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Abstract: To efficiently remove malachite green (MG), a novel calcium-functionalized magnetic
biochar (Ca/MBC) was fabricated via a two-step pyrolysis method. Iron-containing oxides endowed
the target complexes with magnetic properties, especially the chemotactic binding ability with MG,
and the addition of calcium significantly changed the morphology of the material and improved
its adsorption performance, especially the chemotactic binding ability with MG, which could be
confirmed through FTIR, XPS, and adsorption experiments. Electrostatic adsorption, ligand exchange,
and hydrogen bonding acted as essential drivers for an enhanced adsorption process, and the
maximum theoretical adsorption capacity was up to 12,187.57 mg/g. Ca/MBC maintained a higher
adsorption capacity at pH = 4–12, and after five adsorption–desorption cycles, the adsorption capacity
and adsorption rate of MG remained at 1424.2 mg/g and 71.21%, highlighting the advantages of
Ca/MBC on adsorbing MG. This study suggests that biochar can be modified by a green synthesis
approach to produce calcium-functionalized magnetic biochar with excellent MG removal capacity.
The synthetic material can not only remove pollutants from water but also provide an efficient way
for soil remediation.

Keywords: magnetic biochar; calcium modification; malachite green; adsorption mechanism

1. Introduction

Malachite green (MG) is a triphenylmethane-based synthetic refractory organic com-
pound with stable chemical properties [1–3]. As a common water-soluble cationic dye, MG
is used in paper printing and dyeing processes in the textile industry, and it is also widely
used in fisheries as an antibacterial agent and antifungal agent [3,4]. However, MG and
leucomalachite green (an MG metabolite) are highly carcinogenic and genotoxic, and can
cause significant damage to the human body, especially the immune and reproductive
systems [3–6]. Wu et al. [7] indicated that key components of soil ecosystems are adversely
affected by MG and will eventually have a significant impact on the soil environment and
cause ecosystem damage. Since the mid-1990s, when MG was finally proven to be toxic
enough to be prohibited in seafood products for human consumption, 28 EU member states
have regulated MG in the production and import of marine products [8]. Decree No. 235 of
the Ministry of Agriculture of China in 2002 stipulates that MG is prohibited from use in all
animal products and should not be detectable in animal food.

Numerous methods have been developed for removing MG, such as adsorption [9],
membrane separation [10], flocculation/solidification [11], chemical treatment [12], and bio-
logical treatment methods [13]. Due to its low cost, adsorption is favored by researchers [3,9,14].
Biochar is the carbon-rich solid extracted from biomass that is usually pyrolyzed under
anaerobic conditions. Biochar has been studied in dye-containing wastewater treatment be-
cause of its porosity, hydrophobic surface, high specific surface area, and excellent thermal
stability [15]. Wu et al. [16] prepared biochar through hydrothermal carbonization and sub-
sequent activation. The adsorption capacity of the samples for MG reached 2468 mg/g and
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involved pore filling, hydrogen bonding, π–π interactions, and electrostatic interactions.
Furthermore, the modification of biochar to render it magnetic uses solid–liquid separation
and recycling. Eltaweil’s group [17] prepared a nano zero-valent iron modified biochar
magnetic composite that demonstrated an excellent MG removal capacity (515.77 mg/g)
and recycling performance.

Magnetic biochar acquired from the pyrolysis of biomass and ferrates shows potential
as an adsorbent, but it is lower than others. Surface modification is an attractive method
to adjust the surface properties of magnetic biochar and improve its adsorption perfor-
mance [18,19]. Several studies have shown that biochar improved by adsorbed metals,
such as Cu [20], Mn [21], Fe [22], Si [23], Ti [24], and Mg [21], has incredible high pollutant
removal performance. Calcium is an abundant natural resource, which is ecologically
non-toxic, thus rendering it as an attractive modifier [14]. Xu et al. [25] investigated the ef-
fects of four calcium-based additives, Ca(H2PO4)2, Ca(OH)2, CaCO3, and CaO, on biomass
pyrolysis and the properties of the resulting biochar. The results showed that CaO had the
best performance for improving the biochar quality and gas production.

