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We present a new analysis tool for cervical flexion-extension radiographs based on machine vision and computerized image
processing. The method is based on semiautomatic image segmentation leading to detection of common landmarks such as the
spinolaminar (SL) line or contour lines of the implanted anterior cervical plates. The technique allows for visualization of the local
curvature of these landmarks during flexion-extension experiments. In addition to changes in the curvature of the SL line, it has
been found that the cervical plates also deform during flexion-extension examination. While extension radiographs reveal larger
curvature changes in the SL line, flexion radiographs on the other hand tend to generate larger curvature changes in the implanted
cervical plates. Furthermore, while some lordosis is always present in the cervical plates by design, it actually decreases during
extension and increases during flexion. Possible causes of this unexpected finding are also discussed.Thedescribed analysismay lead
to a more precise interpretation of flexion-extension radiographs, allowing diagnosis of spinal instability and/or pseudoarthrosis
in already seemingly fused spines.

1. Introduction

Spinal surgeries involving fusion of one or more vertebral
pairs are among the most costly surgeries in the United States
associated with the treatment of back pain and degenerative
spine diseases. More than 80 percent of the population
at some point in their life will be affected by back pain,
which results in more than $100 billion in annual back
pain related health-care expenses in the US alone. Spinal
fusion surgeries, initially developed for the treatment of
spinal fractures, tumor surgeries, and congenital deformities,
are increasingly being used in the treatment of degenerative
diseases of the spine [1, 2]. A common complication of
spinal fusion is the absence of fusion, that is, the formation
of pseudoarthrosis (artificial joint). Failed spinal surgeries
due to the failure of fusions remain a serious problem that
requires a revision surgery. For the cervical spine, the annual
reoperation rate ranges between 2.5% and 6.9% based on
reports from different studies [3, 4].

Computed tomography and X-ray image analyses are
the main diagnostic tools for determining the cause of a
failed spine surgery. Computed tomography (CT) scans can
produce a more direct observation of fusion; however, the
presence of metallic constructs and opaque cage materials
oftentimes prevents direct observation [5]. Given the higher
radiation dose of CT scans, the most common follow-up
examination of cervical spine surgeries is still based on
flexion-extension radiographs. These exams use two main
fusion criteria [6, 7]. Both methods examine the relative
motion between fused vertebrae. The Simmons criterion
detects rotations of the fused vertebrae using manually
selected landmark points and postulates that relative rota-
tions exceeding 2∘ are considered as a sign of a failed fusion.
In Hutter’s method, the relative motion is examined via
superposition of the flexion and extension radiographs aimed
at visually observing motion between the vertebrae. Despite
their wide availability, flexion-extension radiographs remain
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difficult to interpret. In a study in 2007, seven trained radiolo-
gists and neurosurgeons independently examined 29 flexion-
extension radiographs of cervical spines with spine fusions.
The interobserver agreement on the presence/absence of
fusion was low (𝜅 = 0.17) [8]. In this paper, we present a new
analysis tool for cervical flexion-extension radiographs based
on machine vision and computerized image processing.
The method uses automatic image segmentation leading to
detection of common landmarks, such as the spinolaminar
(SL) line, known as the “fingerprint of vertebral trauma”
[9, 10]. The premise of this effort is that changes in the local
curvature of the spinolaminar line, as well as changes in
the location of the peak curvature, can be used to diagnose
trauma or possibly failure of fusion. However, validation of
this conjecture is beyond the scope of the present work and is
subject to future investigation.

Automatic image segmentation and identification of
anatomical landmarks have the advantage of eliminating the
subjectivity in the image analysis.The first attempt to develop
an automatic landmark detection system of cephalograms
was carried out by [11] using edge detection and line-
following algorithms. Subsequent improvements included
use of patternmatching techniques [12, 13]. Automatic extrac-
tion of bone contours and extraction of kinematic parameters
such as Cobb angle changes in spine have been demonstrated
by [14]. Their method was based on edge detection followed
by Hough transform to determine the slope; however, due to
irregular shapes of the vertebrae, the method failed to detect
the proper lines. A more complex statistical method of 3D
template matching was proposed for extracting 3D vertebreal
coordinates using 3D/2D registration of biplanar radio-
graphic images [15]. The method required the creation of a
database of 1020 thoracic and lumbar vertebrae, which were
then rescaled and projected onto the 2D radiographs until the
projections matched the edges of the actual vertebra. While
promising, the accuracy of the extracted parameters is not
yet known and the authors reported sensitivity to occlusions
from lungs or other organs requiring smoothing of the inter-
rupted lines. Furthermore the method is semiautomatic as
the process begins by manual identification of vertebral end-
plates [15]. In an effort to reduce computational demands, a
more recent study presented a semiautomatic analysis of the
cervical spine using Harris corner point detection algorithm
[16, 17]. This report for the first time demonstrates analysis
of global curvature change of the cervical spine using healthy
spines without degenerative conditions. In the case of fusion
surgeries on degenerated spines, the insertion of bone grafts
and other stabilization hardware often degrades the contours
of the vertebra making detection of sharp corners difficult. In
this paper, we present an alternative segmentation technique
based on themethod of𝐾-means clustering [18].Themethod
utilizes some basic scene knowledge characteristic for
flexion-extension radiographs to identify the spinolaminar
line formed by the high contrast of the base of the spinous and
transverse processes. With simple mirroring operation, the
presentedmethod is also suitable for identification and analy-
sis of the implanted hardware on the anterior side of the verte-
bral bodies, which can be used to analyze forces andmoments
acting on the hardware during flexion-extension motion.

