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ABSTRACT

Motivation: Over the recent years, the field of whole-metagenome

shotgun sequencing has witnessed significant growth owing to the

high-throughput sequencing technologies that allow sequencing

genomic samples cheaper, faster and with better coverage than

before. This technical advancement has initiated the trend of sequen-

cing multiple samples in different conditions or environments to ex-

plore the similarities and dissimilarities of the microbial communities.

Examples include the human microbiome project and various studies

of the human intestinal tract. With the availability of ever larger data-

bases of such measurements, finding samples similar to a given query

sample is becoming a central operation.

Results: In this article, we develop a content-based exploration and

retrieval method for whole-metagenome sequencing samples. We

apply a distributed string mining framework to efficiently extract all

informative sequence k-mers from a pool of metagenomic samples

and use them to measure the dissimilarity between two samples. We

evaluate the performance of the proposed approach on two human

gut metagenome datasets as well as human microbiome project

metagenomic samples. We observe significant enrichment for dis-

eased gut samples in results of queries with another diseased

sample and high accuracy in discriminating between different body

sites even though the method is unsupervised.

Availability and implementation: A software implementation of the

DSM framework is available at https://github.com/HIITMetagenomics/

dsm-framework.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Metagenomics is the study of microbial communities in their

natural habitat using genomics techniques (Tyson et al., 2004).
It is undergoing a boom owing to the proliferation of high-
throughput sequencing technologies. Many studies focus at tar-

geted sequencing of specific marker genes such as the 16S rRNA
gene in bacteria, but recently there has been a growing interest in
whole-metagenome sequencing (e.g. Human Microbiome Project

Consortium, 2012; Qin et al., 2010). Although targeted studies

provide data for phylogenetic profiling at a lower cost, whole

metagenomes provide much more information, for example,

about the collective metabolism (Greenblum et al., 2012) and

the population genetics of the community (Schloissnig et al.,

2013). Recent studies have also found associations between fea-

tures of whole human gut metagenomes and type II diabetes

(Qin et al., 2012). New data are accumulating rapidly, with a

popular web-based MG-RAST server (Meyer et al., 2008) listing

almost 3000 public whole metagenomes.

Analyzing whole-metagenome shotgun (WMS) sequencing

data is very challenging. The original sample typically contains

genetic material from hundreds to thousands of bacterial species

of different abundances (Li et al., 2012), most of which have not

been fully sequenced previously. After sequencing, we obtain a

huge collection of short sequence reads whose species of origin is

unknown. Although significant progress has been made, analysis

relying on either the limited previously annotated genomes, or

assembling the reads into novel more complete genomes, remains

difficult and inefficient, and potentially susceptible to annotation

biases.

In this article, we introduce an efficient purely data-driven

feature extraction and selection method as well as similarity

measures for WMS sequencing datasets, and apply them in re-

trieval of similar datasets. Such content-based retrieval is an ex-

tremely powerful tool for exploration of the data and generating

hypotheses of disease associations, as previously demonstrated

with gene expression data (Caldas et al., 2009, 2012). Retrieval

from existing databases makes it possible to automatically ex-

plore a much greater variety of hypotheses than relying solely on

the more common specifically designed focused studies.
Content-based similarity measures and retrieval of similar

metagenomic datasets have been suggested previously (Jiang

et al., 2012; Liu et al., 2011; Mitra et al., 2009; Su et al., 2012),

based on quantifying abundances over a relatively small number

of predetermined features requiring existing annotation. Up to

some thousands of known taxa, genes or metabolic pathways

have been used. We introduce similarity measures that are

based solely on raw sequencing reads, and hence, unbiased and

insensitive to the quality of the existing annotation. A similar

measure has been previously suggested by Maillet et al. (2012),

but only for pairwise comparisons using a method that is com-

putationally too expensive to scale to even modestly large*To whom correspondence should be addressed.
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datasets. Furthermore, instead of considering all sequences of
particular length, also known as k-mers, as has been done earlier
for other tasks and by Maillet et al. (2012), we employ an effi-

cient distributed string mining (DSM) algorithm to find inform-
ative subsequences that can be of any length.
To deal with the large number of features, some feature selec-

tion is necessary. Previous approaches for detecting relevant fea-
tures in metagenomic data have been based on direct comparison
of two classes of samples. Again, most of these methods work on

up to some thousands of features (Parks and Beiko, 2010; Segata
et al., 2011; White et al., 2009), with the notable exception of one
study (Qin et al., 2012) where quantification and association