Herein, to remove MG from water more efficiently, this study prepared calcium-
modified biochar. To the best of our knowledge, this is the first report where porous
magnetic biochar (MBC) was obtained by pyrolysis-carbonization activation, and subse-
quent high-temperature co-pyrolysis prepared calcium-modified magnetic porous biochar
(Ca/MBC) to remove MG accordingly. Therefore, this study used adsorption isotherms,
adsorption kinetics, adsorption–desorption cycles, and various characterization methods
to further investigate the removal efficiency and adsorption mechanism of the adsorbents.
This study provides new ideas for improving biochar and new materials for the efficient
removal of organic matter from sewage (Scheme 1).
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2. Materials and Methods
2.1. Materials

Rice straw was cleaned, powdered, and dried before further application. Ferric chlo-
ride hexahydrate (FeCl3·6H2O), sodium hydroxide (NaOH), calcium carbonate (CaCO3),
anhydrous ethanol (C2H6O), and malachite green (C23H25ClN2) were all analytically pure
and purchased from Sinopharm Chemical Reagent Co. (China). The 5 g/L stock solution
of MG was prepared with deionized water. The basic properties and chemical structure of
MG are shown in the Supplementary File (Figure S1).
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2.2. Biochar Preparation and Modification

Straw biomass (10 g) was impregnated in 30 mL FeCl3·6H2O solution for 30 min with
a mass ratio of 1:2, and then dried at 80 ◦C in an oven. The dried powder was mixed with
NaOH (w/w = 1:1), heated to 700 ◦C in a tubular furnace at a heating rate of 10 ◦C/min,
and then pyrolyzed for 2 h. Heating was performed under a N2 atmosphere with a flow
rate of 200 mL/min. After cooling to room temperature, the prepared magnetic biochar was
washed to a neutral pH with 500 mL of deionized water. It was then dried at 85 ◦C for 12 h,
sieved through a 100-mesh sieve, and marked as MBC. Next, the MBC was mechanically
homogeneously mixed with CaCO3 (w/w = 1:1), heated at a rate of 10 ◦C/min to 900 ◦C,
and pyrolyzed for 2 h. Afterward, the same procedure as above was followed to obtain the
sample labeled as Ca/MBC.

2.3. Batch Adsorption Experiments

The prepared MBC or Ca/MBC and MG aqueous solution were added to conical flasks
covered with tinfoil and then shaken at 160 rpm under room temperature. The effects of the
initial MG concentration, adsorption time, and initial pH on the adsorption performance of
the prepared materials were analyzed. After the reaction, the Ca/MBC–liquid mixture was
filtered using filter paper. The absorbance values of the collected liquids at 617 nm were
measured through a UV-Vis spectrophotometer (TU-1810, Beijing, China). Specifically, the
first step is the preparation of the standard solution. A certain mass of MG solid powder
was weighed and dissolved in deionized water, and the original MG solution with 1 g/L
concentration was prepared. After that, the standard curve was constructed. A certain
amount of MG solution was weighed and diluted to the concentration range of 2, 4, 10,
25, 50, 80 and 100 mg/L. The absorbance of these six solutions was measured by a UV-
spectrophotometer, and the standard curve of the MG solution was plotted according to
the correspondence between concentration and absorbance. Finally, the calculations of
the adsorption experiments were performed. The reaction-completed filtrate was diluted
to a reasonable range, and the actual concentration of the MG solution after adsorption
was calculated from the standard curve. The MG concentration in the adsorption system
(C0 and Ce) was calculated via absorbance measurements. The equilibrium adsorption
capacity qe (mg/g) and removal efficiency (η) were calculated using the following equations:

qe =
(c 0−ce)V

M
(1)

η =
c0−ce ×100

c0
(2)

where C0 and Ce are the initial mass concentration of MG and its concentration at time t,
respectively, mg/L; V is the volume of the solution, L; M is the mass of the Ca/MBC, g.

2.3.1. Adsorption Kinetics and Isothermal Adsorption

The relationship between the initial MG concentration (100, 200, 400, 800, 1200,
2000 mg/L), adsorption time (10, 30, 60, 120, 180, 240 min), and adsorption capacity
was investigated.

Non-linear fitting of the initial MG concentration versus adsorption was performed
using the Langmuir and Freundlich models to describe the isothermal adsorption process
via Equations (3) and (4), respectively. To describe the Ca/MBC adsorption kinetics for MG,
non-linear fitting of the adsorption time versus adsorption amount was analyzed by using
the pseudo-first-order (Equation (5)), pseudo-second-order (Equation (6)), and Elovich
models (Equation (7)).