2. Material and Methods

Deidentified flexion-extension radiographs were obtained
from the treating physician of patients who underwent
cervical spine fusions at the University of Arizona Medical
Center.

Image segmentation based on 𝐾-means clustering of
gray-scale intensity levels was applied to the images to classify
the pixels of the image Ω into 𝐾 pixel classes, 𝑆

𝑘
[19]:

Ω =

𝐾

⋃

𝑘=1

𝑆
𝑘
. (1)

The original image (see Figure 1(a)) and the resulting clusters
for 𝐾 = 4 are shown in Figures 1(b)–1(f) as black-and-
white masks. It can be noticed that, despite its simplicity,
this segmentationmethod captures the outline of the cervical
vertebrae in cluster 𝑆

3
(see Figure 1(d)). Furthermore, the

discontinuous north-west boundary of cluster 𝑆
3
captures the

spinolaminar line.
The optimal number of clusters 𝐾 and the mask 𝑆

𝑗
that

results in the best segmentation is determined empirically.
For all processed images, 𝐾 ∈ {4, 5, 6, 7} and 𝑗 ∈ {𝐾 −

1,𝐾 − 2}. In the subsequent steps, an algorithm to extract
the coordinates of the spinolaminar line is described. Let the
cluster of cervical vertebrae be represented by 𝑆

𝑗
(𝑗 = 3 in

this example). A morphological erosion of the inverse of 𝑆
𝑗
is

carried out using a disk structuring element𝐻with diameter
𝑑:

𝑀 = 𝑆
𝑗
⊖ 𝐻. (2)

The erodedmask𝑀 is then subjected to a two-pass connected
component labeling algorithm [20], implemented in the
MATLAB bwlabel command, in order to identify the three
largest regions 𝑅

1
, 𝑅
2
, and 𝑅

3
(see Figure 1(f)).The boundary

of the region closest to the upper left corner, 𝑅
1
, is then

used to select the points from the original cluster 𝑆
𝑗
. Prior

to detecting the nearest points, the mask 𝑀 is segmented
into closed boundaries (shown in blue in Figure 2(a)). Among
these boundaries only those lying within a distance 𝛿 are
considered part of the spinolaminar line (see points in green
in Figure 2(a)). The selected points are superimposed in red
over the original image in Figure 2(b). As evident, in addition
to the spinolaminar line, the selection includes a section
from the skull, as well as the T1 vertebrae. Figure 2(b) also
contains a curvature plot (green line), described in the next
section. At this stage, the selection of the region of interest
(ROI) encompassing the SL line is carried out manually (see
Figure 3(a)); however, automation is possible by identifying
the convex corner appearing between the skull and C1. Points
from the SL line within the ROI are then used to fit a sixth-
order polynomial 𝑓(𝑠), where 𝑠 is either an 𝑥 or 𝑦 coordinate.
The coefficients of the obtained polynomial are subsequently
used to obtain differential geometric parameters, such as local
curvature and slope.
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Figure 1: Image segmentation via𝐾-means clustering: (a) original image; ((b)–(e)) 𝑆
𝑘

, 𝑘 = 1 ⋅ ⋅ ⋅ 4, respectively; (f) inverse of 𝑆
3

after erosion.

3. Experimental

Themethod described in the previous section was applied to
two additional radiographs from the same subject. Figure 3
shows the resulting SL line segmentation. The parameters 𝐾,
𝑗, 𝑑, and 𝛿 for each image are listed in Table 1. The method
was tested on three additional subjects with cervical fusion
surgeries over a total of 6 additional images. The resulting
SL line and its curvature are shown in Figure 4, while the
image segmentation parameters are listed in the last six rows
of Table 1.