testing was done for44.3 million predefined genes. Without fea-
ture selection, one can use short k-mers (Baran and Halperin,
2012) or limit to a set of k-mers that are likely to be informative,

such as k-mers associated with well-characterised protein families
(Edwards et al., 2012). Although there are no previous examples

of unsupervised feature selection for metagenomics, it is a
common practice in information retrieval with text documents
(Yang and Pedersen, 1997); a particularly relevant method

assesses the entropy of the distribution of documents in which
a specific term occurs (Largeron et al., 2011).
We evaluate the performance of the proposed unsupervised,

unconstrained retrieval method on synthetic data, as well as
metagenomic samples from human body sites (Human
Microbiome Project Consortium, 2012; Qin et al., 2010, 2012).

To evaluate the performance of the retrieval engine, we use ex-
ternal validation based on a ground truth similarity between two
samples. To simplify this process, we consider a binary similarity,

which is crude but easily accessible. The human gut samples in
(Qin et al., 2010, 2012) come from studies exploring the change in
bacterial species composition between healthy persons and either

inflammatory bowel disease (IBD) or type II diabetes. We utilize
disease state to construct a binary ground truth. Thus, we study

if, given the metagenomic sample of a person with a disease, the
retrieval finds metagenomic samples related by having the same
disease. In the body site data (Human Microbiome Project

Consortium, 2012), we use the body sites as ground truth to
investigate whether it is possible to identify the bacterial commu-
nities at different body sites in an unsupervised setting without

the need of reference genomes. It should be noted that especially
for the gut data, two samples may be related in other ways too.
The external validation with one simple ground truth nonetheless

provides an objective platform for comparing different methods.
Given that the method is unsupervised and hence completely
oblivious of the disease labels, if such retrieval is successful, it

is a promising starting point for developing methods for lever-
aging data from earlier patients in early detection of disease and
personalized medicine.

2 APPROACH

Our objective is to extract and select suitable features for repre-
senting WMS sequencing samples and to form a pairwise dis-
similarity measure for a collection of such samples. Given this

dissimilarity, one can query with a sample and retrieve other
samples that are similar to it (Fig. 1). The measure needs to be
reasonably rapidly computable, yet captures relevant differences

between the samples, and does all this with as little prior

biological knowledge and annotations as possible, as detailed

quantitative prior knowledge is typically not yet available for

metagenomics.

Evaluating dissimilarity requires representing the metage-

nomic sample in a suitable feature space. A standard choice

for representing objects over strings is to estimate the k-mer fre-

quency values, where a k-mer here is a string of k letters from the

DNA alphabet {A,C,T,G}. Therefore, there are 4k possible

k-mers for any given k. It is a standard practice to set k to a

specific value, typically a small value to keep the estimation

problem tractable both computationally and statistically.

A larger k would give better discriminability but not without

bounds, as for finite dataset sizes there simply are not enough

data to estimate long k-mers. We argue that instead of setting k

to a particular value, it is more effective to estimate all possible

k-mers for all possible k which the data supports. This makes the

problem more challenging, as the number of such observed dif-

ferent k-mers for large k becomes very large, and they become

more susceptible to sequencing errors. Focusing on k-mers ap-

pearing more than once in a sample helps significantly because it

is relatively rare to have the exactly same sequencing errors in

two independent reads.

To make the method computationally efficient, we treat each

k-mer as an independent feature. We compute a Bayesian esti-

mate of their relative frequencies across samples. The employed

prior helps in suppressing noise caused by small observed read

counts. In the filtering step, the abundance distribution of each

k-mer over samples is used to judge informativeness of the k-mer

for retrieval; a k-mer with constant abundance does not have

discriminative power and, in the other extreme, a k-mer which

is present in only one sample cannot generalize over samples. We

show that the filtering step significantly improves the retrieval

performance with most datasets and distance measures. Finally,

we compute the dissimilarity between two samples across the

features as a weighted average of distances between relative fre-

quencies of individual k-mers. Treating each k-mer as an inde-

pendent feature allows us to execute these steps fast and on the

fly without storing the intermediate results. Such simplified dis-

tance measures are necessary to guarantee scalability given the

extremely high dimensionality of the k-mer features.
To summarize, we introduce methods to (i) estimate the fre-

quencies of a large number of k-mers over multiple samples, (ii)

decide if a k-mer is informative or uninformative in the context

Fig. 1. Given a set of metagenomic samples, our objective is to be able to

retrieve relevant samples to a query sample. For this, we need to extract

relevant features and evaluate a pairwise similarity (or dissimilarity)

measure. The samples are then ranked in the order of increasing dissimi-

larity from the query
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of a retrieval task, (iii) compute a distance metric using the fil-

tered k-mer frequencies, and (iv) execute these steps fast without
explicitly storing the frequency values. Figure 2 summarizes the
method.

