A is the electron acceptor, and
D:—A is the charge-transfer complex. Some small radical ions
are annihilated by the coupling reaction, but some with high
steric hindrance may exist stably in the system, leading to an
increase in the radical concentration. Miyajima*® found that
when iodine was introduced into coal tar pitch (CTP) at room
temperature, charge-transfer complexes were formed, and the
radical concentration of the CTP increased. Further, hyperfine
sublevel correlation spectroscopy detected a radical cation with
a relatively high molecular weight. Therefore, the dissociation
of the charge-transfer complexes can lead to an increase in the
radical concentration.

2.3.3. Breakage of Weak Covalent Bonds. The formation
of radical ions after charge transfer can significantly relax
chemical bonds.*”™* This relaxation is beneficial to the
breakage of chemical bonds and can lead to the swelling of the
coal. Pruitt™ and Xue’' reported that the bond energy is
significantly reduced after the formation of free radical cations
or anions through charge transfer. For example, the bond
dissociation energies of C—H, C—He", and C—He™ in
xanthene are 75, 41, and less than 43 kcal mol™, respectively.
The decrease in the bond energy assists covalent bond
breakage during solvent extraction.

To verify the occurrence of covalent bond cleavage during
solvent extraction, DTG plots of the BET coal were compared
with those of the residue after 10 days of solvent extraction,
and the results are shown in Figure 7. Compared with the raw
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Figure 7. DTG curves of raw coal and residues.

coal, all residues showed a prominent weight loss at
temperatures of 133.9—320.1 °C. Note that the weight loss
at 133.9—320.1 °C did not represent the weight loss of the
solvents because the solvents were removed. In our previous
study,* we found that the free radical concentrations increased
with time at 85 °C using THF as the solvent and increased
with the time and temperature when using NMP. The increase
in the radical concentration, combined with the weight loss
shown in Figure 7, indicates the occurrence of covalent bond
breakage at temperatures of 133.9—320.1 °C or even lower
during solvent extraction. The breakage of covalent bonds
during solvent extraction is related to the formation of radical
ions during charge transfer.

2.4. Mechanism for Increase in Radical Concentra-
tion. According to the above analysis, the mechanistic diagram
describing free radical production during solvent extraction has
been proposed, as shown in Figure 8. In Figure 8, Process ©®

formation or decomposition D: —A
D+A ;1‘ D:—A
2 l dissociation of D: A
De +AS
l covalent bond breakage
of De* and/or Ae-

R, Ry......

Figure 8. Mechanistic diagram of the free radical production during
solvent extraction. R: radicals.

refers to the formation or decomposition of the charge-transfer
complex; Process @ refers to dissociation of the charge-transfer
complex into radical ions; and Process @ refers to covalent
bond breakage of the radical ions because the formation of the
radical ions reduces the energy of the bond. Processes @, @,
and @ all lead to an increase in radical concentration.

3. CONCLUSIONS

In this study, the BET coal (C%, 80.4%) was extracted using
11 solvents with different characteristics to analyze the
interactions between the coal and solvents with respect to
the free radicals. The trend in the variation of the free radical
concentration of coal differed for the different solvents: in
hexane, benzene, and toluene, the free radical concentration
gradually decreased; in ethanol, 1,4-dioxane, THF, and
acetone, the free radical concentration first decreased and
then slightly increased after 10 h of solvent extraction; in DMF,
DMSO, pyridine, and NMP, the free radical concentration
gradually increased. The decrease in the radical concentration
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Table 1. Proximate and Ultimate Analysis Results for the BET Coal”

proximate analysis (wt/%)

ultimate analysis (wt/%)

Mad Aad
9.67 16.21

Vad
27.44

FC,q
46.68

Cdaf
79.29

Haat
3.95

Ojaf
15.08

Ndaf
1.19

St,daf
0.49

“Note: M: moisture; A: ash; V: volatile; FC: fixed carbon; ad: air dry; daf: dry and ash-free; t: total; *: difference.