To analyze changes in the curvature of the selected SL line,
its points are ordered inmonotonically increasing order along
𝑥 or 𝑦 to allow curve-fitting. Any duplicates are removed.The
resulting set is used to fit a sixth-order polynomial in the form

𝑓 (𝑠) = 𝑎
6
𝑠
6

+ 𝑎
5
𝑠
5

+ 𝑎
4
𝑠
4

+ 𝑎
3
𝑠
3

+ 𝑎
2
𝑠
2

+ 𝑎
1
𝑠 + 𝑎
0
, (3)

where 𝑠 represents the ordered coordinate direction.The local
curvature is then computed using

𝑐 (𝑠) =

̈
𝑓

(1 +
̇

𝑓
2

)

3/2

, (4)

where ̇
𝑓 = 𝑑𝑓/𝑑𝑠. The resulting SL line fit and its curvature

are overlayed over the radiographs as dotted (magenta) and
continuous (green) traces, respectively (see Figures 2–4).
The curvature trace has been rescaled in nondimensional
units 5/𝐿, where 𝐿 is the length of the cervical plate in
each image. The curvature plots show a localized increase in
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Figure 2: Segmentation of SL line: (a) selection of contours within distance 𝛿 from 𝜎
1

= 𝜕𝑅
1

; (b) least-squares fit to SL line within ROI
(dashed line) and a scaled plot of local curvature of SL (continuous trace).
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Figure 3: Least-squares fitted SL line (dashed line) and resulting curvature (continuous line): (a) extension; (b) flexion.
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Figure 4: Fitted SL line (dashed line) and resulting curvature (continuous line) from a second subject: (a) flexion; (b) extension. Adjacent
levels are marked with A and B, respectively.

the local curvature at points adjacent to the cervical plate,
which is consistentwith the hypothesis of higher utilization of
adjacent segments and associated adjacent level disease [21].

4. Analysis

The proposed curvature analysis technique can be useful in
determining localmotion abnormalities. In clinical literature,
spinal curvature commonly implies changes of the intervert-
erbal angles (Cobb angles). The local curvature of a beam, 𝜅,

is related to the change of angular orientation of the tangent
line, 𝜃, through

𝜅 =

𝑑𝜃 (𝑠)

𝑑𝑠

, (5)

where 𝑠 is the arc-length coordinate along the beam. It is
apparent that, due to the additional differentiation in (5), the
curvature is more sensitive to changes than the angle 𝜃. It
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Figure 5: Fitted plate contour (dashed line) and osculating circle (continuous) fitted to the plates mid-point: (a) flextion; (b) extension.

Table 1: Segmentation parameters.

Image 𝐾 𝑗 𝑑, pixels 𝛿, pixels
Subject 1 Figure 2(b) (neutral) 4 3 13 26
Subject 1 Figure 3(b) (flexion) 6 4 14 26
Subject 1 Figure 3(a) (extension) 6 5 13 18
Subject 2 Figure 4(a) (flexion) 6 5 20 23
Subject 2 Figure 4(b) (extension) 6 5 13 26
Subject 3 Figure 4(c) (flexion) 6 4 68 82
Subject 3 Figure 4(d) (flexion) 7 4 45 69
Subject 4 Figure 4(e) (flexion) 7 4 45 69
Subject 4 Figure 4(f) (extension) 6 4 45 69

is easy to see from (5) that this product produces the total
rotation between the two ends of the SL line

(𝑠
2
− 𝑠
1
) 𝜅 = ∫

𝑠
2

𝑠
1

𝜅 = 𝜃 (𝑠
2
) − 𝜃 (𝑠

1
) . (6)

Therefore, the average curvature captures the total rotation
between the two ends of the spinal section under study. Thus
comparing differences between local and average curvature
could be used as an indicator of excessive local deformation.
For example, a comparison between Subject 4 (Figures 4(e)-
4(f)) and Subjects 1–3 (Figures 3, 4(a)–4(d)) clearly shows
a more uniform curvature distribution in the former in
comparison to the latter. If one considers the spine as an
elastic beam, its curvature can be related to the bending
moment, 𝑀(𝑠), and the beam’s local rigidity, EI(𝑠), through

EI (𝑠) =

𝑀 (𝑠)

𝜅 (𝑠)

. (7)

Therefore, local reduction of spine flexural rigidity can be
related to rapid changes in the local curvature, provided
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Figure 6: Average curvature measured in 1/𝐿 during flexion (solid
line) and extension (dashed line).

that the internal bending moment 𝑀(𝑠) does not change as
rapidly. While the latter is a hypothesis to be tested in the
case of human spines, using variations of local curvature,
Ratcliffe was able to detect cracks in elastic beams that are
2% of its total thickness [22]. Within this limited study, it
appears that Subject 4 showed a more uniform curvature in
flexion and extension, implying an optimal distribution of the
deformation in both cases.