3 METHODS

3.1 Estimating k-mer frequencies: normalization,

regularization and filtering

To perform the feature selection or filtering, we first compute Bayesian

estimates of the relative frequencies pðsjwÞ of each k-mer w over samples

s 2 S using observed frequencies f̂ðs;wÞ of the k-mers. These are distri-

butions over samples for each k-mer that are computed independently for

each k-mer for reasons of computational efficiency.

Even if the relative abundance of a k-mer is the same in every sample,

the observed frequencies may differ because of different sequencing depth

or coverage in different samples. To tackle this issue, we employ normal-

ization: we normalize the frequency f̂ðs;wÞ by a sample-specific constant

�(s), which is proportional to the total number of base pairs in a sample,

and �ðsÞ=1 for the largest sample in the collection in terms of total base

pair count, obtaining

fðs;wÞ=f̂ðs;wÞ=�ðsÞ: ð1Þ

The �(s) can be interpreted probabilistically as the probability of obser-

ving a sequence in the actual sample, assuming every sample had the same

number of base pairs to start with, but some have been lost in the

processing.

To estimate the relative frequencies, we place a conjugate symmetric

Dirichlet prior on the parameters of the multinomial distribution over the

observed counts. The common choice of uniform prior distribution cor-

responds to a Dirichlet distribution with all parameters equal to 1. This

yields a posterior mean estimate of the relative frequency values as

pðsjwÞ=
fðs;wÞ+1X

s02S

fðs0;wÞ+1½ �
: ð2Þ

The Dirichlet prior with all parameters equal to 1 is ubiquitous in docu-

ment retrieval. It is particularly suitable for metagenomics owing to the

following observations: First, the DSM algorithm (described below)

trades off low k-mer counts for speed and ignores any k-mers that are

present only once in a sample. The pseudocount from the prior makes up

for this missing count. Second, adding pseudocounts assists in playing

down the significance of rare k-mers that may appear due to sequencing

errors in the filtering step without affecting other k-mers too much.

Finally, given the massive number of potential k-mers, it is crucially

important to improve signal-to-noise ratio by focusing on the informative

ones. For the unsupervised tasks of comparing the samples, obviously

only k-mers that distinguish between the samples are informative. As a

concrete example, consider a k-mer that is present in all samples with a

similar abundance. It certainly does not give information useful for com-

paring samples. In the other extreme, if a k-mer is present in one specific

sample, but not in any other, it is potentially a spurious k-mer due to

sequencing error, and in any case does not help in comparing samples

either. On the other hand, if a k-mer is present in some samples, but not

all, then it gives information that those samples are similar in a specific

sense. Informativeness in this sense can be measured by the entropy H of

the distribution of the k-mer over the samples: we filter the k-mers based

on the conditional entropies

HðSjwÞ=�
1

log ðjSjÞ

X

s2S

pðsjwÞlogpðsjwÞ; ð3Þ

a k-mer is taken into account in distance computation only if the normal-

ized entropy is lower than a certain threshold e. By design 0 � H � 1.

Notice that in standard information theory terminology higher entropy

implies higher information. However, in our context an informative

k-mer has low entropy. Also, due to the Bayesian estimation, a spurious

k-mer having only small counts will have large conditional entropy and

will be filtered out.

The optimal value of threshold e varies with datasets. It can be ‘opti-

mized’ in a supervised manner by utilizing a training set where we have

labeled samples. In the absence of a labeled set, we suggest taking the

‘average’ of distance metrics computed over the potential thresholds as

the final metric. We refer to the final metrics in the two cases as optimized

metric and average metric. In our experimental set-up, we randomly make

a 50–50 split of a given dataset in training Str and testing Ste sets:

Str \ Ste=1 and Str [ Ste=S. We use Str to optimize the entropy thresh-

old: we query with samples in Str and retrieve relevant samples within the

same set to observe which entropy threshold results in the best retrieval

result (see Section 3.4 for details). While comparing the performance of

two methods we always present the evaluation over Ste: we query with

samples within Ste, and we retrieve relevant samples from S (not just Ste).

Notice that the training set can also be used to judge the importance of

individual features.