Langmuir qe= qmKLCe/(1 + K LCe) (3)

Freundlich qe= KFCe
1/n (4)
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Pseudo-first-order qt= q1(1− e−k1t) (5)

Pseudo-second-order qt= q2
2k2t/(1 + q 2k2 t) (6)

Elovich qt =
1
β

ln(αβ)− 1
β

ln(t) (7)

where Ce is the equilibrium concentration of MG; qe, qt, and qm are the adsorption capacities
at equilibrium, time t, and the maximum; KL is the Langmuir constant; KF and n are
Freundlich constants; t is the reaction time; α and β are the Elovich constants; kid is the
intragranular diffusion constant.

2.3.2. Effect of Solution pH on the Adsorption Effect

The initial pH of the MG solution was adjusted to 2, 4, 6, 8, 10, and 12 by adding 0.1 M
NaOH and 0.1 M HCl, while keeping the other conditions the same as above.

2.3.3. Regeneration of Ca/MBC

The recoverability of Ca/MBC was verified via five adsorption–desorption cycles,
in which Ca/MBC loaded with MG was desorbed in 100 mL anhydrous ethanol for 30 min
ultrasonication. The regenerated samples were separated by magnets and dried at 80 ◦C [26].

2.4. Characterization

Scanning electron microscopy (SEM) was utilized to obtain information about the
surface morphology (JSM-7500F JEOL, Tokyo, Japan). A transmission electron microscope
(TEM) was utilized to obtain information about the surface morphology (Tecnai G2 F20
S-TWIN, Hillsboro, OR, USA). Before performing the SEM measurement, the samples were
ground with a mortar and pestle for 5 min, then dipped into the powder using toothpicks,
stuck on the conductive adhesive, and the sample surface sprayed evenly with gold using an
ion sputtering coater to enhance its conductivity. Before the TEM measurement, the ground
sample was dispersed in ethanol solution for more than 30 min with ultrasonic shaking,
and the mixed solution was dropped onto an ultra-thin carbon grid, then placed on the
sample stage for testing; X-ray diffraction (XRD) measurement was carried out using Cu
Kα radiation at 40 kV and 30 mA over a range of 19–90◦ 2θ at 5◦/min (D8, Rigaku, Tokyo,
Japan). XRD patterns were processed by OriginPro-2016 peak analysis to find the 2θ and
intensity ratio of each peak. Peak assignment and mineral identification were performed
using the ICDD database with the 2θ position and intensity ratio of peaks of each mineral
phase. The surface properties of MBC, Ca/MBC, and Ca/MBC after MG adsorption were
obtained using Fourier-transform infrared (FT-IR) spectroscopy (Nicolet 460, Thermo Fisher,
Waltham, MA, USA). The samples were mixed with potassium bromide powder at the
mass ratio of 1:100 and milled over 5 min. Following the pressing, the sample was put
into the FTIR instrument after ensuring the light transmission. Following the compression
of the film poles to ensure light transmission and placement into the FTIR instrument,
X-ray photoelectron spectroscopy (XPS) was performed using Al Kα excitation (Escalab
250Xi, Thermo Fisher, Waltham, MA, USA) to characterize the elemental composition of
Ca/MBC before and after MG adsorption, the surface within a thickness of 10–100 nm,
and the binding pattern of each element, where the detected binding energy was corrected
using the C 1s (248.8 eV) standard peak.