The proposed image segmentation method was also used
to analyze the deformation of the cervical plates. A simple
mirroring of the image prior to segmentation analysis allows
the same algorithm to be applied to the anterior contour
of the vertebrae including the implanted hardware. Figure 5
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Figure 7: Fitted plate contour (dashed line) and osculating circle (continuous) fitted to the plates mid-point: (a) neutral; (b) flexion; (c)
extension; (d) plate curvatures in 1/𝐿 units.

shows the mirrored images after the application of the
segmentation method. The continuous line (green) marks
the osculating circle fitted to the mid-point of the cervical
plate. In order to obtain the average curvature, the polynomial
(3) was truncated to second-order terms. A comparison
between the average curvature of the plate during extension
and flexion is shown in Figure 6. The corresponding radii
of curvature are 3.7𝐿 and 6.1𝐿 for flexion and extension,
respectively.These values are within themanufacturer’s built-
in lordotic radii or 2–5𝐿; however, it is surprising that

noticeable plate curvature changes occur during flexion-
extension motion. Furthermore, it is apparent that these
changes occur in the opposite direction to the changes in
the cervical spine curvature, that is, the curvature becomes
more lordotic during flexion compared to extension. This
prompted a similar analysis on the images of Subject 1 with
a single-level fusion. The obtained plate curvatures from
flexion, neutral, and extension radiographs are shown in
Figure 7. It is apparent that the extension leads to the smallest
lordotic curvature, while the flexion produces the largest.
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5. Results

The developed semiautomatic image segmentation method
allows for quantitative analysis of flexion-extension radio-
graphs. Four tuning parameters were used to segment the
images. Examples of extracted features include the SL line
and cervical plate contours. These were analyzed using the
methods of differential geometry in order to obtain local
curvature changes.Themethod provides an ability to analyze
changes in the curvature of the SL line and pinpoint the points
of largest curvature change. Often, these occur in the levels
adjacent to the fused vertebrae. Analysis of the curvature
changes of the plates shows that, contrary to the expectation
that the plates would follow the contour of the spine,
minute curvature changes occur in the opposite direction;
that is, for lordosis increasing motion, the lordosis in the
plate diminishes. Possible explanations for this difference are
settling of the graft during fusion, leading to the transfer of
higher loads in the caudal-cephalic directions through the
rigid plate-screw construct. Such higher compressive loads
have been described in [23], where the authors report a 10-
fold increase of compressive stresses during flexion (kyphotic
configuration) in comparison to the magnitude of tensile
stresses during extension (lordotic configuration).The lack of
redistribution of these large compressive stresses as a result of
using rigid constrained plates is the primary motivation for
the development of dynamic plates allowing motion of the
fixation screws [24].

Given that the rigidity of the plate-screw system is
generally known, the presented image analysis technique
could lead to in situ force/bending moment measurements,
too. Using curvature instead of Cobb angles in the analysis of
flexion-extension radiographs tends to result in an increase
of the sensitivity due to the curvature being proportional to
the second derivative of displacements. However, themethod
also amplifies errors in the segmentation and therefore should
be used with caution. Segmentation errors generally occur
at C7, where the extracted contour deviates from the SL line
and “drifts” along the spinous process of C7 (see Figure 4).
Other errors occur at the junction with the skull in extension
radiographs, when the posterior arch of the atlas (C1) overlaps
with the occipital bone. In such cases, the exact location of the
cephalic end of the SL line is lost (see Figure 3(b)).

6. Conclusions

This work presented a semiautomatic image analysis of
conventional flexion-extension radiographs. The presented
method allows for quantitative analysis of the motion of
individual vertebrae and implanted hardware. The average
total time for image segmentation and processing was 3.53
seconds; however on average 3-4 runswere used to determine
the optimal values of the parameters from Table 1. The
increased sensitivity of the curvature-based analysis may
lead to more accurate interpretation of flexion-extension
radiographs and the diagnosis of pseudoarthrosis. Further
applications include in situ force estimation and the devel-
opment of curvature-based criteria for fusion and analysis
of spinal instability. While limited in size, the present study

illustrates the ability of the method to detect larger curvature
changes adjacent to the fused vertebrae, which are commonly
associated with adjacent level disease. Future efforts should
be aimed at replacing the manual selection of the optimal
segmentation parameters with automatic selection using
machine learning algorithms. Further improvements of the
efficiency can be obtained by selecting the ROI earlier in the
image processing sequence. Last but not least, the technique
should be applied to biplanar images to reduce any project
errors in the estimation of the curvature.

Within this limited study, Subject 4 data showed consis-
tently uniform curvature distribution in flexion and exten-
sion radiographs, implying an optimal distribution of the
deformation in both cases, while Subjects 1–3 showed con-
sistent variation in the local curvature of the SL line. Possible
clinical relevance of this finding could imply a better distribu-
tion of the total range of motion for Subject 4 over Subjects
1–3 and lower likelihood of developing adjacent level disease;
however a larger study should be undertaken to validate
this hypothesis. Such studies will likely be carried in supine
position in order to ensure laxity of the neck muscles and,
therefore, uniform bending moments of the cervical spine.
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