3.2 Algorithms to extract informative k-mers

Our main computational challenge is to extract all informative k-mers

from large-scale datasets in feasible time and space. Recall that the filter-

ing step relies on knowledge over multiple samples to decide if the

respective k-mer is informative for the retrieval task or not. Because

the typical collections of WMS samples are huge in size, we cannot

assume that even the plain input fits into the main memory of any

single machine. To process these large-scale datasets, the computation

needs to be done either using external memory (i.e. disk) or in a distrib-

uted manner (i.e. a computer cluster). We review two approaches: k-mer

counting (Marais and Kingsford, 2011; Rizk et al., 2013) and DSM

(V€alim€aki and Puglisi, 2012). The first one is a standard approach in

the literature for fixed k, but has several limitations when applied in

our context of multiple samples and large-scale data. We show that the

latter approach is more flexible in this context and can also be generalized

to extract informative k-mers over all values of k simultaneously.

Jellyfish (Marais and Kingsford, 2011) and DSK (Rizk et al., 2013) are

examples of recent algorithmic improvements in k-mer counting. Both

tools use hash tables to compute the k-mer distribution for a given (fixed)

k. In both tools, space efficiency is achieved by keeping most of the hash

table on disk. The main drawback with these disk-based approaches is

that they are aimed at counting k-mers in a single sample and extending

Fig. 2. Processing steps of our method. Given a collection of metage-

nomic samples, we use the collection as an input to the DSM method (4).

For the method, we estimate the frequency of each k-mer (1, 2), evaluate

if the k-mer is informative or not (3), and compute the needed dissim-

ilarities (5). Finally, in this article we evaluate the performance consider-

ing the existing annotations as ground truth; annotations are not needed

for the retrieval in general

2473

Exploration and retrieval of whole-metagenome sequencing samples

.
.
,
In order 
In order 
one
due 
distributed string mining 
-
-
very 
which 
very 
l
l
-
,
,
.
Since
distributed string mining 
,
-


them over to multiple samples is non-trivial. For example, Jellyfish could,

in principle, be extended to count k-mers over multiple samples: the au-

thors give a roughly linear time algorithm to merge two or more hash

tables. However, the intermediate k-mer counts would need to be stored

on disk, which requires significant amount of additional space, and the

merge phase is not parallelized (Marais and Kingsford, 2011, User

manual, Section Bugs).

The decision whether a particular k-mer is informative or not is made

by looking at its frequency over all the given WMS samples. We tackle

this problem by a DSM framework (V€alim€aki and Puglisi, 2012) that can

handle multi-sample inputs by utilizing a computer cluster. The main

advantages of this framework are that (i) load balancing divides the

data and computation over multiple cluster nodes, (ii) intermediate

k-mer counts are not stored explicitly and (iii) there is no additional

disk I/O strain, except reading through the input once. These advantages

allow terabyte-scale data analysis on a cluster having limited main

memory per node, but a sufficient number of nodes available to facilitate

the computation in distributed manner. We extend the DSM framework

to be compatible with our definition of informative k-mers (see the above

subsection). It allows us to extract the informative k-mers either for a

fixed k or over all values of k in feasible time.

The DSM framework is based on a client-server model. The clients

have one-to-one correspondence to the given samples, each client being

responsible for computing the frequencies within the designated sample.

The client-side computation relies heavily on suffix sorting techniques and

on space-efficient data structures for strings (V€alim€aki and Puglisi, 2012):

the input data are first preprocessed into a compressed representation,

which replaces the input data and acts as an efficient search structure. The

server-side computation is more straightforward: the server simply

merges the (sorted) input from the clients, computes the entropies and

updates the distance matrices. Figure 3 gives a toy example of the client–

server interaction. Two crucial observations are needed to keep the whole

computation and transmission costs feasible. First, the informative

k-mers can be seen as a subset of left–right-branching substrings, i.e. sub-

strings whose instances have differentiating continuation on both left and

right. More formally: substring w of string T[1,n] is called right-branching

if there exists two symbols a and b such that a 6¼ b and both wa and wb

are substrings of T. Similarly, a substring w is left-branching if aw and

bw; a 6¼ b, are substrings of T. If a substring is both left-branching and

right-branching, we say it is left–right-branching. Second, for any string of

length n, there are at most O(n) left–right-branching substrings, and the

total length of all such substrings is bounded by Oðnlog nÞ (K€arkk€ainen

et al., 2009, Theorem 1).