Table 2. Properties of the Solvents

52,53

Solubility Viscosity Dielectric
Name Formula parameters constant  pyNps2. 53 ANS2 53
(MPa'”2) (25 °C, mPa-s) 25 %)
n-Hexane _~_~_~ 149 0.296 1.90 0.0 8.2
Benzene @ 18.8 0.606 2.27 0.1 10.8
Toluene ©/ 18.2 0.548 2.38 -- 0.0
Ethanol " on 26.0 1.057 24.30 20.5  37.1
1,4- o
{j 20.5 1.211 2.21 14.8 12.5
Dioxane o
O
THF 18.6 0.465 7.39 20.0 8.0
[0}
Acetone )J\ 20.3 0.308 20.50 17.0 16.0
CH;
DMF me—t—c—o  24.8 0.843 36.71 26.6 19.3
(0]
DMSO /!\ 29.7 1.968 48.90 29.8 14.2
H;C CH,
~
Pyridine [ _ 21.9 0.898 1230 331 133
NMP o~ 23.1 1.650 3200 273 140

in coal can be attributed to the binding reaction of free
radicals; however, the increase in the radical concentration is a
relatively complex mechanism. The relative free radical
concentration, Q, and extraction yield were positively
correlated. The charge-transfer capability, particularly the
electron-donating capability of the solvent, influences the
interaction between the coal and solvent. The increase in the
free radical concentration during solvent extraction can be
attributed to (1) the formation or decomposition of charge-
transfer complexes, (2) dissociation of charge-transfer
complexes into radical ions, and (3) breakage of weak covalent
bonds at temperatures of 133.9—320.1 °C or even lower during
solvent extraction due to the reduction of the bond energy

caused by the formation of radical ions. These findings are
essential for a better understanding of the solvent extraction
process, the choice of solvents for the extraction or
pretreatment of coal, and the enhancement of the extraction

yield.

4. EXPERIMENTAL SECTION

4.1. Materials. The coal used in this study was the BET
coal. Its proximate analysis (following the China National
Standard GB/T 212-2008) and ultimate analysis results are
shown in Table 1. The coal was ground and sieved to a size of
0.106—0.125 mm and dried at 110 °C under a vacuum for 6 h
before the extraction experiments.
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The solvents used were benzene, toluene, n-hexane, 1,4-
dioxane, ethanol, acetone, THF, DMF, dimethyl sulfoxide
(DMSO), pyridine, and NMP. These solvents were of
analytical reagent grade, and their properties are shown in
Table 2.

4.2, Radical and Swelling Analysis during Extraction.
A coal sample (S mg) and solvent (60 uL) were loaded in a
glass capillary (2 mm in diameter) and sealed after purging
with N, for a few minutes. The glass capillary-loaded samples
were then inserted into a sample tube for ESR measurements
(E-Scan, Bruker). The ESR measurements were performed at
regular intervals at 25 °C. Blank experiments were also
performed. The radical concentration data are represented as a
percentage with respect to the initial value before extraction to
avoid small differences in the sample loading.

The heights of the coal samples were also recorded after
each radical measurement, and the Q of the coal samples was
calculated by

Q = h/hy )

where £, is the height of the coal sample at time t and hy is the
initial height of the coal sample.

4.3. Determination of the Extraction Yield. The
extraction experiments were carried out in a closed tube to
ensure consistency with the aforementioned experiments. The
coal sample (50 mg) and solvent (0.6 mL) were added to the
tube, following which the tube was sealed and stored at room
temperature for 10 days. Subsequently, the slurry was filtered,
and the residue was washed with ethanol and water and dried
at 75 °C for 6 h under a vacuum. Finally, the residue was
weighed, and its mass was labeled as mgq,.. The extraction
yield was determined by

Meoal ~ Miesidue

mcoal(l - Aad - Mad) (3)

extraction yield =

where m,,, is the mass of the coal material dried at 110 °C for
6 h.

4.4. Analysis of the residues. The morphology of the
residues was evaluated by SEM (SU8010), and the thermal
weight loss of the residues was analyzed by thermogravimetry
(TG) using a thermogravimetric analyzer (STA449F3;
NETZSCH).
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