3. Results and Discussion
3.1. Characterization of Samples

The morphology of Ca/MBC was analyzed by SEM and TEM. The SEM images of
the as-prepared samples at different magnifications are shown in Figure 1. The surfaces of
MBC and Ca/MBC showed irregular fluffy structures with pores (Figure 1a,b), indicating
that the glycosidic linkages in cellulose and hemicellulose were hydrolyzed with KOH.
In contrast, the aryl linkages in lignin were cleaved (Equations (8)–(11)) [27]. The active sites
on the surface of MBC and Ca/MBC may facilitate the adsorption of MG macromolecules.
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Intriguingly, diamond-shaped blocks were observed that adhered to the surface of MBC
(Figure 1c), while Ca/MBC mainly consisted of regular clusters of rectangular-shaped
substances (Figure 1f). Further structural features of MBC and Ca/MBC were clearly
verified through TEM (Figure 2). Spherical substances attached to the MBC with particle
sizes within 100–200 nm, and Ca/MBC was composed of biochar and large-sized regular
substances that were all in concordance with the SEM results (Figure 1). To determine
the qualitative components of the above observed structures, the samples were further
characterized and analyzed using XRD [28].
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To further explore the structure of Ca/MBC, XRD analysis was performed. The XRD
pattern of MBC (Figure 3) contains a series of characteristic peaks corresponding to the (111),
(220), (311), (222), (400), (422), (511), (440), (662), (642), and (731) planes belonging to Fe3O4
(magnetite ICDD card PDF#00-019-0629). The pyrolysis reaction between biochar and
ferrate involves the reaction pathways shown in Equations (12)–(14).There were numerous
new peaks for Ca/MBC corresponding to the (020), (011), (101), (030), (131), (002), (200),
(141), (051), (112), (122), (231), (161), (202), (152), (222), (062), (033), (181), (252), (143), (341),
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(082), (262), and (282) planes of Ca2Fe2O5 (calcium iron oxide; ICDD card PDF#00-018-0286),
besides containing some typical MBC characteristic peaks. Combined with the SEM and
TEM images, the “rhombic or spherical” substance attached to the surface of MBC may be
Fe3O4, and the ‘rectangular’-like substance on the surface of Ca/MBC may be Ca2Fe2O5.

6KOH + 2C → 2K + 2K2CO3+3H2 (8)

K2CO3 → K2O + CO2 (9)

K2CO3+2C → 2K + 3CO (10)

K2O + C → 2K + CO (11)

C + 4FeCl3+10H2O ∆→ 4FeCl2·2H2O + 4HCl ↑ +CO2 ↑ (12)

FeCl2·2H2O + 2H2O ∆→ FeCl2·4H2O (13)

Fe2++Fe3++8OH− ∆→ Fe3O4+4H2O (14)
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Moreover, N2 adsorption–desorption isotherms were obtained to obtain the specific
surface area and pore characteristics information. The textural properties of MBC and
Ca/MBC are reported in Figure 4 and Table S1. The N2 adsorption–desorption isotherms
of MBC and Ca/MBC displayed a typical type IV curve with H3-type hysteresis loops,
indicating that the initial monolayer–multilayer adsorption occurred in the same path as
the corresponding part of the type II isotherm (Figure 4). The absence of obvious satura-
tion adsorption plateaus in the H3-type hysteresis loop isotherm indicated an irregular
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structure, which was consistent with the SEM and the TEM morphology mentioned above.
The surface areas (SSAs) of MBC and Ca/MBC, as shown in Table S1, were found to be
significantly lower, especially for Ca/MBC, with 9.555 and 2.779, respectively. This could
be accounted for by the blockage of biochar pores by Fe3O4 or Ca2Fe2O5 generated during
pyrolysis, and also indirectly implies that with Ca/MBC as the adsorbent, chemisorption is
most likely the main mechanism. Both MBC and Ca/MBC exhibited type IV adsorption–
desorption isotherms, showing a wide hysteresis loop, indicating the mesoporous character
of materials (Figure 4). This is consistent with the pore sizes (PS) reported in Table S1 for
MBC and Ca/MBC, namely 12.684 and 4.677 nm, respectively [29,30].
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3.2. Adsorption Study
3.2.1. Effect of MBC and Ca/MBC on MG Adsorption

Adsorption capacity is the main index for evaluating the performance of an adsorbent.
As shown in Figure 5a, the adsorption capacity of Ca/MBC on MG was much higher than
that of MBC. The magnetic nature of Ca/MBC allowed it to be completely recovered from
the MG solution, thus realizing the efficient adsorption and separation of MG. Specifically,
the removal efficiency of MBC declined continuously when the sample dosage was 0.2 g/L,
and the MG concentration was in the range of 10–100 mg/L. When the MG concentration
was 100 mg/L, the removal rates of MG by MBC decreased to 24.92%, but the removal
rates of MG by Ca/MBC were higher than 99.69% (Figure 5b).