The first observation allows us to reduce the client-side computation

to a smaller set of substrings: it is easy to see that if k-mer w, having

frequency f0ðs;wÞ � 2, is non-branching, then there exists a substring w0

of length k04k that is left–right-branching and has exactly the same

frequency, i.e. f0ðs;wÞ=f0ðs;w0Þ. It follows that the frequency of non-

branching k-mers can be deduced from the branching k0-mers, and the

left–right-branching substrings contain all the necessary information for

us to detect informative k-mers. The second observation guarantees a

feasible transmission cost between clients and servers: the upper bound

for the concatenation of all left–right-branching substrings also acts as an

upper bound for both the server-side running time and the amount of

communication needed. The drawback of restricting to left–right-branch-

ing substrings is that the informative k-mers that we are able to detect

have to appear at least twice in a sample, although this limit may be

useful in pruning spurious k-mers introduced by sequencing errors.

More detailed explanation and analysis of the DSM framework is

given in V€alim€aki and Puglisi (2012). A software implementation of the

DSM framework is available at https://github.com/HIITMetagenomics/

dsm-framework.

3.3 Dissimilarity metrics

Having extracted the informative k-mers, we use them to compute the

dissimilarity between two metagenomic samples. We consider three dis-

similarity metrics that can be computed easily over a large number of

k-mers in sequential manner, i.e. one k-mer at a time, and without storing

all the k-mer frequencies explicitly. To utilize the natural variance struc-

ture of the k-mers—some are more abundant than others—we weight the

relative frequencies of each k-mer by their respective total counts, i.e. we

utilize the absolute frequencies fðs;wÞ as defined in (1).

We mainly use the simple Jaccard distance that does not consider

abundances at all, only whether a k-mer occurs or not. Given two sets

s1 and s2 of k-mers detected as present in two different samples, Jaccard

distance measures how many elements are shared between these two sets.

Mathematically, it is defined as

Dcountðs1; s2Þ=1�
js1 \ s2j

js1 [ s2j
:

Despite its simplicity, we observe that Jaccard distance performs well; a

potential reason is its robustness to measurement noise and effectiveness

when two metagenomic samples differ in terms of presence and absence

of certain species or functionalities. We assume a k-mer is present in a

sample if its frequency is42.

We also experiment with two metrics that use the abundance

information:

I. Variance-stabilized Euclidean distance: An obvious distance measure

between two metagenomic samples s1 and s2 is the Euclidean distance be-

tween their respective k-mer frequencies. We consider the distance metric

Dsqrtðs1; s2Þ=
X

w

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðw; s1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðw; s2Þ

p
Þ
2

which can be computed sequentially as new informative k-mers are

extracted. The square root transformation is the variance stabilizing trans-

formation for Poisson distribution—a popular model for quantitative

sequencing data.

II. Log transformed Euclidean distance: We also consider the same

metric but with log transformation, which is a popular approach in docu-

ment retrieval, i.e.

Dlogðs1; s2Þ=
X

w

ðlog ð1+fðw; s1ÞÞ � log ð1+fðw; s2ÞÞÞ
2:

The motivation for using the log transformation is that it decreases sen-

sitivity to high frequency counts: some k-mers are present in high

Fig. 3. Technical overview of our DSM framework consisting of client

(left) and server (right) processes. The client-side processes are responsible

for computing the substring frequencies within each sample s1; s2; . . . sd
separately. Substrings and their frequencies are found using a depth-

first-traversal over a (compressed) suffix tree. Frequency information is

transmitted over to the server-side by streaming it as a balanced-

parenthesis representation of a sorted trie. For example, the trie on the

left results as the parenthesis representation given in the middle. The

server reads the client-streams and merges the (already sorted) tries in

recursive manner: at each node, the server computes the entropy based on

the received values and updates the affected pairwise distances. Load

balancing on the server-side is achieved by hashing the prefix of

the substring so that each server corresponds to a certain range of hash

values
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abundance in almost every genome, for instance k-mers from the marker

gene, and the log transformation reduces their effect in the metric.

3.4 Evaluation metric

We evaluate the performance of the dissimilarity metric in terms of its

performance in the task of retrieving relevant samples given a query

metagenomics sample. The ground truth for relevance is either the disease

class (disease versus not) or the known body site: samples from the same

class are considered relevant.

For measuring retrieval performance, we use an evaluation metric

which is popular in document retrieval, the mean average precision

(MAP) (Smucker et al., 2007). Given a query q, the retrieval method

ranks the samples in an increasing order of their dissimilarities from q.

Given one has retrieved the top (closest) n 2 f1; . . . ;Ng samples the pre-

cision @ n is defined as

Precisionðn; qÞ=
number of relevant samples in n retrieved samples

n
;

and MAP defined using average precision as,

MAP=
1

jQj

X

q2Q

AvePðqÞ;AvePðqÞ=
1

mq

X

n2Rq

Precisionðn; qÞ:

Here, Q is the set of all queries, mq is the number of relevant samples to

query q and Rq is the set of locations in the ranked list where a relevant

sample appears. It is straightforward that a higher MAP implies better

performance. To judge if two MAP values are significantly different or

not, we employ the randomization test described in Smucker et al. (2007):

for each query, this test randomly reassigns the AvePs achieved by two

methods to one another, and computes the difference between the result-

ing MAP for multiple such reassignments to get a distribution, against

which the true MAP value is tested in terms of P-value. In case two

samples share the same dissimilarity from a query sample, we employ

the modification suggested in McSherry and Najork (2008) to break ties.

When computing the mean, we follow a leave-one-out cross-validation

type approach using each sample as a query, and retrieving from the rest

of the collection. For simulated data and human gut samples, we only

query with the positive samples in the testing set q 2 Ste, whereas for

body site samples we query with each sample in the testing set. For

both cases we retrieve from the entire set Snfqg. Although choosing the

entropy threshold in a supervised setting, we query from q 2 Str and

retrieve from Strnfqg.

3.5 Synthetic data generation

To test the method, we simulated four datasets containing samples from

separate classes, with the interpretation that samples from the same class

are relevant. In all the datasets we have two classes: both classes of sam-

ples have the same species composition but different relative abundances.

We used MetaSim (Richter et al., 2008) to generate Illumina reads of

length 80 using the error configuration file provided by the developers.

Each dataset contains 200 samples: 98 of them belong to the positive class

and the rest belong to the negative class. For each dataset, we used the

same 100 species from the following genera: acetobacter, acetobacterium,

acidiphilium, acidithiobacillus, acinetobacter, bacillus, bacteroides,

bifidobacterium, chlamydia, chlamydophila, clostridium, escherichia,

haloarcula, halobacterium, lactobacillus, pasteurella, salmonella,

staphylococcus and streptococcus. The abundance profiles were gener-

ated from two Dirichlet distributions; one for positive and the other for

negative class. The parameters of the Dirichlet distributions were shared

between two classes: for half of the species (randomly chosen) the same

parameters were used for both classes and for the other half of the species

the parameters were randomly permuted. For example, given five species

the assigned parameters could be: (0.3, 0.2, 0.6, 0.1 and 0.9) and (0.9, 0.2,

0.3, 0.1 and 0.6) where the parameters for the second and fourth species

are the same, but for the other species they were permuted. The exact

species and corresponding parameter values can be downloaded from

https://github.com/HIITMetagenomics. The resulting datasets are—

HIGH-C, relatively easy data with high coverage (10e6 reads/sample);

LOW-C, relatively difficult data with low coverage (2e6 reads/sample);

MIXED-C, mixed data with half the samples from HIGH-C and the rest

from LOW-C to simulate varying sequencing depth; and HIGH-VAR,

relatively difficult data with same coverage as HIGH-C but additional

noise in the class distributions to simulate more overlap between classes.

To elaborate, the relative abundance of species is pHIGH�VAR=0:5 pHIGH

+0:5 noise where noise is generated from a symmetric Dirichlet distribu-

tion with all parameters equal to 1.

4 RESULTS

We evaluated the retrieval performance on three human metage-
nomics datasets:

(1) MetaHIT (Qin et al., 2010), 124 metagenomic samples

from 99 healthy people and 25 patients with IBD syn-

drome. Each sample has on average 65� 21 million

reads. Our goal was to retrieve IBD-positive patients.

(2) T2D Phase II (Qin et al., 2012), 199 metagenomic samples

from 100 healthy people and 99 patients with type II dia-

betes. Each sample has on average 47� 11 million reads.

Our goal was to retrieve patients with diabetes. We chose
to explore the phase II data instead of the phase I data, as

the former has higher coverage; about 40% more reads

than the latter.

(3) HMP (Human Microbiome Project Consortium, 2012),

435 metagenomic samples from 10 different body sites

(see Supplementary Table S1). Of 690 samples that

passed the QC assessment (http://www.hmpdacc.org/

HMASM/), we discarded 255 samples that had51% of

the number of reads of the largest sample.