3.2.2. Adsorption Kinetics and Isotherms

Mononuclear, binuclear, and heterogeneous surface chemisorption in the solid solu-
tion system is described by the pseudo-first-order kinetics, pseudo-second-order kinetics,
and Elovich models [31]. The nonlinear fitting curves and correlation coefficients R2 show
that the adsorption process was consistent with the pseudo-first-order kinetics, pseudo-
second-order kinetics, and Elovich models (Figure 5c and Table S2). In other words, the pro-
cess of MG adsorption on Ca/MBC involved electron sharing or exchange, resulting in the
formation of chemical bonds and van der Waals forces, physical adsorption, and chemical
adsorption [32]. It also indicated that the adsorption rate was controlled by chemical
adsorption [33]. At the same time, surface activation–deactivation and physical diffusion
occurred at the interface between Ca/MBC and MG. In the Elovich fitting parameters,
α (3.83 × 1024) was much greater than β (0.029), which indicated that the adsorption rate of
MG by Ca/MBC was much higher than the desorption rate [31]. That is, the adsorption
process of MG on Ca/MBC mainly involved physical adsorption, chemical adsorption,
and heterogeneous diffusion at the solid–liquid interface [34].
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It can be seen from Figure 5d and Table S3 that the adsorption process of Ca/MBC
was better described by the Langmuir (R2 = 0.997) isothermal model than the Freundlich
model (R2 = 0.974), which is consistent with previous results [35]. The Langmuir model
assumes that adsorption occurs mainly via monolayer adsorption and that the surface
energy of the adsorbent is uniform [36,37]. The Freundlich model assumes that adsorption
occurs on heterogeneous surfaces, which is suitable for the adsorption of multi-molecular
layers [38]. This shows that the adsorption of MG on Ca/MBC occurred through monolayer
adsorption. The maximum theoretical adsorption capacity calculated from the Langmuir
isothermal model reached 12,187.57 mg/g. Compared with several results that have been



Int. J. Environ. Res. Public Health 2022, 19, 3247 9 of 14

reported in the literature in the last three years (Table 1), the adsorption performance of
MG by Ca/MBC is outstanding.

Table 1. Comparison of MG adsorption capacities on various adsorbents.

Adsorbents Adsorption Mechanisms Adsorption Capacity Ref.

Litchi peel biochar

Hydrogen bonding
P-p interaction

Pore filling
Electrostatic interactions

2468 mg/g [16]

Activated wakame
biochar material

Physical adsorption
Chemical adsorption 4066.96 mg/g [9]

Kitchen waste
mixed-base biochar

Physical adsorption
Electrostatic
Interaction

Ion exchange
Void filling

7434 mg/g [31]

Calcium-
functionalized

magnetic biochar

Electrostatic adsorption
Ligand exchange

Hydrogen bonding
12,187.57 mg/g This study

3.2.3. Effect of pH on Adsorption

The pH of the MG solution may directly affect the surface charge of Ca/MBC, the elec-
trostatic interactions between the adsorbent and adsorbate, and the ionization degree of
pollutants [26,39]. It can be seen from Figure 5e that when the pH of the solution was 2,
the adsorption uptake of Ca/MBC for MG was only 210.58 ± 32.75 mg/g. This was due to
the co-existence of massive H3O+, H+ ions and MG in the solution. The surface protonation
of Ca/MBC caused a positive charge increase, which electrostatically repelled the positively
charged MG. When the pH increased to 6, the adsorption capacity of Ca/MBC for MG
increased to 1908.36 ± 15.97 mg/g, which was a nine-fold increase. This shows that there is
an electrostatic effect for the adsorption of MG by Ca/MBC. From pH 6–12, the adsorption
of MG by Ca/MBC did not change significantly, which shows that the electrostatic effect
was not the only mechanism [40]. Additionally, minor fading was observed under strong
alkaline conditions, but the variation of MG adsorption on Ca/MBC in the pH range of
6–8 versus pH 10–12 was slight, and the theoretical maximum adsorption capacity was
much larger than the experimental design adsorption capacity of this group, which means
that the fading of MG in a strong alkaline environment in this study did not intrinsically
interfere with the experimental results. Notably, a high adsorption capacity was observed
in the solution pH range of 4–12, which highlights the advantages of using Ca/MBC to
adsorb MG in this pH range.