To recapitulate, for MetaHIT and T2D-P2, our goal is to ob-

serve if given a positive sample, e.g. from a patient with a par-

ticular disease, one can retrieve relevant samples, i.e. with similar

disease; whereas for HMP, our goal is to observe if given a

sample from a particular body site, one can retrieve relevant

samples, i.e. samples from the same body site. For all data, we

applied a quality threshold of 30 and ignored any base pairs with

quality less than the threshold. Table 1 gives an overview of the

computational resources required for each dataset. Additionally,

number of k-mers used by different methods for each dataset are

available in the Supplementary Fig. S1.
Retrieval of samples with similar annotation: We applied the

proposed approach and a number of alternatives for retrieval of

similar samples from the same dataset and evaluated by how

many of the retrieved samples had the same annotation: class

label, disease state or body site. A comparison of the obtained

MAP values averaged over queries by all positive samples is

shown in Figure 4. The results show the performance achieved

by the ‘optimized metric’. The alternatives we considered were—

(i) retrieval performance based on the proposed distances

between frequencies of 21-mers appearing in known protein

families (FIGfams) with added pseudocounts but without en-

tropy filtering (Meyer et al., 2009); (ii) retrieval based on Bray–

Curtis dissimilarity between relative species abundances
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estimated using MetaPhlAn (Segata et al., 2012) (each feature is

a species found in at least one samples; no regularization added);

and (iii) retrieval based on d2SjM0 distances between relative

frequencies of 3-mers (Jiang et al., 2012).

For the simulated data, the two classes differ only by the rela-

tive species abundance; thus, retrieval based on ground truth

abundance can be considered to give an upper limit for the per-

formance. For HIGH-C and HIGH-VAR, the proposed method

performs closer to the ground truth performance than any other

methods, although the difference from ground truth performance

is still statistically significant. For LOW-C, the performance of

all methods, except the protein family based comparison, drop

compared with HIGH-C, whereas for MIXED-C the perform-

ance is again close to HIGH-C despite the presence of low cover-

age samples. This is an encouraging observation showing the

robustness of the proposed approach to varying sequencing

depths.
For the real datasets, the proposed approach yielded statistic-

ally significantly higher MAP than any of the alternatives

(P50:05) for all the datasets, except T2D-P2 where protein

family based comparison works equally well. Interestingly, the

abundance-based retrieval performs relatively poorly here, sug-

gesting that the differences between the classes cannot be easily

captured by species composition alone, while the proposed k-mer

features can provide a better separation. Retrieval based on the

known protein family performed fairly well, but slightly worse

than the proposed approach on MetaHIT. We observe that for

MetaHIT, Jaccard metric performs poorly; however, a change

of metric to log significantly improves the performance for all

methods. Otherwise, all metrics usually work equally well over

different datasets.

Fig. 4. Retrieval performance comparison of the proposed approach using all k-mers (‘Ak’) against the following base measures: (1) ‘FIG’: retrieval

performance using known protein family, (2) ‘Abd’: Bray–Curtis dissimilarity between relative estimated abundance, (3) ‘3’: d2S distance between relative

abundance of 3-mers. ‘Ak’ uses the ‘optimized metric’ over 101 equally spaced threshold values between 0 and 1. Each error bar shows the MAP value

along with the standard error. The grey horizontal line shows retrieval by chance: MAP computed over zero similarity metric. An arrow (if present) over

a method indicates whether the performance of the corresponding method is significantly better (") or worse (#) than ‘Ak’: The stars denote significance

level: 05***50.0015**50.015*50.05. For the synthetic datasets (in the bottom row), the relative abundance is known from experimental design.

We present this result as ‘T’. For MetaHIT, we present the performance for both Jaccard and log metric, as the latter performs much better compared

with the former

Table 1. Computational resources required by the DSM on different

datasets

HIGH-C MetaHIT T2D-P2 HMP

Input size (GB) 149 536 786 3353

Samples 200 124 199 435

Preproc. (h) 0.4 3.6 10 65

Total memory (GB) 117 209 610 2885

All k

Wall clock (h) 4.9 2.0 8.0 53

CPU time (h) 149 187 1137 20000

k=21

Wall clock (h) 1.8 0.4 2.8 12

CPU time (h) 10 74 279 4000

Note: We report wall-clock times and total CPU times for both fixed k=21 and

over all k. Preprocessing is done only once, separately from the actual computation.

Total memory is the memory requirement over all computation nodes. Experiments

were run on a cluster of Dell PowerEdgeM610 nodes having 32GB of RAM and 16

cores. Simulated data and MetaHIT were run using up to eight nodes. T2D-P2 was

run using 32 nodes allowing more parallelization at the server-side. HMP was run

on a cluster of 20 nodes with 2� 10-core Xeon CPUs and 256GB RAM.
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Effect of using specific or unspecific k-mer length: We next com-

pared the proposed approach of using all k-mers to using a spe-

cific k. The retrieval performance using ‘optimized metric’ is

shown in Figure 5 (and Supplementary Fig. S2). The figures

show the complete distribution of average precision values over

different queries whose mean is the MAP of Figure 4. The per-

formance of the proposed method is usually better than with any

individual k. Thus, the proposed method appears to be a rela-

tively safe choice that does not suffer from catastrophically bad

performance on any of the datasets.

Effect of the entropy filtering: Next, we evaluated the efficacy of

filtering the informative k-mers against retrieval performance

without the filtering operation. The results are presented in

Figure 6 (and Supplementary Fig. S3). We observed that entropy

filtering usually improved retrieval performance for all tested

k-mer lengths when using the ‘optimized metric’, although the

improvement might not always be statistically significant.

Although ‘average metric’ often provides significant perform-

ance, it might not always improve over performance without

filtering. Also, retrieval performance of FIGfam may or may

not improve with entropy filtering (‘optimized metric’ and ‘aver-

age metric’ selected in the same way as other methods).

Comparison across different metrics: Finally, we evaluated the

retrieval performance over different dissimilarity metrics. We

presented the performance using ‘optimized metric’ for different

metrics in Figure 7 (and Supplementary Fig. S4). We observed

that the simple presence-/absence-based metric Dcount performed

at least as well as abundance-sensitive log and sqrt metrics,

except for the MetaHIT data for which the other metrics per-

formed better.

5 CONCLUSION

In the wake of collecting multiple samples from similar environ-

ments, information retrieval for metagenomic samples is expected

to become a handy tool in metagenomics research. In this article,

we have addressed the problem of retrieving relevant metage-

nomic samples given a query sample from the same collection.

The novelty of the proposed approach is that it is unsupervised,

and does not rely on the availability of reference databases. We

Fig. 6. Comparison of the best retrieval performance achieved with ‘optimized metric’ (middle), ‘average metric’ (right) and without entropy filtering

(left), for proposed approach ‘All’, individual ks as well as FIGfam-based distance metric. The metrics are ‘optimized’/‘averaged’ over 101 equally spaced

threshold values between 0 and 1. Each error bar line shows the MAP value along with the standard error. The grey horizontal line shows retrieval by

chance: MAP computed over zero dissimilarity metric. An arrow (if present) over a method implies whether the performance of the corresponding

method (top: ‘average metric’, bottom: ‘optimized metric’) is better (") or worse (#) than when entropy filtering is employed: The stars denote signifi-

cance level: 05***50.0015**50.015*50.05. We observe that filtering has a positive impact on the retrieval performance

Fig. 5. Comparison of best performances for different k-mer lengths. The figures show the performance over queries by all positive samples as a violin

plot. All methods use the ‘optimized metric’ chosen over 101 equally spaced threshold values between 0 and 1: the box denotes the MAP value. The

horizontal lines show retrieval by chance: AveP computed over zero dissimilarity metric. Straight line is the mean, and dotted lines are 5 and 95%

quantiles, respectively, when number of relevant samples differ for different queries. An arrow (if present) over a method implies whether the corres-

ponding method performs significantly better (") or worse (#) than ‘All’: The stars denote significance level: 05***50.0015**50.015*50.05. We

observe that the considering all k-mers usually perform equally well with respect to considering a single k
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have suggested employing k-mer frequencies as feature represen-

tation; however, rather than exploring k-mers of a fixed k, we have
scanned through all possible k-mers of all possible k’s usingDSM,

and have proposed appropriate filtering technique to discard un-
informative k-mers. Being reference-free, ourmethod is capable of

focusing on novel sequence markers, such as ones identifying
novel bacterial strains. On the other hand, sensitivity especially

on low-coverage species may be lower than using reference-based
approaches. Like most read-counting-based approaches, our

method can be sensitive to technical variation and changing
biases in the sequencing process. For most reliable results, the

dataset should be measured as uniformly as possible. The distrib-
uted algorithm relies on dedicated cluster hardware having suffi-

cient total amount of main memory. The development of an
efficient secondary memory-based algorithm is an important

topic of future work. The overall computational requirements
scale in near-linear manner as described by V€alim€aki and Puglisi

(2012).We have evaluated ourmethod on both real and simulated
data, and observed that the approach can effectively retrieve rele-

vant metagenomic samples, outperforming both the FIGfams
method based on known highly informative protein families as

well as retrieval based on species composition of the samples.
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