3.2.4. Effect of Recycling

Cyclic adsorption is an effective way to achieve Ca/MBC sustainability and reduce
costs. Ca/MBC is magnetic, which promotes its recovery. As shown in Figure 5f, the adsorp-
tion effect of Ca/MBC on MG after desorption was weakened significantly compared with
Ca/MBC, while the adsorption capacity and adsorption rate decreased from 1988.7 mg/g
and 99.44% to 1639.3 mg/g and 81.97%, respectively. This may be due to the inactivation
of some adsorption sites on the surface of Ca/MBC after adsorption–desorption. Upon
increasing the number of adsorption–desorption cycles, the adsorption capacity of Ca/MBC
for MG decreased gradually, but the decline was much gentler compared with the previous
cycle. After five adsorption–desorption cycles, the adsorption capacity and adsorption rate
of MG by Ca/MBC remained at 1424.2 mg/g and 71.21%, respectively.
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3.3. Adsorption Mechanisms

As shown in Figure 6, the number and variety of functional groups on the surface of
MBC were lower than those of Ca/MBC, which explains the reason that the adsorption
amount was substantially lower than Ca/MBC. The peak intensity of numerous functional
groups weakened after MG adsorbed onto Ca/MBC, suggesting that a series of chemical
reactions occurred between the surface functional groups and MG. This supports the
conclusion in Section 3.2.2 that chemisorption was involved in the adsorption process.
Specifically, the O-H peak at 3642 cm−1 disappeared after the adsorption of MG by Ca/MBC,
which indicates that the -OH groups on the surface of Ca/MBC combined with the N atoms
in the MG molecule via hydrogen bonding, which increased the adsorption force [31].
Meanwhile, the peak of the spectrum after MG adsorption on Ca/MBC at 1700–1000 cm−1

was highly consistent with MG and only slightly shifted, which further proved the high
removal ability of Ca/MBC for MG.
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The XPS spectra of Ca/MBC before and after adsorbing MG are shown in Figure 7a.
After MG adsorption, N 1s peak appeared at a binding energy of about 398.4 eV, indicating
that MG was loaded on Ca/MBC. The Ca 2p peak of Ca/MBC had no significant shift
before or after adsorbing MG, but it underwent a significant shift towards a higher binding
energy, which indicates that the Ca binding state changed (Figure 7b). Because the original
large number of anions in Ca/MBC formed bonds with Ca2+, the electron cloud density of
the two structures was biased toward the anions. When MG combined with Ca2+, MG was
more negative, leading to an increase in the binding energy of Ca 2p [41]. Consistent with
the Ca 2p peak, the Fe 2p peak shifted towards a higher binding energy after adsorbing MG
significantly (Figure 7c). The peaks at 289 eV (O=C-O) and 285 eV (C-O) decreased sub-
stantially after MG adsorption by Ca/MBC, indicating that MG replaced many carbonates
during MG removal (Figure 7d).
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It can be further inferred that ligand exchange occurred between Ca/MBC and MG.
Figure 7e shows the two different forms of oxidation—lattice oxygen (OL) and hydroxyl
oxygen (OH)—corresponding to Ca/MB before and after MG adsorption. OH changed
slightly after adsorption and was mainly related to Ca-OH and Fe-OH. On the other hand,
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a large proportion of OL disappeared after MG adsorption by Ca/MBC, which further
demonstrates that MG may induce lattice changes, indicating that the adsorption process
was dominated by chemisorption [42].

4. Conclusions

In this study, calcium-modified magnetic porous biochar composites (Ca/MBC) were
prepared by a two-step impregnation–pyrolysis method. The structure composition and
surface functional group numbers of the calcium/iron modified biochar were optimized.
Adsorption experiments and various characterization results of Ca/MBC before and after
adsorbing MG showed that the adsorption mechanism mainly involved electrostatic ad-
sorption, ligand exchange, and hydrogen bonding. The stable performance within a wide
pH range (4–12) and its remarkable reusability show that this calcium-modified magnetic
biochar is a potential sorbent for treating organic contaminated wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19063247/s1, Figure S1: SEM images of MBC (a,b) and
Ca/MBC (c,d); Table S1: Surface Area, Pore Volume, and Pore Size of MBC and Ca/MBC; Table S2:
Adsorption kinetic fitting parameters; Table S3: Adsorption isotherm fitting parameters.
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